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Abstract: The relational model and its extensions are often considered incompatible with object-orientation. 
However, on the one hand nested relations provide the complex object features demanded by object models. 
Particularly, powerful query languages exploit the complex data structure while keeping the advantages of the 
declarative, set-oriented paradigm. On the other hand, object models provide semantically rich constructs for 
advanced modeling, and abstractions of operations as well as data. In this paper, we show an evolutionary 
path from relational, essentially nested relational, to object-oriented data models and query languages. Basically, 
allowing nested relation schemes to be recursively defined yields the necessary flexibility w.r.t, structure. The 
query language, i.e., nested relational algebra, carries over to this "network" model. As a first step towards the 
object-oriented integration of cooperative systems, different views onto the objects have to be supported. We 
present a powerful view definition facility that basically allows object views as well as relational views to be 
defined in our object algebra. 
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1 I n t r o d u c t i o n  - -  M o t i v a t i o n  

"Why isn't  there an object model?" is a question raised in [26]. "How to fit round objects into square 

databases" is another prominent quotation [45]. These questions reflect important research directions and 

can be rephrased as "what are the essential differences between object-based and value-based models. , 

or "how can the advantages of the relational model be kept when the essentials of object-orientation 

are added?" 

General agreement exists that the relational algebra with its set orientation, view definition facility, 

and algebraic optimization are on the pro side for relations. Nested relations and complex objects are 

extensions which try to keep these advantages [1]. On the OO side the most convincing advantage is 

the high level of abstraction which is obtained by considering objects as instances of abstract data types, 

only manipulated by functions, and by organizing the types into a generalization (semi-) lattice. 

The problem is whether these concepts from both sides can be combined into one model or whether 

they are incompatible by their very nature. While the integration of two different approaches is an 

interesting task per se, leading to deeper insight and understanding of the differences and of the 

similarities, there is a second, practically more important aspect: Providing transformations from one 

system to another or viewing the same data differently depending on from what system we kx~k at 

them, is important if we want to or if we have to distinguish several systems. This is necessary and 

important for application programmers, i.e., application specialists, who develop methods and algorithms 

to cooperate with the database, for database type implementors who have to integrate or extend existing 

types by new methods in extensible database systems [43, 11, I8, 33], or database administrators who 

have to integrate heterogeneous subsystems and various (often existing) applications. Especially tools for 

http://nbn-resolving.de/urn:nbn:de:bsz:352-178796
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the definition of  views in a general sense are desirable, encompassing relational views, complex objects 

views, data definitions providing object representations for special algorithms. Even within one object 

model the facility to define views simply by using the result of any query as in the relational model 

is an open question. 

In this paper we will show, how an evolution from the relational model to an object model can be 

achieved. Therefore cooperation is facilitated rather than manifesting the separation into value-based and 

object-based worlds. An evolution from the relational model to an object model has been described in [6]. 

However, it is crucial to start from nested relations rather than with fiat relations. This allows to include 

also complex objects and to handle quite naturally set-valued functions as relation-valued attributes. We 

will show that the algebra for nested relations can be used almost without any change as an object 

algebra. Therefore, query languages for object models [13, 14, 24, 6, 29, 4, 12, 21, 42] are much closer 

to languages for complex objects or nested relations than to fiat relational ones [31, 32, 11, 23, 28, 15]. 

We will describe a powerfui query language and discuss its use for view definitions in this paper. 

We regard this as a very first step into the area of coupling heterogeneous systems in a cooperative 

environment. We will be able to define object views by expressions of our object algebra in a similar 

way as we are used to do with relations. In this aspect we are more general than [21] because there, 

most queries result in new objects; we can preserve object identity, though. We will just briefly mention 

how nested or flat relational views can be expressed in our language over objects, an aspect that is 

covered in a separate paper [41]. This kind of views facilitates cooperation with other DBMSs or with 

existing software tools. 

In summarizing, the new aspects presented in this paper are: 

1. An evolution from relations over nested relations to objects by adding sub-/supertypes and by 

allowing recursive schema definitions with reference semantics. The mtmber of constructs is restricted 

intentionally; a fairly simple object algebra can then serve as the basis for query languages, for 

optimization, and for the transformation to the lower system layers, in our case to a nested relational 

storage manager, the DASDBS Kernel [33]. 

2. An investigation on how views can be defined on the object model by allowing any query for'the 

definition of a view. We distinguish object preserving operations from object generating ones and 

discuss these two kinds when joins and projections are introduced. 

The paper first describes a re-interpretation of relations and nested relations which smoothly leads to an 

object model in Section 2. The operations are presented in the main Section 3, together with a discussion 

of their suitability for object view definitions. The most relevant questions answered there are how to fit 

views into the object lattice. Finally, we give some examples of the benefits of building onto (nested) 

relational theory by examples of algebraic equivalences. 

2 The Relational Object Model 

2.1 From Relations to Objects 

We start with an example, borrowed from [21] dealing with companies, vehicles, and persons. We will 
explain how a re-interpretation of relations with some additions yields an object model for this example. 

We show the type definitions in a "data definition language" and in a graphical notation, adapted from 

the semantic data model KL-ONE [8] (Fig. 1). The graphical representation distinguishes primitive types 
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t '~ ~mlation address 

Figure 1. Example database in a graphical representation borrowed from KL-ONE 

(circles) f rom def ined types  (ovals), both are cal led "gener ic  concepts"  in KL-ONE.  Funct ions ("roles" in 

KL-ONE)  are drawn as arrows with single arrow heads for  s ingle-valued and double  arrow heads for set- 

valued functions.  Grey arrows represent  the is_a-relationship. The r e s t r i c t s  edge  connect ing  two roles 

is a specialization o f  functions (for auto-companies,  produces  returns only special  vehicles;  see below).  

type Vehicle =/d  : integer, 

color : string, 
owner : Person inverse owns, 
manufacturer : Company inverse produces ; 

type Company = name : string, 
location : set_of City inverse has_comp, 
president : Employee, 
staff: set_of Employee inverse works_for, 
produces : set_of Vehicle inverse manufacturer ; 

type Automobile is_a Vehicle = trunksize : integer ; 

type AutoCompany is a Company = produces : set_of Automobile restricts Company.produces ; 

type City = name : string, 
zipcode : string, 
population : integer, 
has_comp : set of Company inverse location ; 

type Person = name : string, 
bdate : date, 
address : City, 
owns : set of Vehicle inverse owner ; 

type Employee is_a Person = hiredate : date, 
ssec# : in~g~, 
salary : integer, 
works for  : Company inverse staff; 

database CarDB = {class Vehicle, Company, Automobile, AutoCompany, City, Person, Employee...}; 



92 

The above definitions clearly are not table definitions for flat relations. The definition of Vehicle, for 

instance, in order to be a 1NF relation would have to show the Company key (say, name) as a foreign key 

instead of (a reference to) the Company. The Company definition looks more like a nested relation than 

a flat one, because location looks like a relation-valued attribute showing the City information of cities 

where the company is located. Also, produces "holds" the set of vehicles produced by the company. 

In addition, a kind of referential integrity constraint is given by the "inverse" keyword requiring that 

the company producing a vehicle can also be seen if we retrieve the manufacturer "attribute value" of 

that vehicle. 

All this seems to be very much in-line with nested relations and complex objects, but there is an 

important difference: considering Vehicle and Company as schema definitions of two nested relations, we 

see that the "schema" definitions are mutually recursive. The Company type is defined in terms of Vehicle 
and vice versa, This is not allowed in the nested relational models proposed so far, but we will allow it 

now. The essential idea is to adopt "reference semantics" [27] when (objec0 variables of these types will 

be used in assignments and in comparisons. Thus, we are able to describe network data models instead 

of hierarchical data only. It is interesting to note that a recursive data model has already been proposed 

in [22] for similar reasons. By adopting the interpretation of a tuple as an instance of an abstract data 

type, we need only little changes in the algebra for nested relations and consequently in related query 

languages. For instance, we add a type test predicate as a consequence of subtyping (is.a). 

As an introductory example let us identify all companies producing at least one red vehicle: This 

is a usual nested selection: 

select [ 0 # select [ color=-'red' ] (produces) ] (Company) 
Or suppose we want to produce a report which shows for every company the name and the zip-codes of 

the cities where the company is located (extract is a particular form of (nested) projection, see below). 

e x t r a c t  [ coname := name,  cityinf := e x t r a c t  [ zipcode ] (location) ] (Company) 

We will discuss all operations in detail in Section 3, but these preliminary examples already 

demonstrate that the basic structure of nested relational languages is preserved. Re-interpreting (nested) 

tuples as instances of an abstract data types is fairly natural. We can even imagine that a number of 

nested relational views are contained within these type definitions, such as 

Companies(name, location(zipcode), president, produces(id,color)) 

or Cities(zipcode, has_comp(name, president, produces(id, color))) 
or Cities(zipcode, has_comp(name, location(zipcode, has_comp(name, location(zipcode)))))))). 

Our algebra, in fact the NF 2 algebra as shown in [35], will enable us to dynamically create all 

these different representations (views). Things become slightly more complicated when the i sa-graph 

is considered in connection with updates and with views. 

2.2 The Object Model 

Essentially, our object model is an object-function-model (el. [47, 13, 12]). Its constituents are 

• objects, 

• functions, 

• t y p e s ,  

• classes and variables. 
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Objects are instances of abstract data types (ADTs). Objects can be manipulated only by means of 

their interface, a set of functions. Particularly, object identity is maintained by the system (we can think 

of internal invisible identifiers, Olds, used for representing objects). 

We may distinguish a few primitive object types ("literal" objects in [47], "concrete" objects in [20]). 

They are considered elementary, that is, they are not defined using other types (leaves of the type graph). 

Essentially, these primitive objects have a name known outside the system [7]. 

Functions are defined by giving a name, domain, and range. Domain and range of functions are given 

by names of types. Functions can be single-valued or set-valued. In the latter case, lower and upper 

bounds on the number of result values can be specified. For instance, 

function f: A --+ set_of In:m] B; 

defines a functionf that returns between n (minimum) and m (maximum) objects of type B, when applied 

to an object of type A. Functions are a uniform abstraction of "attributes" and "relationships" of classical 

data models. 

A useful feature is the capability of defining inverses of functions. In the example above, we can 

imagine a function g mapping back from objects of type B to those object(s) of type A that relate to 

them viaf. In this case the function definition of f above would be changed to "function f: A ~ set of 

[n:m] B inverse g". This is an integrity constraint on legal values of f and g; the constraint will be 

enforced by the system. 

Types describe the common interface of all instances of that type, that is, the collection of applicable 

functions. The definition of a type consists of a type name and, optionally, a list of functions. Functions 

with more than one argument will usually be defined separately from types. For example, the following 

two forms defining a type A with two functions f and g are equivalent: 

type A= type A . . . .  ; 

f." setof In:m] B, function]'.' A --+ setof In:m] B; 

g: C; function g: A --+ C; 

Subtyping. If type A' is defined as a subtype of type A (type A' i s a  A . . . .  ;), then all instances a' 

of A' are also instances of A. Therefore, a '  may occur in all places where an instance of A is required 

(substitutability). If the subtype relationship is_a (generalization) holds botween supertype A and subtype 

A', the following must be true: 

• functions(A) C functions(A'); that is, all functions defined on A are defined on A' too; and 

* functions on A' may be more restricted than they are on A (that is, domain and/or range of the 

function in A' may be subtypes of those in A, and/or cardinality restrictions can he sharper) and/or 

a different implementation may be assigned to them (overriding). 

The first condition reflects the Cardelli-like [10] semantics of subtyping. The specialization of functions 

in the second condition is similar to "role restrictions" and "role differentiation" in KL-ONE [8] (see 

the AutoCompany example). Subtyping defines a partial order " _ ' '  on types. Typically, this ordering 

forms a (semi-) lattice of types, such that for types A,B their lowest upperbound is always defined. The 

top element of the lattice is the most general type "Object" (therefore, all instances of defined types in 



94 

the database are also instances of "Object"). We allow multiple inheritance, that is, a type may have 

more than one (direct) supertype. 

As a consequence of subtyping, objects may be an instance of more than one type. For an object 

o, each of its types provides a certain view on the object [19]; if viewed as an instance of type T, 

then only the functions defined in T are applicable to o. The algebra is strongly-typed and allows static 

type checking [9]. We assume a (type test) predicate T to be defined for each type T. T(o) is true iff 

object o is an instance of type T. Type predicates can serve as selection predicates, or to guard (sub-) 

type-specific operations [48]. 

Classes. We distinguish types from classes, following e.g. [3, 7]. A class is a set of objects that is 

associated with a type. There may be more than one class of a type (for instance, as the result of 

defining a selection view; see below). Notice that object sets are homogeneous in the sense that one 

single object type is associated with the set (class), even though objects in the set may also be instances 

of several other types. A subclass relationship can be defined on classes as a combination of the subtype 

relationship among their types and the subset relationship among their extents: class C' is a subclass 

of superclass C, iff 

• type(C') _ type(C); (that is, the underlying type is a subtype), and 

• extent(C') C_ extent(C); (that is, set C' is a subset of set C). 

Notice that, unlike e.g. [14, 24, 21], we consider a class C as the set of objects in C and all of its 

subclasses. 

In a class definition, we specify a class name and the element type, for instance: 

class Employees: setof Employee 
As a standard naming convention we use the type name also as a class name denoting the set of all 

instances of that type, e.g., the above is equivalent to "class Employee" (cf. the O2-option "with extension" 

for type definitions). In our query language, we can use variables in the usual programming language 

sense, that is, as temporary names for objects or object sets. 

2.3 Comparison with Relations 
Our claim in the beginning was, that little reinterpretation would suffice to "turn the nested relational 

model into an object model", that is, allow nested relational-style operations to be applied to objects in the 

usual way. Table 1 summarizes the correspondence between nested relational and object models. Such 

correspondences have already been observed between relations and objects, see e.g. [6, 46]. However, 

it is essential to start from nested relations when moving towards objects, for relation-valued attributes 

reflect set-valued functions in object models, and nesting of algebraic subexpressions corresponds to 

function composition. This explains why object query languages proposed to date are in the spirit of 

nested relations [2, 7]. 

Apart from the important organization of types in an is_a graph which will be visible when views 

and updates are discussed in the next section, the only essential change is that now objects are abstract 

(instances of ADTs). Therefore, references are no longer by means of (user-controlled) 'foreign keys' 

like in relations, but a built-in feature of the model (by object identity, which is system-controlled). 

However, we need not explicitly introduce Olds or surrogates, as done in LauRel [23], for instance. 

Rather we assume implicit Olds that are transparent at the model interface, following [7] and object 

oriented languages, such as Eiffel [27], or functional data models, e.g., PDM [13, 12]. 
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Nested Relational  Model  Object  Model 

nested relat ion class 

schema o f  a relat ion ... set  o f  aUributos A type .., set  o f  funct ions f 

extension o f  a relat ion _. set  o f  tuples t extension o f  a class ... set of  objects o 

topic t ... maps attributes to values pbjeet  o ... instance o f  an A D T  

attribute va lue  t (A) ... atomic,  or  function value  f(o) ... pr imit ive  type, or  

... tuple-valued, or  ,.. abstract type, or  

... relat ion-valued ... set  o f  some type 

domains ... finite, defined bottom-up "domains" .,. infinite, not defined explici t ly 

Table L Nested relat ional  versus object  model  concepts 

3 Object Algebra and View Definition 

Variables and Assignments. In order to be able to refer to objects and to results of previous algebra 

expressions, we allow the use of variables and assignments. Variables are used as temporary names 

("handles") for objects or object sets. They have to be declared with their type in the database 

sublanguage---either explicitly or by a query--, such that compile-time type checking applies to variables 

too. For example, 

var My_Cars : s e t _ o f  Automobile, 

var MyChevy : Automobile 

declares variables of type s e t o f  Automobile and Automobile, respectively. Hence, the set variable can, 

for instance, keep the result of a selection on the database class Automobile; the object variable can, for 

example, be assigned the result of an object creation in order to identify the new object in subsequent 

operations: 

My_Cars := s e l e c t  [ P ] (Automobile); 

My_Chevy :=  insert [ ... ] (Automobile). 

In the example, the query defines My_Cars to have as value a subset of the persistent objects from the 
input class. 

All updates that are eventually applied to variables are propagated to the persistent database objects 

they hold as values (at end-of-transaction). In this sense, objects are not copied into the variable, rather 

the variables serve as temporary names for the object or the object set. Additional operations (clone, 

equal) may then be useful for (shallow) copying and (shallow) equality tests between objects. These 

notions have been introduced in object-oriented languages, e.g., in Eiffel [27], and in [5, 14, 24]. They 

can easily be derived from the operations defined here. 

Object  Views. It is our goal to allow queries to serve as view definitions. That is, if <query> is a 
well defined query, then 

define view <name> as <query> 

is a view definition. We distinguish two kinds of views: object views and relational views. For object 

views, after execution of this statement, <name> will appear as a (persistent) class of the database, pretty 

much like the other classes. The "extension" of an object view, however, is usually not stored explicitly, 

but rather computed upon demand from the extent-defining query. An important problem, as noticed in 

[21], is to define the position of the view class in the object lattice. That is, the relevant questions are 

(i) what is the type of the result objects, (ii) where is this (usually new) type located relative to the input 
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types in the is_a graph, and (iii) what is the relationship between input and output classes (i.e., are the 

result objects new or pre-existing). As one of our primary goals in the algebra is suitability for view 

definitions, unlike [21, 42], we will mainly consider object preserving and not object creating operators. 

For object preserving operations, the resulting objects shall be identical with input objects so as to allow 

subsequent operations on them (e.g., updates) to propagate to the stored objects. Queries can thus be 

used as view definitions, as the argument of (set-oriented) update operations, or to assign their result to 

(set) variables of the appropriate type for later use. 

Like a relational algebra, the object algebra consists of some independent basic operators that can 

be combined to define derived operators. We will concentrate on basic operators in this paper. The 

(intuitive) semantics of the operators introduced is obvious from the relational context. The algebra is 

a set-oriented language, that is, its inputs and outputs are sets (of objects). If we--syntactically--apply 

operators to a class, the semantics are to operate on its extent, i.e., a seL Therefore, all query results are 

sets. In the sequel, however, we discuss the positioning of the results in the class lattice, since we are 

interested in where a view class defined by a query belongs. In fact, the view definition "define view 

V as <query>" turns the query result (a set) into a class. 

3.2 Selection 

Selection in the relational model selects a subset of the tuples in the input relation. The output relation 

consists of those tuples satisfying the selection predicate, the schema of the output relation is the same as 

that of the input. Essentially, selection in the object algebra does the same: Selections require a predicate 

that is evaluable on the type of the input class. It returns the subset of the objects in the input class 

satisfying the predicate. Theselection predicate is a boolean-valued function defined on the type of the 

input. Basic comparators are built-in (such as "=" for all types, and possibly others, like "<", for some 

types), arbitrary further (type-specific) comparison operators, i.e., boolean functions, can be defined by 

type implementors or users. 

Selection views are a subclass of the input  class with the same type, but only a subset of the 

instances. Like in the nested relational model, selection predicates may include nested subqueries on 

set-valued functions and/or other classes. For instance, we Can select companies having at least one 

branch in New York: 

NYComp := select [ 0 # select [ name = 'New York" ] (location) ] (Company). 

This is a well-defined selection, since "0 # select [name = 'New York'] (location)" is a valid predicate, 

which happens to include a (sub) query. Technically, a query is a (set-valued) function mapping an input 

set to an output set. Thus, queries can be used in predicates as any other functions can. In order to 

make the query syntax more legible, we can (temporarily) assign a new name to a composite function. 

For instance, the above is equivalent to: 

let NYloc = select[name='New York'](location) in { 

NYComp := select [ ¢ # NYloc ] (Company) }. 

Here, we defined a function NYloc as a (func- 

tional) composition of location and the ' inner '  se- 

lect. The scope of NYloc is limited to the query 

enclosed in the braces of the let statement (cf. the 

"use" statement in [31]). 
Figure 2. Selections create subclasses. 
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3.3 Projection 

Projections in the relational model drop some columns of tables, that is, reduce the number of attributes 

of the tuples. Also, duplicates that may eventually result from dropping distinguishing attributes are 

eliminated. This operation serves two main purposes: (i) to determine the information that is to be 

output by a query, and (ii) to "hide" some attribute values from views such as the salary component 

of employee tuples). 

Object projection shall behave similar to relational projection. However, duplicate elimination is not 

an issue, since two objects are different even if they have some (or even all) function values in common. + 
This helps in avoiding some of the problems with (updates on) projection views over relations. We will 

use two operators for the two purposes. For purpose (i) the operator extract (as introduced in [41]) will 

be used. This is an object- (in fact, tuple-) generating operator, similar to the projection used by, e.g., 

[42, 21], or the relation-generating operations of [2, 7]. We will not discuss extract in detail in this 

paper. For purpose (ii), though, we need an object-preserving semantics of projection, this is our project 

operator. To our knowledge, none of the previous object algebras provided a means of projecting objects 

onto some of their functions while preserving their identity. But if we want to use projections in view 

definitions, we need this very feature. 

Projections require a list of functions defined on the type of the input. The type of the output of 

a projection is a (usually new) type, a supertype of the input type, as less functions are defined on the 

output, namely only those listed in the projection. The objects in the input set are also elements of the 

output set (object preservation). Thus, a projection view is a superclass of the input  class. 

For example, we may wish to "hide", i.e., project out, the salary from some users by giving them a 

view on Employee that does not contain the salary function: 

define view PubticEmpl as 

project [ "all but salary" ] (Employee). 
Notice that, as type checking works on the class level, using the salary function on class PublicEmpl would 

resuk in a (compile-time) type error, even though each employee object "has" both types, Employee and 
PublicEmpl. 

If the projection list includes all functions defined on the immediate supertype of the input class, 

Person, in our example, then the new type becomes a subtype of this immediate supertype. Otherwise 

it becomes a subtype of a more general type. 

~ hit edate 

Figure 3. Projections create superela~ses. 

Users of this view operate on exactly the same 

objects as those in Employee, they can use all the 

employee functions, except salary. That is, pro- 

jection "has no effect" on the instance level, it just 

affects object types by "hiding" some functions 

(like a "type cast"). Particularly, also updates can 

be performed on the view. These updates will af- 

fect the elements of class Employee, since they are 
the same as those of PublicEmpl. 
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As in the relational model, some updates will ~aot be possible on views. For example, after mat ing  a 

new PublicEmpl object, we can not assign a salary to the object unless we explicitly make it an Employee. 
On the other hand, relational view update probiems arising from projections and duplicate eliminiation 

do not occur here, since projection views preserve object identity. 

3.4 Extend 

Projection, as in the (flat) relational case, eliminates functions. For views, defining some new, derived, 

functions can also be a very useful operation. We can, for instance, define a derived function resp_for 
for employee objects (that are presidents of some company) by the following query. The new function 

is the inverse of president;, that is, for each employee, resp_for returns the set of companies for which 

he/she is president: 

PresEmpl := extend [ resp_for := 
select [president=self.Employee] (Company) 
] (Employee). 

Notice that we used self.Employee as a variable 

being bound to the "current" employee, the selec- 

tion on Company is performed once per object in 

Employee. An alternative would be to use a query 

language syntax with explicit object variables (like 

"Select ... From e in Employee ...", cf. [6, 41]). 

pres iden~ . ~  

~ resp ffor 

Figure 4. Extend defines subtypes with new functions. 

Notice that all employees will be contained in the result (resp_for returns an empty set for non-president 

employees). If we want to retain only presidents, i.e., those for which the new function actually yields 

a value, we can use a subsequent selection "resp_for ~ 0". In general, extend takes as input an object 

set and a (set of) function definitions. The function(s) have to be defined on the input type, that is, the 

functions need to be evaluable in the context of the objects in the input set (cf. "dynamic constants" in 

the NF 2 algebra [34]). As functions are added to the type of the input, the result type is a subtype of 

the input type, for all the old functions plus the new one are defined on it; The objects of the input set 

are preserved, that is, extend views create a new class that is a subclass of the input class, with the 

same set of instances but a new type, a subtype of the input type. Notice again, we use our definition 

that objects may 'have' more than one type and be a member of more than one class. 

If necessary, we can make an extend operation automatically define the inverse of the new function, 

too. We simply append the phrase "with inverse <invname>" to the expression to give the inverse 

function a name of our choice. 

3.5 Join 

Here, we consider an operation comparable to the relational join. In a relational database, information 

about entities is often spread among several relations, such that applications heavily depend on collecting 

data by (natural) joins. Unlike relations, object models provide explicit means of building "complex 

objects" or "linking" related objects together (in our case by functions). Thus, neither in order to collect 

information describing complex entities nor for following relationships among entities do we need to 

formulate joins. Rather, we follow the predefined "links" by applying functions (this results in what 
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is called a query graph in [21]). However, it is often useful to provide a query facility for 'arbitrary' 

(sometimes called 'unstructured') joins. This supports queries relating objects via conditions that are not 

(directly) represented in the predefined functions. 

Object Preserving Join. We have already seen a way of establishing new 'relationships" among objects, 

that is, defining new functions between them: the extend operator does this. So, one way of expressing 

'joins' in our model is to define the required relationship as a (set of two inverse) new function(s) 

connecting the "matching pairs" of objects. For example, to answer a query like "employees living in a 

town in which some (not necessarily their) company is located" - -  which would require an (equi-) join of 

the two corresponding relations on the predicate "COMP.LOC=EMP.ADDR" in a relational database.--, 

we can define a new function LocalComp on the employee class returning companies located at the 

employees' home town by the following extend operation: 

define view JoinedEmpl as extend [ LocalComp := select [ address E location ] (Company) ] (Employee). 

The resulting view JoinedEmpl will be a sub- 

class of Employee containing all Employee-objects 
(see above), the new function returns the set 

of "join partners". A simple subsequent selec- 

tion with the predicate "LocalComp ~ 0" will 

return the qualifying employee objects, that is, 

JoinedEmpl, as defined above, is actually a (one- 

sided) outer join; the additional selection makes it 

an inner one. 

LocalEmpl 

Figure 5. Result of "joining" by symmetrle extend. 

Adding the clause "with inverse LocalEmpl'" to the definition of LocalComp in the extend operation 

will result in a symmetrical "join" result, since the inverse function will then connect the companies 

back to the employees. Technically, the symmetric extend operation results in two new classes, one 

new subclass for each of the input classes. Notice that, if we were interested in employees living in the 

same town as their company's location, we would have used the "works_for" function instead of the 

class "Company" in the extend operation. "Joining" objects by means of the extend operator is object 
preserving, that is, the result of this "join" is a new "relationship" among existing objects. 

It appears that we do not need an explicit join operation in our algebra, the desired functionality can 

already be expressed using extend's. This has also been observed in the context of nested relations [37, 

38], where it turned out that join (or relational product) can be derived from nested projection (which 

corresponds to extend). In fact, any "join" with a predicate P among classes 6"1 and C2 can be expressed 

as a (symmetric) extend operation using the predicate P for a selection inside the extend. Hence, a 

derived p-join operator could be added based upon extend that perserves objects. 

Object Creating Join. If we want to create objects by an explicit join operator in the object algebra, 

we are given two choices, depending on the "structure" of the result: talking relationally, shall the result 

be a set of pairs (like the result of a straight set-theoretic produc0, or do we want to "flatten" the result, 

such that we obtain (n+m)-tuples? Relationally, in order to retain the closure property, the result must 

be a set of (n+m)-tuples. Secondly, a set-of-pairs semantics has the disadvantage that joins would not be 

associative, that is, (R join S) join T would be different from R join (S join T). This, however, would 

exclude some of the most significant optimization means. The first argument does no longer hold since 
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we have richer structures anyway, so the dear, mathematical semantics of product, and hence join, seems 

to be more attractive. The second argument, however, is still worth consideration, since we do want to 

optimize object algebra queries in a way similar to relational algebra. 

Nevertheless, let us start with the "pairs" alternative and focus on the associativity problem later: let 

join be an operator of the object algebra that takes two input classes and a predicate defined over the 

types of both, then an operation like 

define view CE as 

Employee join [ addressElocation ] Company 

results is a new object class CE, the type of which 

contains two functions Employee and Company. 
For each (new) object in the result set, these func- 

tions return the employee and the company, re- 

spectively, that 'contributed' to the result object. 

That is, this join creates a new type (direct sub- 

type of "object"). The result class contains new 

objects (of this new type). 

~ C o m p a n y  ee 

Figure 6. Join creating new objects. 

Two functions relate the new join objects to the two input objects. The same is true in [42] for 

"non-tuple" input types, whereas tuple input types result in (n+m)-tuples. In [21], the join result is a set 

of pairs of old Olds as long as the result is not "saved" in the database (as a snapshot), if saved, new Olds 

are generated for the tuple components. In a way, our result is still useful as a view, since the contributing 

input objects can be 'reached' from the join-objects. The remaining problem is non-associativity. 

The result can easily be made associative, though, by defining new derived functions (with the extend 

operator): one for each "attribute" of the input types of the join. By composing the function defined by 

the join and the "old" attribute function, we can construct an "associative result", CE' in our example: 

CE':= extend [ename := name(Employee) .... name := dname(Company)] (CE). 

The result CE t is a class (subclass of CE) with a type that has (n+m+2) functions defined on it: the (n+m) 

functions from the two join-input classes, plus one function per input class "pointing" to the objects that 

resulted in the join-object (inherited from CE). Thus, if we want associative joins (for optimization 

purposes), we can use this "associative join" operation (which is derived from the former join and the 

extend as shown above). If this new join operation is used, the system is f~e  to decide on join orders. 

It should be noted that already the non-associative join operator, and thus the derived associative one, 

can be defined in terms of, a new type and class definition, extend and a few other operators, just like in 

the nested relational case. That is, if we restrict our scope of interest to the basic independent operators 

of the object algebra, we can disregard join anyway. 

3.6 Other Operators 

Set operations. We do not need to take any special care about set operators (union, difference, and 

intersection). As we operate on sets of objects, we can perform set operations as usual. One notable point 
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is the criterion for duplicate elimination (or equality determination): the mathematical notion of equality 

is identity in case of abstract objects. So, this is the notion that is used in the set operations 1. Other types 

of equality 0ike shallow or deep equality) can be defined based on the values of functions defined on the 

objects, recursively. They may also be useful for creating new objects as "copies" of existing ones. 

Pick. Note that we did not introduce (persistent) names for single objects. For getting hold of single 

objects, users have to use class names in combination with functions and selection predicates. Even 

selections with only one qualifying object return a (singleton) set, though. Therefore, we need an 

operator for converting singleton sets into the only element (that is, drop spurious set braces), we called 

it pick [41]. Notice, that pick is a limited version of "unnest" known from the nested relational model. 

Extract. The operators presented so far result in (sets of) abstrac t  objects.  One operator of our language, 

however, can be used to produce sets of tuples (that is, values [7]): the extract operator [41]. Essentially, 

extract is another kind of projection that constructs tuples with one component for each element of the 

projection list. If, recursively, all components are either sets of tuples or primitive data values, then 

the output of an extract is a (nested) relation. Hence, we can include explicit relations [2] or generic 

tuple objects [42] into our model, given that we provide the standard (relational) operations on them. 

Also, extract can serve as a means of coupling an ooDBMS with other (value-based) services in a 

heterogeneous environment. 

3.7 Remarks on Update Operations 

Update operations are described in detail in [41]. Here we add a few remarks on updates on views and 

explain differences between (set) variables and views in case of updates. 

Updat ing Views. Views can be used as the arguments of update operations, as they are simply names 

for queries. As already observed in the relational context, updating views, however, may be subject 

to restrictions. For example, insertions into (projection) views result in undefined attribute values in 

relations. In the object model, due to object identity, these problems are less severe. Nonetheless, 

suppose we create a new employee object i n  the Publ icEmpl  view defined by the project operation as 

shown in Section 3.3. Obviously, we cannot assign a salary to the new object, since this function is 

hidden in the view. Thus, in order to pay the new employee, we have to make him/her an instance of 

the more specific type E m p l o y e e  first: 

NewEmp := [ name : . . . . .  addr : . . . . .  ssec# : . . . .  ] (PubIicEmpt); 

add [ NewEmp ] (Employee); 

set [ salary := 2000 ] (NewEmp). 

A detailed discussion of the effects of all update operations on views, depending on the query operators 

used in the view definition, is contained in [40]. 

Variables versus Views. As we permit the use of variables (and assignments) as part of our database 

sublanguage, a natural question to ask is, what are the effects of update operations applied to variables? 

Partienlarly, what are the differences between set variables and views? 

1 this is the problem of determining uniqueness of objects as mentioned in [21]. The other two problems mentioned 
there, heterogeneity and scope of classes, are ~reated differently in our model: classes are considered homogeneous, and the 
extension always includes all subclasses (see above). 
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The idea behind variables in our language is the standard programming language concept: variables 

may be used to hold temporaries in a complex program interacting with the database. The idea of object 

sharing applies to variables too. That is, if a variable v holds an object o and an update operation m is 

applied to v, then o gets updated, and this update is visible everywhere in the database where o occurs. 

The same is true for set variables: if a set variable V holds a set of objects {Ol ..... on}, then all operations 

performed on V are actually performed on {Ol ..... on}. Particularly, the updates are visible in all persistent 

classes of the database that contain some oi from the set. 

In contrast to set variables, views are persistent classes of the database, that is, their scope starts with 

the transaction that created them and eventually ends with the (other) transaction that might drop them. 

In the meantime, no user or application program can distinguish views from base classes. Set variables, 

on the other hand, are only existent during the execution of the one database program that declared them. 

Their scope ends at the end of the enclosing transaction. 

3.8 Algebraic Equivalences 

The main advantage of using an object algebra in the spirit of (nested) relational algebra is that we 

can draw from a broad background on query processing and optimization. An extensive discussion of 

optimization rules is beyond the scope of this paper. In fact, rather than develop a new theory of algebraic 

equivalences and optimization heuristics, we try to adopt results obtained previously for the nested and 

fiat relational algebras. Actually, in looking at first work on optimization of object algebra expressions, 

see [42, 44], strong similarities can be observed. For instance, commutativity of selections, distribution 

of selections over unions or joins, or composition of nested subqueries are algebraic properties that hold 

for nested relational algebra, too. Since we have already investigated nested algebra in some detail [36, 

39, 38], and others have also worked on query optimization in this context (see, e.g. [1]), we hope to 

obtain object algebra optimization results also in an evolutionary way. 

To illustrate how algebraic optimization carries over from the nested relational to the object algebra, 

we list a few equivalences from [36, 38], rewritten into the syntax of our object algebra: 

(1) select [P~] ( select [P2] (C')) 
_= select [P2] ( select [/'1] (C))  
- select [P/AP2] (C) 

(2) select [ P ] ( project [ L ] (C))  
---- project [ L ] ( select [ P ] (C)), if L contains all functions mentioned in P 

(3) extend [ g := <expr2>(t) ] ( extend [ f  := <expr~> ] (C)) 
-- extend [ g := <expr2>( <exprl> ) ] (C) 

(4) select [ e(<expr>) l (C) 
------ project [ "all but./' ] ( select [ e(]) ] ( extend [ f := <expr> ] (C)) ) 

(5) image [ f ]  ( C ), w h e r e f : C - - . s e t o f B  
-- select [ ¢ ~ select [ self.BE f ]  ('C) l (B) 

Equivalence (1) is the commutativity and combination of selections, (2) is commuting selection and 

projection, (3) is combination of subsequent extends, which is a transcript of rules on nested projections, 

and (4) shows that nesting of algebra expressions into selections is not essential, as already shown in 

[34]. Essentially, we can define the nested subexpression as a derived function (using extend) first, apply 

a simple selection, and finally remove the derived function, if necessary. 
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An operator, usually found in functional models, extends functions defined on a type T to type set_of 

T. It is called image in [42], other usual names for the same operator include "map" and "apply_to_all". 

Let f: A ~ B  be a function and S be of type set__of A, then image It] (S) is the image of set S under the 

function f (in the mathematical sense), i.e., image [/1 (S) = { f(s) I sES }. Image differs from (single- 
function) projection in that the result is the set of function values, whereas a projection returns the set 

of objects in the input set, but with just this one function left. Notice that image is a derived operator, 

k can be defined by a (nested) selection as shown in equivalence (5). 

4 Conclusions 

Many object models are based on the notion of objects as abstract data types with type-specific functions 

(object-function-models), Usually functions may return sets of objects as well as single objects. Set- 

valued functions are the reason why a nested relational query language is better suited as a starting 

point for an object query language than a fiat relational one: objects are very similar to a tuple in a 

nested relation, where attributes (the functions) may be single-valued or set-(of-tuple)-valued. We have 

shown that in fact the reinterpretation of tuples as abstract objects, the "recursive relational schema 

definitions" obtained this way, and the use of reference semantics for assignments and equality (i.e., 

identity) predicates turn the (nested) relational model into the core of an object model. That is, there 

is in fact an evolutionary path from relational to object models. Nested relations play the role of an 

intermediate stage, where nesting of query language expressions according to the nesting structure of the 

complex objects is already possible. 

The strong similarities between query languages proposed so far for object models and complex 

object models is therefore quite natural. Hence, a reasonable direction of future research is to try and 

carry over the theoretical results obtained about completeness, complexity, and optimization of complex 

object (nested relational) algebras to the new object algebras. We sketched, how some equivalences of 

our nested relational algebra still apply. For the implementation of OODBMS, this similarity should 

make it easier to map an OODB interface to a complex object storage manager, since the conceptual 

distance between their query languages is smaller. 

The additional important ingredient of all object models is the notion of subtypes and supertypes and 

its organization into a type/class lattice. We investigated the problem of how to fit query results into 

the class hierarchy. This problem has received high attention in current research. We have shown that 

it is crucial to distinguish object preserving operations from object generating operations. We put more 

emphasis on object preserving operations because they can be used to define views over the existing 

object base providing some potential for view updates. We introduced operators to select subsets of 

objects, to hide functions from views (project), to define new (derived) functions in views (extend), and, 

put particular emphasis on how to provide object preserving join semantics (by using extend to define 

new relationships between objects). In summarizing, the object algebra presented here allows arbitrary 

operations in view definitions because all necessary operators preserve object identity. 

A prototype system including most of the described retrieval and update functions has been imple- 

mented with a SQL-like query language. In its current implementation it maps the (KL-ONE) object 

model to a fiat relational interface (ORACLE). At present we are working on a re-implementation on top 

of our NF 2 relational DASDBS Kernel system [30, 33] to make use of advanced clustering and query 

processing techniques and will compare and evaluate the two solutions. The interface of this storage 

manager is a subset of the nested relational algebra. Therefore, we expect query optimization to benefit 
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from the uniformity o f  query representations from the object  mode l  all the way down  to the storage 

structures. Besides algebraic optimizat ion along the lines o f  nested relational techniques,  we  will include 

extensible opt imizat ion techniques like those discussed in [16, 25, 17]. 
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