Issues in Designing Object Management
Systems

Geoff Clow! and Erhard Ploedereder?

1 Softech Incorporation
16875 W Bernardo Drive #201

San Diego
CA 92127
USA

2 Tartan Laboratories Incorporated
300 Oxford Drive
Mouroeville
PA 15146
USA

Abstract

This paper summarizes the discussions of the Object Management System (OMS)
session at the Chinon Workshop. The session identified numerous capabilities
which might be required in an OMS. The facilities which were agreed upon as
essential to an OMS are presented in Section 1, OMS Core Facilities. A num-
ber of issues in the realization of these and other capabilities, influenced in part
by specific application scenarios, are discussed in Section 2, OMS Requirements
Issues. Promising applications requiring further investigation can be found in
Section 3, Perceptions for the Future. Some global observations on the past
and future conduct of the OMS field are summarized in Section 4, Concluding

Observations.

1 OMS Core Facilities

An object management system (OMS) provides services for the management of
project data. Its crucial and generally agreed upon capabilities are described in

this section.

1.1 Capturing Data

Project data includes life-cycle products (e.g., plans, designs, reports, code, doe-
umentation) and process information (descriptions of development practices,
models, and states). Effective project management presupposes capturing infor-
mation about the development process and the products of that process. Data
capture is a service provided by the OMS to project support tools. However, this
service can go beyond merely providing a data repository, if the OMS actively
eaptures information rather than just storing the data explicitly provided to it.



204 Geoff Clow and Erhard Ploedereder

Automating the capture of and response to data is an on-going research topic
crossing the domains of object and process management, as discussed in Section

3 below.

1.2 Data Modelling

The conceptual structures used in presenting data stored in the OMS signifi-
cantly affect the utility of the OMS. The goal of data modelling is to represent
data in a way which exposes its structure. One measure of the quality of an OMS
is the granularity of the information it captures about the data it stores. Stream
1/0 to file contents is an example of the lack of data modelling by the OMS, as
all data interpretation is left to the programs which read the data. Conversely,
one frequent example of an OMS data model 1s a typed Entity-Relationship-
Attribute (ERA) representation, in which the OMS specifies to some extent the
structure and possible values and operations for the data. The particular model
in which an OMS should present data (e.g., ERA, Object Oriented, Relational),
and whether there should be one or more data models within a given OMS,
remain issues for experimentation.

Data modelling also facilitates other OMS services, such as data sharing and
data integrity assurance.

1.3 Data Sharing

Project Support Environments (PSEs) include many diverse tools operating on
the same data. Ideally, such common data should not be duplicated in multiple
data models and representations or redundantly derived. In today’s practice,
however, we find that such duplication occurs (with its ensuing integration and
consistency problems), as many tools implement their own hidden OMS or uti-
lize multiple OMSs with distinct interfaces and data models. Integration of tools
by utilization of a common set of interfaces to a single OMS would facilitate
data sharing but makes migration of existing tools into a more integrated PSE
(IPSE) considerably more expensive. A further alternative to a single, encom-
passing OMS or multiple, independent OMSs is a single OMS, some of whose
administered objects are in turn object bases (nested OMSs); this provides for
sharing of “coarse-grained” data while permitting alternative data modelling of
“fine-grained” data.

1.4 Data Integrity

Sharing data implies a need to agree on the legal operations on that data and
on their sequencing or concurrency. That agreement can be provided primarily
through the OMS, without the need for direct coordination of tool authors. Ac-
cess synchronisation and transaction mechanisms can coordinate the activities
of multiple tools and can help to maintain the consistency of multiple objects.
Typing facilities control the values of data and the primitive operations applied
to data. Access controls determine the processes which may be applied to data



Issues in Designing Object Management Systems 205

by a given user. History, logging and trigger mechanisms have applications in de-
termining or maintaining data integrity. Process management can be integrated
with object management to control the complex operations applied to data. The
number and sophistication of these facilities is partially a precondition for inte-
grating diverse tools, users and data, and partially the means to capitalize on
such integration. The OMS plays a crucial role in enabling the generation of
such facilities.

1.5 Secrecy

Sharing of data (and information about such data) in an integrated environment
must be managed and monitored to control the dissemination of sensitive infor-
mation. An OMS needs to provide suitable mechanisms for discretionary and
mandatory access control.

2 OMS Requirements Issues

There is wide agreement on the need for the cited core facilities of an OMS.
However, there remains substantial debate on how best to achieve those capa-
bilities (e.g., one OMS, multiple OMSs, nested OMSs) and on certain of their
requirements.,

Many critical OMS requirements issues appear to be subsumed in a single
general question. The clients of an OMS are tools (requiring project data man-
agement services). The question is whether all tools should utilize the same OMS
(the same interface providing access to the same object base), or different tools
should utilize different OMSs? A single OMS is one means to integrate tools and
users: All project data are available to all tools (within appropriate integrity
and security limits), and a uniform data model may be presented to tools and
users. Tools that are generic to many life-cycle activities, such as configuration
management tools, are more easily provided in the context of a single, uniform
OMS. Alternatively, multiple OMSs permit the efficiencies of problem-domain-
specific services and facilitate the utilization of an existing tool base. The quality
of a PSE is directly related to the quality of the tools offered. The quality of
the OMS may be a prerequisite for tool quality, but certainly is not a guarantor
of the PSE quality. Pragmatically, it is necessary to resort, at least in part, to
existing tools to populate the PSE and to ease the user migration to a PSE
based on a more sophisticated OMS approach. Hence, the capability to utilize
existing tools is an important consideration. Cost and availability considerations
may therefore make it necessary to adjust to the existence of multiple OMSs,
even though a single OMS might be more appropriate in the long run.

There is a related architectural question in positioning the OMS within the
PSE: Is the OMS a “hub” service of the PSE on which all tools are layered (cur-
rently the prevalent perception), or is the OMS merely another, albeit rather
special, tool that other tools can integrate with at their own choosing? Fun-
damental requirements on the OMS differ considerably depending on which of



206 Geoff Clow and Erhard Ploedereder

these models is chosen. Generally, the arguments for a single OMS also speak in
favour of a hub architecture. Similarly, opting for multiple, disjoint OMSs can
obviate the question of whether there is an OMS layer in the PSE architecture.

Following are individual OMS requirements issues. Frequently, these issues
relate to the single versus multiple OMS question.

2.1 Compile-time versus Run-time Type Checking

Type-checking at tool compilation to ascertain the validity of operations on
OMS-administered objects has the benefits of early detection of errors and po-
tentially minimizing run-time overhead. However, conventional languages cannot
prevent malicious subversion of compile-time type checks; more restrictive lan-
guages and execution models would be required to prevent such subversion. Since
integrity and secrecy of persistent data needs to be guaranteed, having both early
detection of errors and integrity of persistent data will, in most environments,
mean having both compile-time and run-time type checking.

Type checking of data in the object base can be performed during tool com-
pilation, if all data types are known at compile time. Knowing all types at
compile-time implies that either (1) the OMS is “closed” (no new types will
be added or existing types modified after tool compilation), or (2) source code
for all tools is available, allowing new types or type modifications through tool
recompilation.

If the PSE is to be extensible, so that new tools and their types can be
installed to share an OMS with existing tools, option (1) is undesirable. Alter-
natively, if multiple, distinct OMSs are acceptable, new OMSs could be added
to the PSE to accommodate the introduction of new types for new tools.

Option (2) is unrealistic: Source licences for all (commercial) tools in a PSE
would be prohibitively expensive. Further, type changes in a large PSE are per-
ceived to be too common to make recompilation of all tools in that environment

a viable approach.

2.2 Compile-time versus Run-time Schema Evolution

Compile-time type checking implies that tools must be recompiled if the schema
is to evolve. Run-time type checks may rely on a translated form of typing
information in which the schema itself requires a form of compilation before use.
Both of these situations may be referred to as requiring “compile-time” schema
evolution. Alternatively, if the OMS allows schema modifications without such
a compilation step, it is said to permit run-time schema evolution.
Compile-time schema evolution generally implies down-time for the OMS to
which the schema applies: potentially, operations on all objects must be sus-
pended until the new schema has been installed. In an environment of multiple
OMSe, each specific to one or a few functions, such an approach may be feasible
(and is typically used in data-base applications). For a large, perhaps distributed
IPSE based on a logically central OMS, such down-time is unacceptable. An
IPSE represents an expensive investment which must have a high utilization.



Issues in Designing Object Management Systems 207

Further, delaying (iterative) type evolution until down-time paralyzes the work
of tool developers on the system.

Presently the prevalent, but not unanimous, perception is that the schema
and type definitions need to accommodate evolution with all but unnoticeable
interference with the continuous availability of the OMS.

2.3 Single versus Multiple Language Bindings

An OMS intended for a specific problem domain may require only one binding,
for a language also specific to that domain. A more general purpose OMS in-
tended to support diverse applications from diverse developers will have users
requiring bindings to multiple languages.

2.4 Variety of Data Models versus Ease of Data Sharing

Multiple OMSs in the PSE permits selection of an OMS whose data model
is customized to an application and whose services are optimized for that ap-
plication. However, such diversity of data models and services is a substantial
obstacle to the sharing of data between tools, limits the utility of active data
facilities (e.g., triggers) and virtually eliminates sharing and tight integration
with generic activity-controlling processes (e.g., with configuration or process
management tools).

The choice of a data model in a single, multiple, or nested OMS is also
quite controversial. Typed Entity-Relationship-Attribute (ERA) models seem
to be the currently prevalent choice and farthest developed. However, object-
oriented approaches, tying and restricting the availability of general operations
on administered objects directly to the type of the objects carry considerable
promise, even though they are as yet less established than ERA approaches.
Finally, several OMSs have adopted relational data base technology as their
underlying implementation.

A point of consensus is that the model’s typing should support an inheritance
capability so that operations and tools can be applied at appropriate abstraction
levels without knowing irrelevant details of the objects operated upon.

A blended solution of nested OMSs may be desirable, in which a single un-
derlying OMS permits substantial data sharing at a coarse granularity, but also
the efficiencies of specialized object bases.

2.5 Tool Migration versus Integration

Populating a PSE with tools is an expensive undertaking, made more economi-
cally feasible if existing tools can be utilized without adapting them to the data
model of a single, specific OMS. Transitioning users to the PSE is also made
easier if existing tools continue to operate in the PSE. The benefits of tool in-
tegration (through data sharing and other forms of tool interaction) and tool
portability (made possible through adoption of a specific kernel interface) may
justify the cost of tighter integration in the long run. Nevertheless, the OMS



208 Geoff Clow and Erhard Ploedereder

should make it easy to migrate existing tools without major changes into the
PSE.

2.6 Persistency Models versus Performance

A commonly experienced problem with generic OMSs is their throughput perfor-
mance characteristics. Lacking performance is generally attributed to the high
cost of accessing and updating persistent data with the implied need for synchro-
nization of accesses and for run-time validity checking. While there is room for
performance improvement in most, if not all, current OMS implementations, it
may also be conjectured that OMSs have chosen inappropriate models in dealing
with persistency by postulating immediacy of the program-external availability
of changes to persistent data. Today’s technology is easily capable of supporting
high-throughput in a memory-based, very sophisticated OMS, but is conspicu-
ously weak in supporting a much simpler OMS on persistent data.

A primary consequence of these performance issues is that fine granularity
of objects in a generic OMS may not be achievable in practice with the current
persistency models.

2.7 Composite Objects

A need has long been identified to allow operations on groups of objects, as if
they were a single entity for the purpose of the operation. At the same time, it
has been realized that the grouping is not necessarily static, i.e., the same for all
operations. To-date no simple paradigm that captures both these requirements
has gained significant acceptance. This lack is quite unfortunate, since, if such
aggregation were applied in the contexts of access synchronization and control
and of the persistency model, performance problems might be lessened if not

solved.

3 Perceptions for the Future

Current research in process management support indicates that considerable op-
portunities exist for integrating process and object management. An OMS can
play a pivotal role in implementing process management support along several
dimensions: First, the process description can conceivably be represented uti-
lizing the OMS capabilities. Thus, examination, manipulation and operation of
the process description can be achieved largely by the OMS interfaces. Second,
active components of the OMS model such as triggers can be used to implement
process management functions. Integration of process and object management
along such lines might open synergistic opportunities for new tool functional-
ity not feasible in either isolated domain. Again, uniformity of the OMS would
substantially ease the generation of such capabilities.



Issues in Designing Object Management Systems 209
4 Concluding Observations

The following general observations apply to OMS theory and experiment:

— Many sophisticated requirements have been postulated for OMSs. Those
discussed here may have widest consensus, but are not exhaustive.

— Many conceptual solutions meeting those requirements have been proposed.

— Experimental data allowing evaluation of the completeness and utility of the
requirements and the solutions, to the extent it exists, is poorly disseminated.

— The complexity and cost of integrated PSEs impedes full-scale experiments.
The solutions referred to above include third and fourth generations of sys-
tems that have yet to be effectively evaluated, even in their predecessor ver-
sions. This is particularly unfortunate, given that many OMS requirements
issues center on the extent to which strong support of integration through
the OMS should be pursued.

From the preceding points, it would appear that more emphasis should be
placed on OMS experimentation, evaluation and dissemination of the results.
Theoretical efforts in defining requirements and solutions are wanting in empir-
ical validation. Continuing theoretical efforts should facilitate experimentation
to the degree that existing proposals were unified. Given the expense of IPSE
implementation and evaluation, it is likely that adequate full-scale experimenta-
tion is only possible in consortium efforts and for a very few solutions. Without
such experimentation, the OMS research runs the danger of extrapolating exist-
ing models and imposing additional requirements on OMSs, before the viability
of these existing models has been proven and the limitations induced by perfor-
mance requirements have been sufficiently explored and reflected in the models.





