Skip to main content

Constructing strongly convex approximate hulls with inaccurate primitives

  • Conference paper
  • First Online:
Algorithms (SIGAL 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 450))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Barndorff-Nielsen and M. Sobel, “On the distribution of the number of admissible points in a vector sample.” Theory of Probability and its Applications, Volume XI, Number 2 (1966), 249–269.

    Article  Google Scholar 

  2. David Dobkin and Deborah Silver, “Recipes for Geometry and Numerical Analysis—Part I: An Emperical Study.” Proceedings of the 4th Annual ACM Symposium on Computational Geometry (1988), 93–105.

    Google Scholar 

  3. Steven Fortune, “Stable Maintenance of Point Set Triangulations in Two Dimensions.” Proceedings of the 30th Annual Symposium on Foundations of Computer Science (1989), 494–499.

    Google Scholar 

  4. Daniel H. Greene and F. Frances Yao, “Finite-resolution computational geometry.” Proceedings of the 27th IEEE Symposium on the Foundations of Computer Science (1986), 143–152.

    Google Scholar 

  5. Leonidas Guibas, David Salesin, and Jorge Stolfi, “Epsilon Geometry: Building Robust Algorithms from Imprecise Computations,” Proceedings of the 5th Annual ACM Symposium on Computational Geometry (1989), 208–217.

    Google Scholar 

  6. Christoph M. Hoffman, John E. Hopcroft, and Michael S. Karasick, “Towards implementing robust geometric computations.” Proceedings of the 4th Annual ACM Symposium on Computational Geometry (1988), 106–117.

    Google Scholar 

  7. Christoph Hoffman. “The Problems of Accuracy and Robustness in Geometric Computation.” Computer, Volume 22 (1989), 31–42.

    Article  Google Scholar 

  8. Victor J. Milenkovic, “Verifiable Implementations of Geometric Algorithms using Finite Precision Arithmetic.” Artificial Intelligence, Volume 37 (July 1988), 377–401.

    Article  Google Scholar 

  9. Victor J. Milenkovic, “Verifiable Implementations of Geometric Algorithms using Finite Precision Arithmetic.” Ph.D. thesis, Carnegie-Mellon (1988). Available as CMU report CMU-CS-88-168.

    Google Scholar 

  10. Victor J. Milenkovic, “Calculating Approximate Curve Arrangements Using Rounded Arithmetic.” Proceedings of the 5th Annual ACM Symposium on Computational Geometry (1989), 197–207.

    Google Scholar 

  11. Victor J. Milenkovic, “Double Precision Geometry: A General Technique for Calculating Line and Segment Intersections using Rounded Arithmetic.” Proceedings of the 30th Annual Symposium on Foundations of Computer Science (1989), 500–505.

    Google Scholar 

  12. Victor J. Milenkovic and Zhenyu Li, “Constructing Strongly Convex Hulls Using Exact or Rounded Arithmetic.” To appear in Proceedings of the 6th Annual ACM Symposium on Computational Geometry (1990).

    Google Scholar 

  13. Thomas Ottmann, Gerald Thiemt, and Christian Ullrich, “Numerical stability of geometric algorithms.” Proceedings of the 3rd Annual ACM Symposium on Computational Geometry (1987), 119–125.

    Google Scholar 

  14. F. Preparata and M. Shamos, Computational Geometry: An Introduction. Springer-Verlag (1985).

    Google Scholar 

  15. M. Segal and C. Séquin, “Consistent Calculations for Solids Modeling.” Proceedings of the 1st Annual ACM Symposium on Computational Geometry (1985), 29–38.

    Google Scholar 

  16. K. Sugihara and M. Iri, “Geometric Algorithms in Finite-Precision Arithmetic.” Research Memorandum RMI 88-10, University of Tokyo (September 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tetsuo Asano Toshihide Ibaraki Hiroshi Imai Takao Nishizeki

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guibas, L., Salesin, D., Stolfi, J. (1990). Constructing strongly convex approximate hulls with inaccurate primitives. In: Asano, T., Ibaraki, T., Imai, H., Nishizeki, T. (eds) Algorithms. SIGAL 1990. Lecture Notes in Computer Science, vol 450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52921-7_75

Download citation

  • DOI: https://doi.org/10.1007/3-540-52921-7_75

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52921-7

  • Online ISBN: 978-3-540-47177-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics