Skip to main content

Optimal parallel algorithms for testing isomorphism of trees and outerplanar graphs

  • Parallel Algorithms
  • Conference paper
  • First Online:
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 472))

  • 139 Accesses

Abstract

We show that isomorphism of trees and outerplanar graphs can be tested in O(log n) time with n/log(n) processors on a CRCW PRAM and in O(log2n) time with n/log2n processors on an EREW PRAM. This gives the first optimal parallel algorithm for the isomorphism testing for a nontrivial class of graphs. We give also an optimal parallel algorithm for the equivalence of expressions.

A related result is a general optimal and very simple parallel method of tree compression which can be applied for other problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Abrahamson, N. Dadoun, D. Kirkpatrick, T. Przytycka, ”A simple tree contraction method”, Journal of Algorithms 10, 1989, 287–302

    Google Scholar 

  2. A. Aho, J. Hopcroft, J. Ullman, ”The design and analysis of computer algorithms”, Addison-Weley, Reading, 1984

    Google Scholar 

  3. H. Bodlaender, ”Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees”, in SWAT'88, Lect.Notes in Com.Science 318, 223–232, 1988

    Google Scholar 

  4. B.Chlebus, K.Diks, T.Radzik, ”Testing isomorphism of outerplanar graphs in parallel”, in MFCS'88, Lect.Notes in Comp.Science, 1988

    Google Scholar 

  5. H.Gazit, J.Reif, ”A randomized parallel algorithm for planar graph isomorphism”, SPAA'90,210–219.

    Google Scholar 

  6. A.Gibbons, W.Rytter, ”Efficient parallel algorithms”, Cambridge University Press

    Google Scholar 

  7. A.Gibbons, W.Rytter, ”Optimal parallel evaluation of expressions and applications to context-free recognition”, Information and Computation, 1989

    Google Scholar 

  8. P.Gibbons, R.Karp, G.Miller, D.Soroker, ”Subtree isomorphism is in random NC”, AWOC'88, 43–52

    Google Scholar 

  9. K.Diks, T.Hagerup, W.Rytter, ”Optimal parallel recognition and colouring of outerplanar graphs”, MFCS'89, Lect.Notes in Comp.Science, 1989

    Google Scholar 

  10. A. Lingas, M. Karpinski, ”Subtree isomorphism is NC reducible to bipartite perfect matching”, IPL 30, 1989, 27–32

    Google Scholar 

  11. E.M. Luks,.”Isomorphism of bounded valence can be tested in polynomial time”, in Proc. 21st Ann. Symp. of Foundations of Computer Science (IEEE, New York, 1980).

    Google Scholar 

  12. G.Miller, J.Reif, ”Parallel tree contraction and its application”, FOCS, 1985

    Google Scholar 

  13. J H Reif, ”An optimal parallel algorithm for integer sorting”, Proc. 26th Ann. Symp. on Foundations of Computer Science, 1985.

    Google Scholar 

  14. W.L.Ruzzo, ”On uniform circuit complexity”, JCSS 22, 1981

    Google Scholar 

  15. R. Tarjan, U. Vishkin, ”An efficient parallel biconnectivity algorithm”, SIAM J.Comp. 14, 1985, 862–874

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kesav V. Nori C. E. Veni Madhavan

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levcopoulos, C., Lingas, A., Petersson, O., Rytter, W. (1990). Optimal parallel algorithms for testing isomorphism of trees and outerplanar graphs. In: Nori, K.V., Veni Madhavan, C.E. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1990. Lecture Notes in Computer Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53487-3_45

Download citation

  • DOI: https://doi.org/10.1007/3-540-53487-3_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53487-7

  • Online ISBN: 978-3-540-46313-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics