Abstract
We show that isomorphism of trees and outerplanar graphs can be tested in O(log n) time with n/log(n) processors on a CRCW PRAM and in O(log2n) time with n/log2n processors on an EREW PRAM. This gives the first optimal parallel algorithm for the isomorphism testing for a nontrivial class of graphs. We give also an optimal parallel algorithm for the equivalence of expressions.
A related result is a general optimal and very simple parallel method of tree compression which can be applied for other problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
K. Abrahamson, N. Dadoun, D. Kirkpatrick, T. Przytycka, ”A simple tree contraction method”, Journal of Algorithms 10, 1989, 287–302
A. Aho, J. Hopcroft, J. Ullman, ”The design and analysis of computer algorithms”, Addison-Weley, Reading, 1984
H. Bodlaender, ”Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees”, in SWAT'88, Lect.Notes in Com.Science 318, 223–232, 1988
B.Chlebus, K.Diks, T.Radzik, ”Testing isomorphism of outerplanar graphs in parallel”, in MFCS'88, Lect.Notes in Comp.Science, 1988
H.Gazit, J.Reif, ”A randomized parallel algorithm for planar graph isomorphism”, SPAA'90,210–219.
A.Gibbons, W.Rytter, ”Efficient parallel algorithms”, Cambridge University Press
A.Gibbons, W.Rytter, ”Optimal parallel evaluation of expressions and applications to context-free recognition”, Information and Computation, 1989
P.Gibbons, R.Karp, G.Miller, D.Soroker, ”Subtree isomorphism is in random NC”, AWOC'88, 43–52
K.Diks, T.Hagerup, W.Rytter, ”Optimal parallel recognition and colouring of outerplanar graphs”, MFCS'89, Lect.Notes in Comp.Science, 1989
A. Lingas, M. Karpinski, ”Subtree isomorphism is NC reducible to bipartite perfect matching”, IPL 30, 1989, 27–32
E.M. Luks,.”Isomorphism of bounded valence can be tested in polynomial time”, in Proc. 21st Ann. Symp. of Foundations of Computer Science (IEEE, New York, 1980).
G.Miller, J.Reif, ”Parallel tree contraction and its application”, FOCS, 1985
J H Reif, ”An optimal parallel algorithm for integer sorting”, Proc. 26th Ann. Symp. on Foundations of Computer Science, 1985.
W.L.Ruzzo, ”On uniform circuit complexity”, JCSS 22, 1981
R. Tarjan, U. Vishkin, ”An efficient parallel biconnectivity algorithm”, SIAM J.Comp. 14, 1985, 862–874
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Levcopoulos, C., Lingas, A., Petersson, O., Rytter, W. (1990). Optimal parallel algorithms for testing isomorphism of trees and outerplanar graphs. In: Nori, K.V., Veni Madhavan, C.E. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1990. Lecture Notes in Computer Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53487-3_45
Download citation
DOI: https://doi.org/10.1007/3-540-53487-3_45
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-53487-7
Online ISBN: 978-3-540-46313-9
eBook Packages: Springer Book Archive