
Metric Pomset Semantics for a

Concurrent Language with Recursion

J.W. de Bakker
J. H .A Warmer dam

Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

ABSTRACT: We study the semantics of a simple language with concurrency and
recursion. Our semantic domain consists of (sets of) finite and infinite partially
ordered multisets (pomsets) in order to model true concurrency (i.e. non
interleaved parallel execution). It will be shown that the set of pomsets can be
turned into a complete ultra-metric space. With the induced notion of conver
gence, it is possible to provide meaning to infinite computations. Operational and
denotational semantics for the considered language are provided and their
equivalence is established by showing that both are fixed points of a contracting
higher order operator. In a final section we give a tentative denotational semantics
for an extension of the language with synchronization.

KEY WORDS AND PHRASES: denotational semantics, operational semantics, w-proof
rule, true concurrency, pomsets, metric topology.

1. Introduction

In earlier semantic investigations of the Amsterdam Concurrency Group (e.g. [BZ82,

BKMOZ86, BM88, KR88, AR89, B89, BR89]), fruitful use has been made of the frame

work of complete metric spaces. Computations have a small distance (say 2-n) if they

differ only after n steps, and the induced metric turns many functions encountered in

the semantic design into contracting mappings which have unique fixed points (by
Banach's theorem). Elsewhere we have exploited these ideas to

22

- handle recursion and infinite processes in concurrency,

- establish equivalence of several semantics,

- define semantic operators modeling syntactic operators such as sequential and parallel

composition,
- treat advanced language families such as parallel object-oriented and logic program-

ming ([ABKR89, B88]).

In our investigations up to now, we have always adopted the so-called interleaving

approach to concurrency (as suggested by the equation ..Jt'(a II b) = { ab, ba }). In the

present paper, we show how the metric techniques may as well be applied to the nonin

terleaving (or partial order) approach to concurrency. As a case study, we provide a

metric treatment of partially ordered multi sets (or pomsets, for short), as introduced

and studied by Grabowski [Gr81], Pratt [Pr86], Gischer [Gi84], and Gaifman [Ga89]

(for other references see [BRR89]). Our mvestigation of pomset semantics was inspired

by a paper by Meyer and De Vink ([MV89]), where the semantic model is based on an

order between pomsets which generalizes the usual stream order, and on the Smyth

order between (certain) sets of pomsets.

The emphasis in our paper is on the development of the metric framework for pom

sets, rather than on the study of some especially interesting programming language con

cepts. Therefore, we have chosen to illustrate our techniques firstly on a very simple
parallel language, that does not even include a notion of synchronization. Later we

include a CCS-style (but noninterleaving!) synchronization to this language. We show

that a 'pure' noninterleaving treatment would fail in our setting and propose therefore a
what might be called hybrid approach.

After introducing the metric and partial order preliminaries in Section 2, in Section 3

we present the metric framework proper to handle (sets of) pomsets. A distance is

introduced which turns the collection of pomsets into a complete metric space. Next,

we discuss the usual operators of sequential ('•') and parallel ('II') composition. The

pomset setting allows a particularly succinct definition of these. Extension of them to

sets of pomsets requires some justification (in comparable situations, e.g. in [BM88], we

usually handled this through the use of higher-order operators). A compactness lemma
turned out to be useful here (cf. [BBKM84, theorems 2.9, 2.10 for related issues).

Section 4 contains the definition of the operational (l9) and denotational(~) seman

tics. l9 is defined in terms of an (SOS-style) transition system with quite simple transi

tions : they are all of the forms ..L::jd E, with s a statement, p a pomset, d a declara

tion (mapping procedure variables to their bodies) and E the empty (or terminated)

statement. On the other hand, the transition system includes some not-so-standard

means to handle recursion. We mention here the introduction of a kind of w-rule into

23

the system. (Further comments will follow in section 4.2.) The denotational semantics

~ is obtained as the (unique) fixed point of a higher order contracting mapping tll.

Since we also established that (!} satisfies a lemma which may, equivalently, be phrased

as tlJ((!)) = (!), the desired equivalence (!} = ~ is direct by Banach's theorem.

Section 5 contains a possible denotational semantics for the language extended with

synchronization.

We conclude this introduction with a few words on future work :

- The operational semantics may be refined by also including transitions of the form

s ~d s' (and by adapting the way the successive steps are assembled into the

operational semantics(!)).

- The pomset framework is (noninterleaving but) of the linear time variety : it assigns

the same meanings to a ;(b 1 + b 2) and (a ;b 1) +(a ;b2). In a paper in preparation, we

show how four (systems of) domain equations may be defined which allow to define

four pairs of equivalent semantics ((!) i = ~ i, i = 1, ... , 4), for each of the combinations

interleaving I noninterleaving and linear time I branching time.

- We expect (or in some cases, know) that the pomset model may be replaced, without

undue complications, by other models such as event structures or (sets of) directed

acyclic graphs, preserving essentially the same metric approach.

Acknowledgements. We are indebted to John-Jules Meyer and Erik de Vink who showed

us the way into the (erstwhile unknown to us) realm of true concurrency. We are also

grateful to Erik de Vink for his detailed and constructive comments on preliminary ver

sions of this paper. The members of the Amsterdam Concurrency Group provided use

ful comments on earlier presentations of the work.

2. Mathematical preliminaries

First of all we adopt the convention that a phrase like 'let (x E)X be .. .' introduces a

set X with variable x ranging over X.

For convenience, we introduce IN = { 1, 2, 3, ... }, INo = IN U { 0 },

IN00 = IN u { oo } and IN 0 = IN U { 0, oo } .

2.1. Memc spaces

DEFINITION 2.1.1 A metric space is a pair (M, d) with Ma non-empty set and d a map

ping d : M X M ~ (0, oo), that satisfies the following properties.

(a) 'Vx,y E M: d(x, y) = 0 # x = y,

(b) 'Vx,y E M: d(x, y) = d(y, x),

(c) 'Vx,y,z E M : d(x, y) ~ d(x, y) + d(y, z).

A metric space is called I-bounded if d : M X M ~ [O, 1] (so the distance never

24

exceeds 1). In the sequel we assume that all metric spaces are I-bounded.

A metric space is called ultra-metric or non-Archirnedean if d satisfies

Vx,y,z EM: d(x, y) .;;;;;; max{ d(x, y), d(y, z) }.

DEFINITION 2.1.2 Let (M, d) be a metric space and let (x)i be a sequence in M.

1. (xi)i is called a Cauchy sequence if V'E>O : 3N E IN : V'n,m > N : d(xn, Xm) < t:.

2. (x;)i is called a converging sequence if

3x EM: V'E>O: 3N E IN: Vn>N: d(xn. x) < t:.

We say (x;)i converges to x or the limit of (xJ; is x (which is unique) and write

fun; X; = X.

3. We call (M, d) complete if every Cauchy sequence is a converging sequence.

DEFINITION 2.1.3 Let (Mi, di) and (M 2, d 2) be metric spaces. Let f: M 1 --+ M 2·

1. We call f continuous whenever

'Vx E M1: 'VE>O: 38>0: V'y E M1: d1(x, y) < o =? di(f(x), f(y)) < E or,

equivalently, for all converging sequences (x;); with lim; x; = x we have that

limi f (x;) = f (x).

2. Let y ~ 0. With M 1 -+ Y M 2 we denote the set of all functions f : M 1 ~ M 2

such that V'x,y E M1 d 2(f(x),j(y)) .;;;;;; y·d 1(x, y). Functions

f E M 1 --+ 1 M 2 are called non-distance-increasing (N .DJ.), functions

f E M 1 --+ E M 2 with E < 1 are called contractions.

PROPOSITION 2.1.4

l. Let (M1>d1) and (M 2,d2) be metric spaces. For every y~O and

f E M1 -+Y M2 we have that/is continuous.

2. (Banach' s fixed-point theorem)

Let (M, d) be a complete metric space and f : M --+ M a contraction. Then there

exists an x E M such that the following holds.

f (x) = x (x is a fixed point of j),

'Vy EM: f (y) = y ~ y = x (x is unique),

Vy EM: limn j(y) = x, where/1 = f and.f' +I = Jo.f'.

DEFINITION 2.1.5 Let (M, d) be a metric space and let X be a subset of M.

1. X is called closed, whenever the limit of every converging sequence in X is an ele

ment of X.

2. X is called compact, whenever every sequence in X contains a subsequence that

converges to an element in X.

25

3. The closure of X is the smallest closed subset in M containing X or, equivalently,

the closure of X is the set of all limits of converging sequences in X. We denote the

closure of X by X.

DEFINITION 2.1.6

Let (M, d), (M J, d 1), ... , (Mn, dn) be metric spaces and let X be a set.

1. With X ~ M we denote the set of all functions from X to M.

We define a metric dF on X ~ M by dF(f 1> /2)
sup { d(/1(x), fi(x)) I x EX}.

2. We define a metric dp on M 1 X ... X Mn by

dp((x1, ... , Xn), (y1, ... ,yn)) = max {d;(x;,y;) Ii= 1, ... , n }.

3. Let&> nc(M) denote { X ~ M I X is non-empty and closed } .

We define a metric dH on &>m.(M), called the Hausdorff distance, by

dH(X, Y) = max {sup { d(x, Y) I x EX}. sup { d(y, X) I y E Y } }, where

d (x, Z) = inf { d (x, z) I z E Z } , for x E M and Z ~ M.

PROPOSITION 2 .1. 7

Let (M, d), (M 1, d1), ... , (Mn, dn) be metric spaces and let X be a set.

1. If (M, d), (M 1o d1), ... , (Mm dn) are complete metric spaces then (X ~ M, df),

(M 1 X ... X Mn, dp) and (&>nc(M), dH) are complete metric spaces.

2. If (M, d), (Mi, d1), ... , (Mn, dn) are ultra-metric spaces then (X ~ M, df),

(M 1 X ... X Mn, dp) and (&>nc(M), dH) are ultra-metric spaces.

Only the proof of the completeness of (&>nc(M), dH) is not so elementary. A proof can

be found for instance in [BZ82].

If in the sequel we write X ~ M, M 1 X ... X Mn or &>nc(M) we mean the metric spaces

with the metric defined above.

2.2. Partially ordered sets

DEFINITION 2.2.l A partially ordered set, or just partial order, is a pair (X, ~)where X is

a set and ~ is a subset of X X X (notation : x ~ y instead of (x, y) E ~), that

satisfies the following conditions.

1. '<ix E X : X ~ X,

2. '<ix,y E X : x ~ y and y ~ x =? x =y,

3. '<ix,y,z E X : x ~ y and y ~ z =? x ~ z.

We will adopt the notations x < y, x ;;;,. y, x > y for respectively x ~ y /\ x =:/= y,

y ~ x, y ~ x /\ x =:/= y.

26

DEFlNlTION 2.2.2
1. For a partial order (X, .;;;;) and x E X we define lev(x) E IN00 by

lev (x) = sup { n I 3 x 1 ... Xn E X : x 1 < x 2 < ... < Xn = x } .
2. For a partial order (X, ~). we define length ((X, .;;;;)) E INQ' by

length ((X, .;;;;)) = sup { lev (x) I x E X } , which is equal to

sup { n I 3 X1 ... Xn EX: X1 < x2 < ... < Xn }

(with the convention that sup 0 = 0).

DEFINITION 2.2.3 Let (X, .;;;;) be a partial order and A ~ X.

We call A downward-closedif.Vx EX: [3a EA : x.;;;; a]=> x EA.

3. Pomsets
In the first subsection, the notion of pomset is defined, and some technical properties

about pomsets are derived. In the second subsection, the set of pomsets is turned into

a complete metric space and additionally a compactness property of pomsets is given.

The third subsection, contains definitions of some operators on pomsets.

3.1. Definition of pomsets
Let d be a fixed set (finite or infinite) of atomic actions and ff(be a fixed (infinite) set

of nodes, also called events.

DEFINITION 3.1.1 A labeled partial order or causality structure o is a three-tuple
(X, .;;;;, A), where X is a subset of ff(, .;;;; is a partial order on X, satisfying

'Vn E IN : { x I lev(x) .;;;; n } is finite and 'rlx E X: lev(x) < oo, and A : X ~sat is a

labeling function. We call act(o) = { A.(x) I x E X } the action set of o.

The intended meaning of a labeled partial order is the following. ff(is a set of names of

events and x1 .;;;; x2 means event x 1 has to precede x 2. The meaning of A. is that A.(x)

is the action of event x or stated otherwise, x is an occurrence of A.(x). The two restric

tions on the partial order are essential for the proof of proposition 3.1.10 which, in

turn, is needed to verify that the distance function, introduced in subsection 3.2 is

indeed a metric. Furthermore they imply that every event has only a finite numbers of

predecessors. Note that different events (even concurrent ones) may be labeled by the

same action (our framework does not exclude so-called auto parallelism).

With a causality structure owe associate Xrn .;;;;1,, A0 and also x < 0 y, x ;:;.. 0 y, x > 0 y.

A pomset will be a causality structure modulo renaming of nodes, as introduced in

DEFINlTION 3.1.2

1. Two structures C1 and p are called isomorphic, if there exists a bijection

27

cp: X 0 ~ XP such that cp(x) ~P cp(y) <=-* x ~" y and Ap 0 cp = r.0 •

2. A pomset is an isomorphism class of causality structures. Let (p, q E ')f!/'(!Ut

denotes the collection of pomsets. [a] denotes a pomset with representative a.
act([a]) is defined by act(c) (which is independent of the representative). The
empty pomset [(0, 0, 0)] is denoted by[].

We will draw pomsets by using Hasse diagrams of the partial order belonging to some
representative causality structure, with the labels at the place of the nodes, as in

By the length of a structure, we mean the length of the order belonging to that struc
ture. Note that length(o) < oo ~ #X0 < oo. We also extend the notion of length
to pomsets by taking the length of some representative. {This is independent of the
choice of the representative.)

In section 4.2 we need another set of atomic actions (viz . .91e). In that case we will
denote~w.r.t . .91 (respde) by ~..ef] (resp~J<lfeD·
We need the notion of truncation for defining a metric on &r!Uf in subsection 3.2.

DEFINITION 3.1.3

1. For a causality structure c and a downward-closed subset X of X" we define
at X = (X, ~ n (XXX), A. IX). a IX is a causality structure and lev(x) w.r.t.

at Xis equal to lev(x) w.r.t. a.

2. For a causality structure a and n E !No we define

o[n] = (J t{ x E x(J I lev(x) ~ n }.

3. p[n] = {o[n] I a Ep} E &r!Uf.

ExAMPLE 3.1.4 Let p be the following pomset.

Then length (p) = 4, act (p) = { a, b, c } and p has for instance one c at level 3 and
one c at level 4. (To be more precise : every representative of p has two nodes labeled
with c, one at level 3 and one at level 4.) The truncations p[O], p[l], p[2], p[3], p[4],

p[5], ... are respectively

28

LEMMA 3.1.5 Leto be a structure.

1. If X \'.;;; Y downward-closed and Y \'.;;; X 0 downward-closed then (ot Y)t X = ot X.

2. If X \'.;;; X 0 downward-closed then (ot X)[n] = (o[n])t(X0 [nJ nX).

3. o[n][m] = o[min{ n, m }].

4. For a pomset p we have that p [n][m] = p [min{ n, m }].
PROOF

1. Easy verification.

2. (ot X)[n] = (ot X)t { x EX I lev(x)_w.r.t._ot X ~ n } =
(ot X)t { x E X I lev(x)_w.r.t._ o ~ n } = ot { x E X I lev (x)_ w.r.t._ a;; n } =
(ot{ x E Xo I lev(x)_w.r.t._o ~ n })t(X n { x E Xo I lev(x)_w.r.t._a....;; n})

= (o[n])t(Xo[nJ nX).

3. (o[n])[m] =
{ot{ x E X 0 j lev(x)_w.r.t._o ~ n })t{ x E Xo[n) j lev(x)_w.r.t._o(n] ~ m} =
ot { x E Xo[nJ j Jev(x)_w.r.t._ o ~ m } =
ot{ x e X 0 I lev(x)_w.r.t._o ~ n /\ lev(x)_w.r.t._o....;; m} =

ot{ x e X 0 j lev(x)_w.r.t._o ~ min{ n, m } } = ot[min{ n, m }1
4. Direct from 3. D

LEMMA 3.1.6

Let o and p be structures.

Let (Yn)n be a sequence of downward-closed subsets of X P such that Vn : Yn \'.;;; Yn + l ·

Let cp : X 0 ~ X P be a mapping such that

'Vn : # X o[n l : o[n] ~ pt Yn is an isomorphism.

Then cp : o ~ pt (U Yn) is an isomorphism.
n

PRooF Easy verification. Uses the fact that U Xo[n] = X 0 •

n

LEMMA 3.1.7

Let o and p be structures and let cp : X 0 ~ X P.

D

Then cp : o ~ p is an isomorphism ~ 'Vn : cpt X o[n 1 : o[n] ~ p[n] is an isomorphism.

PROOF

"=9" The only thing to check is cp[Xo[nJ1 = Xp[n]· This holds since lev(cp(x))_w.r.t._p

= lev(x)_w.r.t._ o.

29

"<="previous lemma: take Yn = XP[nJ• then U Yn = XP.
n D

Next we are going to define a partial order .,..;; on {7(!U(. We use this partial order to

prove Corollary 3.1.11 which, in turn, is needed to verify that the distance function,

defined in subsection 3.2 is indeed a metric. Moreover, the partial order makes it possi

ble to express that { p I p ~ q } is compact (proposition 3.2.5), which is used to prove

that the operators, introduced is subsection 3.3, are well-defined.

DEFINITION 3.1.8 We define a relation ~ on .9mlf by putting p ~ q ift' 3o, X : X r;;;,X a

downward-closed, q = [o],p = [ot X]. In this case we say thatp is initial to q.

PRoPOSITION 3.1.9 "....;;"is a partial order.

PROOF

(1) Ifp = [o] then [ot X 0] = [o] = p sop~.

(2) Assumep ~ q and q ~p. Let p, X 2, o, X 1 be such that q = [p], p = [ptX2],

p = [o] and q = [ot X 1]. So o pt X 2 and p ,..,,, ot X 1. say cp : o ~ pt X 2 is an

isomorphism and 1[.i : p ~ ot X 1 is an isomorphism. Then also

Xa[nJ : o[n] ~ (pt X 2)[n] = p[n]t (X p[nJ n X 2) and

\flt XP[n]: p[n] ~(at X1)[n] = o[n]t(X0 [n] nX1) are isomorphisms. Since Xa[n]

and X P[n 1 are finite sets, we can conclude that X P[n l n X 2 = X p(n l and thus

'fin : # Xa[n) : o[n] ~ p[n] is an isomorphism so cp: o ~ p is an isomorphism so

p = [o] = [p] = q.

(3) Assume p ~ q and q ~ r. Say q = [p] and p = [pt X] with Xr;;;,Xp downward

closed and r = [r] and q = [rt Y] with Yr;;;, X t downward-closed. Say

cp : p ~ tt Y is an isomorphism then q,t X : pt X ~ (rt Y)t cp[X] is an isomorphism.

Sop = [pt X] = [(!°t Y)tq,[X]] = (rtcp[X]], sop ~ r. D

PROPOSITION 3.1.10 ['Vn : p[n] ~ q] ~ p ~ q

PROOF

Let p = [o] and q = [p].

We will show that there exist a downward-closed subset X of X P and an isomorphism

cp : o ~ pt X, which proves that p = [o] = [pt X] or equivalently p ~ q.

We will make a tree of isomorphisms in the following way.

As nodes we take triples (cp, X, n) where (I) n E IN0 , (2) X r;;;, Xp is downward-closed,

and (3) cp : o[n] ~ pt X is an isomorphism.

We put an arc between (cp, X, n) and (q/, X', n') if (1) n' = n + 1, (2) X' ;;;:1 X, and

(3) cp't x = cp.

30

First we show that this indeed defines a rooted tree with (0, 0 , 0) as root, as follows.

If (q,, X, n + 1) is a node then q, : o[n + l] ~ pt X is an isomorphism, so

X 0 [n]: o{n] ~ pt#Xa[nJl is an isomorphism thus (# Xo[n], <PfXo[nJJ, n) is a node

and there is an arc from this node to (q,, X, n +I).

Next we show that this tree contains infinitely many nodes. In fact we show that

'Vn: 3</>,X: (q,, X, n) is a node, as follows. Let us fix some n. Since p[n] ~ q, by

definition there exist p' and X' such that p [n] = [p't X'] and [p'] = q. Let q,' : p' ~ p

be an isomorphism. Also <P't X1 : p't X1 ~ pt ip'[X'] is an isomorphism, so take

X = <?'[X']. Then X ~ X1 is downward-closed and o[n] ,...,_, p't X' ,_, pt X. So there

exists an isomorphism q, : o{n] ~ pt X so (,P, X, n) is a node.

Since the number of events in o[n] is finite, say m, and there exist only a finite number

of downward-closed subsets of X P with m number of elements, we know that the tree is

finitely branching. Konig's Lemma guarantees the existence of an infinite path :
00

(<Pr,, Xn, n)~=O with Xn ~ Xn + 1 and 4'n + 1t Xn = 4'n· Now take tP = U 4'n and

co
X = U Xn. Then, by lemma 3.1.6 q, : o ~ pt X is an isomorphism.

n=O

C.0ROLLARY3.l.11 ['V'n :p[n] = q[n]] "'9p = q

PR.ooF

'V'n :p[n] = q[n].;;;;; q sop .e;;; q.

Analogous q .;;;;; p.

Sop= q.

3.2. Metric for pomsets

We define a metric on (Jl(JU(as follows.
I

DEFINITION 3.2.1 d : £P(f),/(X9<!U/ ~ (0, 1] is defined by

PRoPosmoN 3.2.2 (9¥JUI, d) is a complete ultra-metric space.

n=O

0

0

PRooF Proposition 3.1.5.4 and corollary 3.1.11 imply that (!?)J(!U{, d) is an ultra-metric

space. What remains is the verification of the completeness. Let (pn)'fi= 1 be a Cauchy

sequence. Take a nondescending chain (nm);;;'= 1 such that

'V'm E IN : 'Vk >nm : Pk[m] = Pn • .[m].

Define Om, m E IN, recursively such that Om E Pn,.[m] and Om + 1[m] = Om·

31

(1) Take 01 E Pn 1[1].

(2) If Om has been defined then Om E PnJm] = Pnm+ 1[m] = Pnm+ 1[m + l][m] so there

exists a Orn+ 1 E Pnm+I [m + 1] with Om + 1[m l = Om·
00 00 00

Now define o = (LJ X 0 ,, LJ :;;;;01 , LJ A.0 ,) and p = [o].
i=l 1~1 l=l

Then Pn ~ p (n ~ oo) because Orn = o[m] so PnJm] = p[m] so

'flk>nrn :pk[m] = p[m] so'flm E IN: Vk>nm: d(pk,p):;;;;; i-rn. D

See example 4.2.5 for a converging sequence in f!Jl(!Ut.

PROPOSITION 3.2.3 For p E &<!Mt: limn p [n] = p.

Finally, the semantic domain will be a collection of subsets of &<!Mt. The need for sets

of pomsets in our semantic domain, arises from the presence, in the language to be con

sidered, of the concept of nondeterministic choice.

DEFINITION 3.2.4

Let (P, Q E ')!!/'(!).,Kl' is the set of all closed and non-empty subsets of f!l'(!U((i.e.

9'nc(9¥U{)).

9'&K"' is a complete (ultra-)metric space if it is endowed with the Hausdorff distance

(see proposition 2.1.7).

Next we are going to define a useful compactness property.

PROPOSITION 3.2.5 Vq : { p I p :;;;;; q } is compact.

PROOF Let (p;); be a sequence with p; :;;;;; q. We are going to define (n;); (an increasing

sequence of natural numbers) inductively such that if n 0 , ... , nk are defined, it holds

that

(1) "Vi,j : i < j :;;;;; k : Pn)i] = Pn,[i],

(2) # { i I p;[k] = Pnk[k]} = 00.

k = 0 : choose n 0 arbitrary. (I) and (2) are trivially satisfied.

k ~ k + 1 : denote I = { i I p;[k] = Pn)k] }. Since "Vi : p;[k + 1]:;;;;; q[k + 1) and

q[k + 1] is finite, there exist only finitely many distinct p1[k + 1], so there exists an

nk+l El such that nk+l >nk and #{i IP1[k+l) =pnk+ 1[k+1]} = oo. More

over, "Vi:;;;;k: Pnk+ 1[i] = Pnk+ 1[k][i] = Pnk[k][i] = PnJi] = Pn,[iJ. So (1) and (2) are

satisfied.

From (I) we can conclude that (Pn)J is a Cauchy subsequence, and by proposition

32

3.1.10 we know that the limit is in { p I p ~ q }, so { p I p ~ q } is compact. 0

3.3. Operators on pomsets

In this subsection we are going to define two operators on pomsets, namely sequential

and parallel composition. This is done in the following way. First we define the opera

tors on structures (with disjoint sets of nodes only). Since the isomorphism relation will

be a congruence relation with respect to these operators, the operators can be defined

on pomsets. Finally, we will define the two operators on pomset-sets. As we go along,

we derive some properties of these operators.

DEFINITION 3.3.1 Let a and p be causality structures such that X 0 n X P 0.

{
a, if #X,, = oo (or equivalently length(o) = oo),

I. o • p = (X,, UXP, .;;;;;,, U o;:;;;P U(X0 XX p), A.,, UA.p), otherwise.

2. o 11 p = (X,, uxp, .;::;;;,, u .;;;;p, A,, uA.p).

LEMMA 3.3.2

1.

2.

3.

4.

{
lev (x) w.r.t. o, if x E X ,,,

if o is finite then lev (x) w.r.t. o•p = lev(x) w.r.t. P + length (o), if x E x p·

{
lev(x) w.r.t. o, if x E X,,,

lev(x)w.r.t.olJP = 1 () rt ·r X ev X W ... p, 1 X E p·

o•p and o II p are causality structures.

if length(o);;;;:., n then (o•p)[n] = o[n];

if length(o).;;;;; n then (o•p)[n] = a• p[n-length(a)].

5. (allP)[n] = o{n] II p[n].

6. if o is finite then act(a•p) = act(a) U act(p);

if a is infinite then act(a•p) = act(a).

7. act(ollP) = act(a) U act(p).

Now let us define the operators• and II on pomsets.

DEFINITION 3.3.3

• : [jll(JU(X (}'l(!U(~ [jll(JU(and II : [jll(JU(X fJJ(}U(~ fY'(!U(are defined as follows.

Ifp = [o]andq = [p],withX,,nXp=0, thenp•q = [o•p)andpltq = [ollP]·

REMARK 3.3.4 It is always possible to find representatives with disjoint set of nodes and

furthermore the definition is not dependent on the choice of the representatives.

33

ExAMPLES 3.3.5

LEMMA 3.3.6

1. if length (p) ;:;;;. n then (p•q)[n] = p [n];

if length(p) ~ n then (p•q)[n] = p • q[n-length(p)].

2. (p 11 q)[n l = p [n l 11 q[n].

3. ifp is finite then act(p•q) = act(p) U act(q);

if p is infinite then act(p•q) = act(p).

4. act(p liq) = act(p) U act(q).

[~]

Now we will define• and II on [:J!(!U(*. Also an operator + is defined on [J!(!U(*, which

is just the set-theoretic union.

DEFINITION 3.3.7

1. • : flJ(fU(* X fJr!Ut* ~&"(JU(* is defined by

P • Q = { p • q I p E P and q E Q } .
2. II : 9(Q,I(* X tJr!Ut* ~ flJ(fU(* is defined by

P 11 Q = { p 11 q I p E P and q E Q }.
3. + : !J'(!U(* X flJ(fU(* ~ 9l1<Jll(* is defined by

p + Q = p u Q.

We need to show that P • Q and P II Q are closed. (The fact that P + Q is closed is

immediate.) For this purpose, a lemma is given first.

LEMMA 3.3.8

]. 'Vp,q,q' E gi(fU(: d(p•q, p•q') = 2-length(p) ·d(q, q').

2. If limn (p•qn) = r with length (p) < oo, then 3q : lim11 qn = q and r = p•q.

PRooF
1. If length (p) = oo then both sides give 0. Now suppose length (p) = I < oo.

(p•q)[n + /] = (p•q')[n + /] # p • q[n] = p • q'[n] # q[n] = q'[n]. From

this 1. follows immediately.

2. Let length(p) = /. Since d(p•qmp•qm) = 2- 1·d(%, qm) and (p•qn)n is a Cau

chy sequence, we have (qn)n is a Cauchy sequence, say q11 ~ q. Then r

limn (p•qn) = p • limn % = p•q. 0

PltoPOSITION 3.3.9

1. P • Q is closed.

2. P II Q is closed.

PllooF

34

1. Let r = lim; r; with r; e P • Q, say r; = p; • q;, with p; e P and q; e Q. Since

r; ~ r, we have that 'V/ : 3k1 : rk,[l] = r[l]. So r[/] = (Pk, • %)[/], so

Pk,[1] =i;;;; r[l] .,.;;; r. By the compactness property(3.2.5), there exists an increasing

sequence lm such that (pk,)lmDm converges, say top E P. (Note p E P, since also

Pk, ~ p and P is closed.)

If length(p) = oo then 'rln: r[n] = lim; ((p; • q;)[n]) = limm ((pk, • %)[n]) =
limmPk, [n] = p[n]. Sor = p = (for instance) p • qo e P • Q.

If length(p) < oo then 3M: 'Vm-;;;.:M :pk,Jlm] = p. Moreover, since lm is

increasing, 3M': 'Vm-;;;.:M': Pki. = p. According to lemma 3.3.8.2, we have that

r = p • q with limm qk1 = q E Q.

2. Let r = lim; r; with r; E P II Q, say r; = p; II qh with p; e P and q; E Q. Since

r; ~ r, we have that VI : 3k1 : rk,[l] = r[l]. So r[l] = rk,[l] = Pk,[/] II qk,[l]. So

Pk,[1] .,.;;; r[l] .,.;;; r and qk1[l] .,.;;; r[/] .,.;;; r. By the compactness property, there exists

an increasing sequence lm such that (pk, [lmDm converges, say top E P. Again by

the compactness property, there exists an increasing sequence mn

(qk,,)lmJ)n converges, say to q E Q. Now r = limn rk,., = limn (Pk,.,

(limn Pk1) II (limn qk1) = P II q E P II Q.

4. Semantics

such that

II%)=

0

In this section a simple language without synchronization ft' is introduced and an
operational semantics (!) and a denotational semantics PJ are given and are proved to be
equal.

4.1. The language

First we introduce the language. For this we need two basic sets. Let (a,b,c, ... e ~be

a (finite or infinite) set of atomic actions and let (x e ~ be a set of procedure vari
ables.

DEFINITION 4.1.1

a. The class (s E)!&'of statements is given by

35

b The class (g E ')If'g of guarded statements is given by

c. The class (d E ')PAct of declarations consists of mappings from~ to .ft'g .

d. The class (t E).9'~ of programs consists of pairs t = < d I s > with d E ~t

ands E.ft'.

A statement is made up from atomic actions and procedure variables, by means of

sequential composition, nondeterministic choice and (non-interleaved) parallel composi

tion. A guarded statement is a statement in which every procedure variable is preceded

by an atomic action. A declaration is a mapping from procedure variables to guarded

statements and finally a program is a declaration plus a statement.

4.2. Operational semantics

The operational semantics is given with the aid of a labeled transition system (l.t.s.).

As labels we use pomsets (cf. [BoCa88, Ga89]). In an l.t.s. we encounter, besides state

ments s E f£', also the special symbol E that we use to indicate the empty (or ter

minated) statement. In addition, we introduce a special atomic action e(ff:. .91), used

-in a way to be explained below- to handle recursion, and we put de = .91 U { e }.

Let --7 \;;;;.ft' X ~de] X ~t X { E } to be defined in a moment. Thus, we only

employ transitions of a particular simple form, which we shall write as s 4d E

(instead of (s, p, d, E) E --7). Some explanations follow after definitions 4.2.l and

4.2.2.

DEFINITION 4.2.1 --7 ~.ft' X 9'1lh(de] X ~t X { E } is the smallest relation satisfy

ing

(1) a ~dE,
(2) if g 4d E and d(x) = g then x 4d E,

(3) ifs J ~d E and s2 -2..L)d Ethen s 1 ;s2 Pi•P 2)d E and s 1 Jls2 Pi llP2)d E,

(4) ifs1~dEthens1+s2 4dEands2+s1 4dE,

(5) ifs ~d E (i = 1 2 ...) and lim; p; = p then s 4d E,

(6) x ~dE.

DEFINITION 4.2.2

1. Jd: .ft' -4 ~[de] is given by Jd(s) = { p I s 4d E }.

2. (!}d: .fi' 4 9¥Ut"'[S<f] is given by @d(s) = Jd(s) n 9"Q.h[.s;at).

3. (!} : £!'"":? -4 ~[S<f] is given by (!} (< d I s >) = (!} d(s).

36

First we discuss the system for '--1'· Clauses (l), ... , (4) of definition 4.2.l should be

clear. Oauses (5) and (6) are included in order to enable us to handle possibly infinite

computations of recursive procedures. Since we only work with transitions of the form

s ~d E (which terminate in one step), we have no means to build up an infinite com

putation without additional measures. These are provided by (5) and (6) : Axiom (6)

provides an arbitrary (cf. Banach's theorem) starting point for the execution of a recur

sive process. Rule (5) allows us to build up possibly infinite p in a s 4d E step.

This set-up would allow e to remain in the final outcome of a computation. Therefore,

we obtain the desired operational semantics f!J J(s) by restricting (def. 4.2.2, part 2.) the

intermediate semantics ..Fd(s) to those outcomes which contain only pomsets involving

actions from d. Example 4.2.5 should be helpful to understand our handling of recur

sion.

LEMMA 4.2.3

1. Jd is well-defined, i.e. Jd(s) is non-empty and closed.

2. f!J d(s) is non-empty and closed.

PROOF

1. By induction on the complexity of s, one can easily show that ..Fd(s) -=I= 0 (use rule

(6) in cases =x). Because of rule (5), fd(s) is closed.

2. f!J d(s) is closed since J d(s) is closed. Proving f!J d(s) =/:= 0 is more involved. We

construct a sequence p; E Jd(s) (i E IN0) such that e ff act(p;[i]) and

p; + i[i] = p;[i]. From this it follows that (pJ; is a Cauchy sequence, say with

limit p. p E 5d(s) and 'r/n E lNo : e ff. act(p[n]), so e ff act(p). We can con

clude that p E f!J d(s).

The sequence is constructed in the following way. ..F d(s) -=I= 0 , so take a

Po E Jd(s). If Pk E Jd(s) with e ff. act(fk[k]) then we can find a Pk +I E Jd(s)

with Pk +1[k] = Pk[k] and e ff. act(pk +1[k + l]), which is guaranteed by the fol

lowing lemma. D

LEMMA 4.2.4 If s~d E and e ff act(p[n]) then 3p': s~d E andp'[n] = p[n] and

e fl. act(p'[n + 1]).

PROOF First we remark that 'r/ g E .!E'g : 3p : g ~ d E and e rt act (p (I]), which can

easily be proved by induction on the structure of g and using lemma 3.3.6.

The lemma is proved by transfinite induction on the depth of the proof tree for

s..i!...7d E, defined in the usual way.

- If a ~d Eby (I) then we can take p' = [a].

- If x..l!....7d Eby rule (2) then g-1!..--7d E with g = d(x). By induction 3p': g~d E

37

withp'[n] = p[n] and e e,t: act(p'[n + 1]). Now also x~d E.

- If s1;s2 Pi•Pi)d E (resp. s111s2 PillP2)d E) by (3) then 3p'i.p'2: s1 ~d E and

s2~dE with e $act(p'1[n+1]), e $act(p'2[n+l]), p'1[n] =p 1[n] and
p'2[n] = p2[n]. Now s I ;s2 e'i•e'2)d E (resp s i lls2 e'i lle'z)d E) and

e ~ act((p'1•p'2)[n+l]) and (p'1•p'2)[n] = (p1•p2)[n] (resp

e ~ act((p'1llP'2)[n+1]) and (p'1 llP'2)[n] =(pi llp2)[n]).

- If s 1 +s 2 ~d Eby (4) then s;~d E (i = 1 or 2). By induction 3p': s;~d E

withp'[n] = p[n] and e e.t: act(p'[n + 1]). Now also s I +s2 4d E.

- If s .L..7d E by applying rule (5) then s ~d E (i = 1,2 ...) and lim; Pi = p. Now

3io :pi0[n] = p[n]. By induction 3p': s~d E and e fl. act(p'[n+1]) and

p'[n] = p;0[n] = p[n].

- If x~d Eby axiom (6) and d(x)=g then g~d E with e $ act(p[I]) and so

X~dE. D

ExAMPLE 4.2.5 Let d(x) = a ;(x llh);c and s = x. By applying rules (1), (2), (3), (6),

one can derives -1!.i...)d E, for pi, p2, p 3, p 4, ... equal to

Applying rule (5) gives s ~d E with p = lim; Pi =

So J d(s) is the set of all pomsets listed above and (!} d(s) is only the singleton set with

the last pomset, as (only) member.

LEMMA 4.2.6

I. a. {[a] } = Jd(a),

b. Jd(g) U { [e] } = Jd(x), if d(x) = g,

c. Jd(s1) •Jd(s2) = Jd(s1;s2),

d. Jd(s1) II Jd(s2) = Jd(s111s2),

e. JJ(s1) U JJ(s2) = Jd(s1 +s2).

2. a. t9d(a) = { [a] },

b. (l)d(x) = t9d(g), when d(x) = g,

c. t9d(s1;s2) = (!Jd(s1) • f.9d(s2),

38

d. l!Jd(s1 lls2) = l!Ja(s1) II (f)d(s2),

e. l!Jd(s1 +s2) = (f)a(s1) U l9d(s2).

Plt.ooF

1. First we prove that a ... e hold with " \;;;;" instead of "= ". Only case c. is proved

because a. immediately follows from axiom (I) and b. from axiom (6) and rule (2),

d. is like c. and e. follows from rule (4).

Letp E Jd(s1) •.Fa(s2). Thenp = p1•p2 withp1 E Ja(s1) andp2 E Jd(s2). So
s 1 ...f!L7d E and s2 ...l!.1.7d E so (rule(3)) s 1 ;s2 Pi•P2)d E or equivalently

p E .I a(s 1 ;s 2).

To prove"=", define.Ii as follows.

Ji(a) = {[a] }, .F/(x) = Jd(g) U { [e] }, when d(x) = g,

Ji(s1;s2) = Jd(s1) •.ld(s2),J/(s1 l1s2) = .ld(s1) II Jd(s2) and

.F/(s1 +s2) = Jd(s1) U Jd(s2).

It follows immediately that Vs: .F/(s)\;;;;Jd(s) and.l/(s) is closed.

Define --7' bys ..J!..71d E ~ p E J/(s)

--71 satisfies rules (1) ... (6) :

(I) trivial.

(2) ifg 4 1dEandd(x) = gthenp E.F/(g)C.Fig)CJ/(x).

(3) if s .l!.l....71 d E and s .h.....7' d E then p 1 E J /(s 1) \;;;;.F d(s i) and

P2 E Jl(s2)k..fd(s2) sop1•p2 E .F/(s1;s2) andp1 llP2 E .F/(s1 lls2).

(4) ifs1 ~'dEthenp EJ/(s1)CJd(s1)\;;;;.1'/(s1+s2)sos1+s2 .. £ :ydEand

similar s2 +s1 ~1d E.

(S) .l/(s) is closed.

(6) [e] E .F/(x) so x ~1d E.

--7 is the smallest relation satisfying (1) ... (6), so --7 S: --71 or equivalently

Jd(s) c;;,..l/(s).

This proves 1.

2. a. l!Jd(a)=.ld(a)n~ = {[a] } n~.91) = {[a] }.

b. <Pd(x)=Jd(x)n~.91] = Jd(g)n~.91] = (l)d(g).

c. l!Jd(s1;s2) = .ld(s1;s2)n9it'M[~ = (..P'd(s1) •.Fa(s2))n~~ ~

(.ld(s1)n~Jafj) • (Jd(s2)n~~) = l!Jd(s1) • (l)a(s2).

Maybe the equality marked with an a needs some explanation.

";J" is trivial : ~.91] is closed under •.

To prove "c": (..Fd(s 1) •.Fd(s2))n~.91] =
{p1•p2 E ~ I PI E Jd(s1) andp2 E .ld(s2)} = (*).

Letp1•p2 E (*). Wehavee $. act(p 1).

If length (p 1) = oo then

39

take ap'2 E (!)d(s2) = Jd(s2) n ~S<I] ((!)J(s2) =fa 0). So p1•p2 =PI =
p 1 •p'2 E (Jd(s 1) n.9't'.!Ul[J<(J) • (Jd(s2) n~..Rf]).

If length (p 1) < oo then also e ff. act (p 2) so

p 1 •p2 E (Jd(s 1) n.9't'.!Ul[J<(J) • (Jd(s2) n9¥Ut{..l<lfj).

d. like c. but now the corresponding equation marked with the a is direct.

e. like d. 0

4.3. Denotational semantics

In this section we are going to define a denotational semantics for !e. This is done with

the aid of some higher-order operator, that will tum out to be a contraction. To prove

this, we need the following lemma.

LEMMA 4.3.1

1. 'lrlp,q,p',q' E [J'(!U(: ifp =fa[] andp' =I=[] then
1

d(p•q, p'•q') .,;;;; max { d(p, p'), 2d(q, q') }.

2. 'lrlp,q,p',q' E [J'(!U(: d(p liq, p'llq').,;;;; max { d(p, p'), d(q, q') }.

3. VP,Q,P',Q' E &f!Ut* : if[] ff. P and[] ff. P' then

d(P•Q, P'•Q') .,;;;; max { d(P, P'), ~ d(Q, Q') }.

4. VP,Q,P',Q' E &f!Ut*: d(PllQ, P'llQ').,;;;; max { d(P, P'), d(Q, Q') }.

5. VP,Q,P',Q' E &f!Ut*: d(P+Q, P'+Q').,;;;; max { d(P, P'), d(Q, Q') }.

PROOF

1. If max { d(p, p'), ~ d(q, q') } = 1 then I. holds trlvially.

If max { d(p, p'), ~ d(q, q')} ~ 2-n (n ;;ioI) then p[n] = p'[n] and

q[n -1] = q'[n -1]. If length(p);;;;.. n then also length(p');;;;.. n and we have

(p•q){n] = p[n] = p'[n] = (p'•q')[n]. If /ength(p) < n then p = p' and so

(p•q)[n] = p • q[n -length(p)] (because length(p) > 0) = p • q'[n -length(p)]

= (p•q')[n] = (p'•q')[n]. So d(p • q, p' • q').,;;;; 2-n.
2. Similar to I .

3. This is a consequence of 1. Details can be found in the appendix.

4. Similar to 3.

5. Straightforward verification.

Now we will define the higher-order mapping.

DEFINITION 4.3.2 (f)d : (2 ~ 9<!Uf*) ~ (2 ~ &f!Ut*) is defined as follows.

Let F E 2 ~ fl"(fUt*.

4>d(F)(a) = {[a] }

0

40

Wd(F)(s1;s2) = 4ld(F)(s1) • F(s2)

Wd(F)(s1\ls2) = tiiiF)(s1) II tPd(F)(s2)

Wd(F)(s1 +s2) = 4ld(F)(s1) + 4'd(F)(s2)

Wd(F)(x) = iPd(F)(d(x))

LEMMA 4.3.3

1. tP d(F) is well-defined.

2. [] ~ <Pd(F)(s)

3. ii> d is a contraction.

PRooF 1. and 2. can easily be shown, first for guarded statements and then for general

statements, with induction on the complexity of the statements. For 3. one needs to

show "Vs E .f£': d(<PJ(F 1)(s), <Pd(F2)(s)) ~ +d(F1> F 2). Again, this can be shown,

first for guarded statements and then for general statements, with induction on the

complexity of the statements. We only treat the case s = s 1;s 2 as an example.

d(ii>d(F1)(s1;s2), 4>d(F2){s1;s2)) =
d(Wd(F1)(s1) • F1(s2), 4>JCF2)(s1) • F2(s2)) ~by part 2. and lemma 4.3.1.3

1
max{ d(«Pd(F1)(s1), ctid(F2)(s1)), 2d(F1(s2), F2(s2))} ~ by induction
1

2d(F1> F2) O

DEFINITION 4.3.4

1. ff) d : 2' __,. ~ is defined by ff) d = fixed-point wd.

2. ff) : 9~ __,.~is defined by ff) (< d I s >) = fl)d(s)

4.4. Operational semantics = Denotational semantics

THEOREM 4.4.1 (') = ~
PaooF We have to show that (') d = ff) d, for all d E Eik:t.

point of <Pd, it is sufficient to prove that Wd(& d) = (!) d·

lelllffia 4.2.6.2.

5. Synchronization

Since ff) d is the unique fixed

This is a direct consequence of

D

In this section we incorporate a CCS-style synchronization to our language and give a

denotational semantics for this language. The most intuitive approach, where for

instance we would define

41

leads to a parallel operator that does not satisfy the (necessary, see 4.3) requirement

that it be non-distance-increasing.

Consider, for example, the following pomsets.

p = [a-c J , p' = [a-d J , q=q'=[c].

If we would define

P II q

and

[a-dl p' II q' = { c }

then d(p llq, p'llq') = I, while d(p, p') ~ ~ and d(q, q') = 0 ~ f, showing that the

operator 'II' fails to be non-distance-increasing.

The solution to this problem that we present here is more or less of a mathematical

nature; it doesn't have a very clear semantic intuition. Maybe this approach will be a

stepping-stone for a more intuitive solution.

Instead of only delivering 'pure' non interleaved outcomes, we extend the denotational

semantics with all interleaved outcomes and all intermediate results.

With p and q as given above, we will have

and

42

making d (p II q, p' II q') = ~ , solving the problem mentioned above.

In subsection 5.1 we define the extended language. In subsection 5.2 we make the new

definition of the parallel operator precise and in subsection 5.3 we prove the fact that

this operator is non-distance-increasing. We conclude with the denotational semantics

and an example in subsection 5 .4.

5.1. A language with synchronization

To extend the language with synchronization, assume$ = J U ~ : the disjoint union

of a set of internal actions (a,b, ... E ')..' and a set of synchronization actions (c E)~.

Let-:~--+~ (notation: c instead of-(c)) be a bijection, such that c = c, yielding

the matching synchronization action of c. There is some special element T E J denot

ing successful synchronization.

DEFINITION 5.1.l

a. The class (s E)!I! of statements is given by

b. The class (g E)!l!K of guarded statements is given by

c. The class (d E ~(of declarations consists of mappings from ~ to 2K .

d. The class (t E ~ of programs consists of pairs t = < d I s > with d E fAlc.t

and S E .fl'.

5.2. The parallel operator

In order to give a semantics for this language, we need to change the definition of the

parallel operator (II). Let II OLD denote the parallel composition defined in section 3.3.

The new parallel composition will be defined by taking the result of the old parallel

operator and adding some more results. The additional results will be obtained by

transforming old results by two kinds of transformation steps : FUSE) and ~
Two nodes in a structure, one labeled with c, the other labeled with c, are taken

together in a FUSE) step and the label is replaced by a T. This step models the real

synchronization. To solve the problem mentioned in the introduction of this section,

we also add structures obtained by adding more causal dependencies in the structure.

For this purpose, we define the AUG) steps.

DEFINlTION 5.2. l

1. For a structure a and x i, x2 E X 0 independent (i.e. x 1 ~0x2 /\ x2~0x1),

we define a new structure u' = (X0 , ~o'• A0), where ~o' = ~o U

43

{ (x, y) I x .;;;;o x 1 /\ x2 .;;;; 0 y }. We will use the notation a AUG(xi. xi» a'.

2. We define AUG) k !J'i(!UtX{Jl(JU(by p AUG) p' # 3o,o' : p = (o] /\ p' = [o']
/\a AUG(x,, xi)) o' for some pair of independent nodes XJ, x2 E Xa.

REMARKS 5.2.2

I. It is easy to see that o' is indeed a structure.
2. If a AUG(x" xi)) o' and q,: o ~ p is an isomorphism

then 3p' : p AUG(<l>(x,), cf>(xi))) p' and cp : o' ~ p' is an isomorphism.

3. From 2. it follows that AUG) is well defined.

DEFINITION 5.2.3

I. Let a be a structure. We call (x1, x 2) a matching pair in o if x1:i' 0 x2, x2:i' 0 x1

and Aa(x1) E ~. A0 (x2) E ~and Aa(x1) = A0 (x2).

We define a new structure a' = (X0 •, .;;;; 0 ., A0 •) associated with a and a matching

pair (x1, x2), where

X 0 1 = Xa \ { X2 },

..;;a' = (..;;a n (Xa' X X 0 ·)) U

{ (x, y) I x ..;;a x1' /\ X2 <aY } u { (x, y) I x <a X2 /\ x I .;;;;aY } and

A01(x) = Aa(x), if x =I= x I> and 7' otherwise.
We will use the notation a FUSE(x" xi)) o'.

2. We define FUSE) k (Jl(JU(Xf!IJ(JU{ by p FUSE) p' # 3o,o' : p = [o] /\

p' = [o'] /\ o FUSE(x" xi)) o' for some matching pair of nodes XJ, X2 E Xa.

REMARKs 5.2.4

1. It is easy to see that o' is indeed a structure.
2. If 0 FUSE(x,, xi)) o' and cp : o ~ p is an isomorphism

then 3p': p FUSE(cf>(x,), cf>(x 2))) p' and cp t Xa' : o' ~ p' is an isomorphism.

3. By 2. we have that FUSE) is well defined.

ExAM:PLEs 5.2.5 Let pi, ... , p 7 be equal to respectively

all b . d f b d . AUG) FUSE) Then p 2, ••. , p 1 are o tame rom p 1 y omg one or more or
steps. For instance p 2 is derived from p 1 by doing a FUSE) step, p 3 is obtained from

p 1 by doing a AUG) step (with (xJ, x2) equal to (the node belonging to a, the node

44

belonging to C)) andp 5 can for instance be produced by doing a AUG) step fromp 3•

The next lemma states the following. If n E !No is fixed and o can be transformed to p

by some transformation step then either o[n] = p[n] or o[n] can be transformed to a p'

that is equal to p up to level n (p[n] = p'[n]). This will be needed to prove that the

parallel operator is non-distance-increasing.

LEMMA 5.2.6 Let n e IN0 be fixed.
1. Let 0 AUG(xi. x 2» p.

a. If lev(x2) > n then o[n] = p[n].

b. If lev(x1).;;;;; n /\ /ev(x2).;;;;; n then
3p,: o[n] AUG(xi. x2» p' /\ p'[n] = p[n].

c. If lev(x1) > n /\ /ev(x2) .;;;;; n then

3x1': x1',t 0 x2 /\ x2,t0 x1' /\ lev(x1')=n :

3p' : 0 AUG(x1', Xz» p' /\ p'[n J = p[n].

2. Let a FUSE(x" X7» p.

a. If lev(x1) > n /\ lev(x2) > n then o[n] = p(n].

b. If lev(x1).;;;;; n /\ lev(x2).;;;;; n then

3p' : o(n] FUSE(xt. xz)) p' /\ p'[n] = p[n].

c. If lev(x1) > n /\ lev(x2) .;;;;; n then

3x1': x1',t 0 x2 /\ x2,t; 0 x1' /\ lev(x1')=n :
3p' : a AUG(x •'· Xz» p' /\ p'[n] = p[n]

[Note that a FUSE) step is replaced by a AUG) step!].

We omit the proof here because it is only technical and does not give any insight.

Moreover, for the most difficult case (2.c) we give an example after the next proposi

tion.

Let A&F) = .AUG) U FUSE) and let A&F) * denote the reflexive transitive clo

sure of A&F).

PROPOSITION 5.2.7 Let n E !No be fixed.

Ifp[n] = q[n] andp A&F) p' thenp'[n] = q[n] or 3q': q A&F) q' /\ p'[n] = q'[n].

PRooF

Case I : p AUG) p'. Say o E p, o' e p' and o AUG(x., x 1» o'.

If lev(x2) > n then o'[n] = o[n] so p'[n] = p[n] = q[n].

Assume now that lev(x2) .;;;;; n. If also lev(x 1) .,;;;; n then o[n] AUG(x., xz» o"

with o"[n] = o'[n]. Let p E q and tp : o[n] ,_ p[n]. Since x 1 and x 2 are incom

parable in o we also have that tp(x 1) and q,(_x 2) are incomparable in p so

45

p AUG(4'<xi). <P<x 2))) p', say, and since lev (#.x 1)).,.;;n /\ lev (#.x2)).,.;;n,

p[n] AUG(<P(xi). 4'<x 2))) p" with p"[n] = p'[n]. Since a{n],..., p[n] we have o",..., p"

so o'[n] = o"[n] ,..., p"[n] = p'[n]. If now q' = (p'] then q A&F) q' and

p'[n] = [a'[n]] = [p'[n]] = q'[n].

The last case is lev(x1) > n and /ev(x 2) .,.;; n. Then 3x 1': lev(x 1') = n and

a AUG(xi'.x 2)) o" and a"[n] = a'[n]. So this reduces this case to the previous

one.
Case II: p FUSE) p'. Say a E p, a' E p' and o FUSE(xi, xz)) o'.

If /ev(x1).,.;; n and /ev(xz).,.;; n then o[n] FUSE(xi. x 2» a" and o"[n] = a'[n].

Let p E q and cp : a[n] ,..., p[n]. Since (x 1, x2) is a matching pair in a, we have
that (#.x1), #.xz)) is a matching pair in p so p FUSEWxi) • .p(x2))) p', say, and

since lev(#,x 1)).,.;; n /\ /ev(#_x 2)).,.;; n, p(n] FUSE(4'(xi),.p(x 2)» p" with

p"[n] = p'[n]. Since o[n] ,..., p[n] we have a" ,..., p" so

a'[n] = o"[n] ,_, p"[n] = p'[n]. If now q' = [p'] then q A&F) q' and

p'[n] = [o'[n]] = [p'[n]] = q'[n].
If /ev(x1) > n and /ev(xz).,.;; n then 3x 1': /ev(x 1') = n and a AUG(xi'.x2» a"

and o"[n] = o'[n]. Case I ".,.;;" ":s;;." gives 3p': p AUG(<P<xi'), 4><x 2))) p' and

a"[n] = p'[n] so o'[n] ,..., p'[n]. If now q' = [p'] then q A&F) q' and

p'[n] = [o'[n]] = [p'[n]] = q'[n].

Case lev (x 1) .,.;; n and /ev (x 2) > n : analogous.

If lev(x1) > n and /ev(x2) > n then o'[n] = a[n] sop'[n] = p[n] = q[n]. D

ExAMPLE 5.2.8 We give a little explanation about lemma 5.2.6 and proposition 5.2.7 for

the most difficult case namely 5.2.6.2.c and the corresponding Case II ">" ".,.;;" of pro

position 5.2.7. Let p, p', q, q' be equal to respectively

We have p FUSE) p' and p[l] = q[l] and since p'[l] =I= q[l] lemma 5.2.7 guarantees

the existence of a q' such that q A&F) q' and p'[l] = q'[l]. Indeed the q defined

above satisfies q AUG) q' and p'[l] = q'[l].

DEFINITION 5.2.9

I. .syn : !J'1(!U(~ £P(Tl,I(* is defined by .syn (p) = { q I p ~ • q } .

2. .syn : !ft!1,I{* ~ fPf!lK* is defined by syn (P) = U { .syn (p) I p E P } .

46

3. II : 9'f!Ut* X ~ -+ ~ is defined by II = syn ° II OLD·

The closures are taken to get closed sets and thus elements of 9t!lK*. Moreover, pom

sets that contain infinitely many synchronizations are added in this way (see example

5.4.1).

5.3. The parallel operator is non distance increasing

PROPOSITION 5.3.1 syn : fJl(JUt-+ fJ¥!lK* is non distance increasing.

PROOF Let p, q E fJl(JUt such that p [n] = q [n]. It suffices to show that
d({p' Ip A&F)* p' }, { q' I q A&F)* q'}) ~ 2-n or equivalently p A&F)" p' ==?

3q' : q A&F) • q' J\ p'[n] = q'(n] and vice versa. This is done by induction on the

number of steps in which p' is obtained from p. Let us denote this by p A&F)k p'. If

k = O then p' = p, so we can take q' = q. If p A&F)k + 1 p' then 3pk such that

p A&F)k Pk A&F) p'. By induction there exists a {j such that q A&F)" if and

Pk[n] = if[n]. By proposition 5.2.7 we have that either p'[n] = q'[n], in which case we

can take q' = {j, or there exists a q' such that if A&F) q' and q'[n] = p'[n]. The sym

metric case is similar. D

PROPOSITION 5.3.2 syn : ~ -+ fJ¥!Ufl' is non distance increasing.

PaooF This is a consequence of proposition 5.3.l and a small adaptation of the appen

~ D

PR0Posrr10N 5.3.3 II : ~ X fJ¥!Ufl' -+ ~ is non distance increasing.

PRooF The composition of two N.D.I. mappings is again N.D.I.

5.4. Denotational semantics

D

In the previous subsection we showed that II is a non-distance-increasing mapping. So

lemmas 4.3.1.3, 4.3.1.4, and 4.3.1.5 hold in the new setting. We can now give the deno

tational semantics for the extended language in the same way as we did in subsection

4.3 by substitution of the old II by the new II·
ExAMPLE 5.4.1 Let d(x) = a;(bllc);x and d(y) = a;(Clld);y. Then ~(<d Ix>)
contains for instance :

47

and £P(< d I y >) contains for instance :

..]
So £P(< d I x llY >) contains for instance :

···]
but also:

[a-b-c-a-b-c-a-b-c-a-b-c-a ... J

6. Appendix

In this appendix, it is shown that lemma 4.3.1.3 is a consequence of lemma 4.3.1.l by

applying some metric techniques.

LEMMA 6.1 Let Mi, ... , Mn and M be metric spaces.

Let/: M1 X ... X Mn~ Mwith Ax;.j(xi, ... , X;, ... , Xn): M; ~'Yi M.

Then F: fi?Jnc(M 1) X ... X fi?Jnc(Mn) ~ fi?Jnc.(M) defined by

F(A i. ... , An) = { f (ai, ... ,an) I a; EA;, i = 1, ... , n } satisfies

M;.F(A 1, ... ,A;, ... , An): f:P'nc(M;) ~'Yi 9nc(M).

PaooF We have to show that

d(F(A 1, .•. ,A;, ... ,An), F(A 1, ... ,A';, ... , An) ~ "(; · d(A;, A';)

or equivalently :

V't:>O: d(F(A i. ... ,A;, ... ,An), F(A 1, ... ,A';, ... ,An) ~ 'Y; · d(A;, A';) + t:.

Let x E F(A b ... , A;, ... , An). We will show that there exists an

y E F(A I> ... , A';, ... , An) such that d(x, y) ~ Yi · d(A;, A';) + t: (the other part is

analogous).
~~~~~~~~~~~~~~ 

Since x E { j(ai, ... ,an) I a; EA;, i = 1, ... , n }, there exist ai, ... ,an such that 

d(x, j(a1, ... ,an))~;. By the definition of the Hausdorff distance, 

3a'; EA';: d{a;, a';) ~ 21; t:+ + d(A;, A';). Takey = f(a1> ... ,a';, ... , an)· 



48 

Now d(x, y),.;.;,; d(x, f(ai, .. ., an))+ d(j(ai. ... ,a;, ... , an), f(a1, ... ,a';, ... , an)) 

,.;.;,; d(x, f (a1, ... ,an)) + "Yi • d(a;, a';) 

,.;.;,; ; + "Yi • ( 2-y; ~ 1 + d(A;, A';)) ,.;.;,; E + "Yi • d(A;, A';). 0 

To show lemma 4.3.1.3, let M 1 = fR!U( \ {[]} and M 2 = M = 9'f!1.,I( and let 

f = • t (M 1 X M 2) : M 1 X M 2 ~ M. By lemma 4.3.1.1 f satisfies the premise of the 

lemma with y1 = 1 and y2 = ; . The derived F is equal to • on ~ X §(!U(* res-

tricted to 9'nc(M 1) X f:P(!U(*. That is, Fis restricted in its first argument to pomset-sets 

that do not contain the empty pomset. The derived property of Fis exactly the one 
formulated in lemma 4.3.1.3, since fJ'<!Ut* is an ultra-metric space. 

7. References 

[ABKR89) P. AMERICA, J.W. DE BAKKER., J.N. KoK, JJ.M.M. RUTTEN, Denotational 

[AR89] 

[B88] 

semantics of a parallel object-oriented language, Information and Computa

tion, Vol. 83, pp. 152-205, 1989. 
P. AMERICA, JJ.M.M. RurrEN, Solving reflexive domain equations in a 

category of complete metric spaces, Journal of Computer and System Sci

ences, Vol 39, nr. 3, pp.343-375, 1989. 
J.W. DE BAKKER, Comparative semantics for flow of control in logic pro

gramming without logic, Report CS-R8840, Centre for Mathematics and 

Computer Science, Amsterdam (1988), to appear in Information and 
Computation. 

[B89] J.W. DE BAKKER, Designing concurrency semantics, in: Information Pro
cessing 89, G.X. Ritter (ed.), Elsevier, pp. 591-598, 1989. 

[BBKM84] J.W. DE BAKKER, J.A. BERGSTRA, J.W. K.LoP, J.-J.CH. MEYER, Linear time 

and branching time semantics for recursion with merge, Theoretical Com
puter Science 34 (1984) 135-156. 

[BKMOZ86] J.W. DE BAKKER, J.N. KoK, J.-J.CH. MEYER, E.-R. 0LDEROG, J.I. ZucKER., 

Contrasting themes in the semantics of imperative concurrency, in Current 

Trends in Concurrency: Overviews and Tutorials (J.W. de Bakker, W.P. 

de Roever, G. Rozenberg, eds.), Lecture Notes in Computer Science, Vol. 

[BM88] 

[BRR89] 

224, Springer (1986) 51-121. 

J.W. DE BAKKER, J.-J.CH. MEYER, Metric semantics for concurrency, BIT 
28, pp. 504-529, 1988. 

J.W. DE BAKKER, W.P. DE RoEvER, G. RozENBERG (eds.), Linear Time, 

Branching Time and Partial Order, Proc. REX School/Workshop, 



[BR89] 

[BZ82] 

[BoCa88] 

[Ga89] 

[Gi84] 

[Gr81] 

[KR88] 

[MV89] 

[Pr86] 

49 

Noordwijkerhout, June 1988, Lecture Notes in Computer Science, Vol. 

354, Springer 1989. 

J.W. DE BAKKER, JJ.M.M. RurrEN, Concurrency semantics based on metric 

domain equations, Report CS-R8954, Centre for Mathematics and Com

puter Science, Amsterdam (1989). 

J.W. DE BAKKER, J.I. ZucKER, Processes and the denotational semantics of 

concurrency, Information and Control 54 (1982) 70-120. 

G. BounoL, I. CA.sTELLANI, Concurrency and atomicity, Theoretical Com

puter Science 59 (1988) 25-84. 

H. GAIFMAN, Modeling concurrency by partial orders and nonlinear transi

tion systems, in Proc. REX School/Workshop, Noordwijkerhout, June 

1988, (J.W. de Bakker, W.P. de Roever, G. Rozenberg, eds.), Linear 

Time, Branching Time and Partial Order, Lecture Notes in Computer S .. ~

ence, Vol. 354, Springer (1989), 467-488. 

J. GISCHER, Partial orders and the axiomatic theory of shuffle, Ph.D. thesis, 

Stanford University, 1984. 

J. GRABOWSKI, On partial languages, Fundamenta Informaticae IV.2 

(1981) 427-498. 

J.N. Kox, J.J.M.M. RUTTEN, Contractions in comparing conettrrency 

semantics, in Proc. 15th ICALP (T. Lepisto, A. Salomaa, eds.), Lecture 

Notes in Computer Science, Vol. 317, Springer (1988), 317-332. (To 

appear in Theoretical Computer Science.) 

J.-J.Ch. Meyer, E.P. de Vink, Pomset semantics for true concurrency with 

synchronization and recursion (extended abstract), in Proc. MFCS '89 (A 

Kreczmar & G. Mirkowska, eds.), Lecture Notes in Computer Science, 

Vol. 379, Springer (1989), 360-369. 

V. PRATT, Modelling concurrency with partial orders, Int. Journal of Paral

lel Programming 15 (1986) 33-71. 


