
A Relational Object Model

Marc H. Scholl and Hans-J6rg Schek

ETH Ziirich, Dept. of Computer Science, Information Systems - - Databases

ETH Zentrum, CH-8092 Z'tirich, Switzerland, e-mail: {Scholl,Schek}@inf.ethz.ch

Abstract: The relational model and its extensions are often considered incompatible with object-orientation.
However, on the one hand nested relations provide the complex object features demanded by object models.
Particularly, powerful query languages exploit the complex data structure while keeping the advantages of the
declarative, set-oriented paradigm. On the other hand, object models provide semantically rich constructs for
advanced modeling, and abstractions of operations as well as data. In this paper, we show an evolutionary
path from relational, essentially nested relational, to object-oriented data models and query languages. Basically,
allowing nested relation schemes to be recursively defined yields the necessary flexibility w.r.t, structure. The
query language, i.e., nested relational algebra, carries over to this "network" model. As a first step towards the
object-oriented integration of cooperative systems, different views onto the objects have to be supported. We
present a powerful view definition facility that basically allows object views as well as relational views to be
defined in our object algebra.
Keywords: Object model, object algebra, object views, nested relations, query optimization.

1 I n t r o d u c t i o n - - M o t i v a t i o n

"Why isn't there an object model?" is a question raised in [26]. "How to fit round objects into square

databases" is another prominent quotation [45]. These questions reflect important research directions and

can be rephrased as "what are the essential differences between object-based and value-based models. ,

or "how can the advantages of the relational model be kept when the essentials of object-orientation

are added?"

General agreement exists that the relational algebra with its set orientation, view definition facility,

and algebraic optimization are on the pro side for relations. Nested relations and complex objects are

extensions which try to keep these advantages [1]. On the OO side the most convincing advantage is

the high level of abstraction which is obtained by considering objects as instances of abstract data types,

only manipulated by functions, and by organizing the types into a generalization (semi-) lattice.

The problem is whether these concepts from both sides can be combined into one model or whether

they are incompatible by their very nature. While the integration of two different approaches is an

interesting task per se, leading to deeper insight and understanding of the differences and of the

similarities, there is a second, practically more important aspect: Providing transformations from one

system to another or viewing the same data differently depending on from what system we kx~k at

them, is important if we want to or if we have to distinguish several systems. This is necessary and

important for application programmers, i.e., application specialists, who develop methods and algorithms

to cooperate with the database, for database type implementors who have to integrate or extend existing

types by new methods in extensible database systems [43, 11, I8, 33], or database administrators who

have to integrate heterogeneous subsystems and various (often existing) applications. Especially tools for

http://nbn-resolving.de/urn:nbn:de:bsz:352-178796

90

the definition of views in a general sense are desirable, encompassing relational views, complex objects

views, data definitions providing object representations for special algorithms. Even within one object

model the facility to define views simply by using the result of any query as in the relational model

is an open question.

In this paper we will show, how an evolution from the relational model to an object model can be

achieved. Therefore cooperation is facilitated rather than manifesting the separation into value-based and

object-based worlds. An evolution from the relational model to an object model has been described in [6].

However, it is crucial to start from nested relations rather than with fiat relations. This allows to include

also complex objects and to handle quite naturally set-valued functions as relation-valued attributes. We

will show that the algebra for nested relations can be used almost without any change as an object

algebra. Therefore, query languages for object models [13, 14, 24, 6, 29, 4, 12, 21, 42] are much closer

to languages for complex objects or nested relations than to fiat relational ones [31, 32, 11, 23, 28, 15].

We will describe a powerfui query language and discuss its use for view definitions in this paper.

We regard this as a very first step into the area of coupling heterogeneous systems in a cooperative

environment. We will be able to define object views by expressions of our object algebra in a similar

way as we are used to do with relations. In this aspect we are more general than [21] because there,

most queries result in new objects; we can preserve object identity, though. We will just briefly mention

how nested or flat relational views can be expressed in our language over objects, an aspect that is

covered in a separate paper [41]. This kind of views facilitates cooperation with other DBMSs or with

existing software tools.

In summarizing, the new aspects presented in this paper are:

1. An evolution from relations over nested relations to objects by adding sub-/supertypes and by

allowing recursive schema definitions with reference semantics. The mtmber of constructs is restricted

intentionally; a fairly simple object algebra can then serve as the basis for query languages, for

optimization, and for the transformation to the lower system layers, in our case to a nested relational

storage manager, the DASDBS Kernel [33].

2. An investigation on how views can be defined on the object model by allowing any query for'the

definition of a view. We distinguish object preserving operations from object generating ones and

discuss these two kinds when joins and projections are introduced.

The paper first describes a re-interpretation of relations and nested relations which smoothly leads to an

object model in Section 2. The operations are presented in the main Section 3, together with a discussion

of their suitability for object view definitions. The most relevant questions answered there are how to fit

views into the object lattice. Finally, we give some examples of the benefits of building onto (nested)

relational theory by examples of algebraic equivalences.

2 The Relational Object Model

2.1 From Relations to Objects

We start with an example, borrowed from [21] dealing with companies, vehicles, and persons. We will
explain how a re-interpretation of relations with some additions yields an object model for this example.

We show the type definitions in a "data definition language" and in a graphical notation, adapted from

the semantic data model KL-ONE [8] (Fig. 1). The graphical representation distinguishes primitive types

91

t '~ ~mlation address

Figure 1. Example database in a graphical representation borrowed from KL-ONE

(circles) f rom def ined types (ovals), both are cal led "gener ic concepts" in KL-ONE. Funct ions ("roles" in

KL-ONE) are drawn as arrows with single arrow heads for s ingle-valued and double arrow heads for set-

valued functions. Grey arrows represent the is_a-relationship. The r e s t r i c t s edge connect ing two roles

is a specialization o f functions (for auto-companies, produces returns only special vehicles; see below).

type Vehicle =/d : integer,

color : string,
owner : Person inverse owns,
manufacturer : Company inverse produces ;

type Company = name : string,
location : set_of City inverse has_comp,
president : Employee,
staff: set_of Employee inverse works_for,
produces : set_of Vehicle inverse manufacturer ;

type Automobile is_a Vehicle = trunksize : integer ;

type AutoCompany is a Company = produces : set_of Automobile restricts Company.produces ;

type City = name : string,
zipcode : string,
population : integer,
has_comp : set of Company inverse location ;

type Person = name : string,
bdate : date,
address : City,
owns : set of Vehicle inverse owner ;

type Employee is_a Person = hiredate : date,
ssec# : in~g~,
salary : integer,
works for : Company inverse staff;

database CarDB = {class Vehicle, Company, Automobile, AutoCompany, City, Person, Employee...};

92

The above definitions clearly are not table definitions for flat relations. The definition of Vehicle, for

instance, in order to be a 1NF relation would have to show the Company key (say, name) as a foreign key

instead of (a reference to) the Company. The Company definition looks more like a nested relation than

a flat one, because location looks like a relation-valued attribute showing the City information of cities

where the company is located. Also, produces "holds" the set of vehicles produced by the company.

In addition, a kind of referential integrity constraint is given by the "inverse" keyword requiring that

the company producing a vehicle can also be seen if we retrieve the manufacturer "attribute value" of

that vehicle.

All this seems to be very much in-line with nested relations and complex objects, but there is an

important difference: considering Vehicle and Company as schema definitions of two nested relations, we

see that the "schema" definitions are mutually recursive. The Company type is defined in terms of Vehicle
and vice versa, This is not allowed in the nested relational models proposed so far, but we will allow it

now. The essential idea is to adopt "reference semantics" [27] when (objec0 variables of these types will

be used in assignments and in comparisons. Thus, we are able to describe network data models instead

of hierarchical data only. It is interesting to note that a recursive data model has already been proposed

in [22] for similar reasons. By adopting the interpretation of a tuple as an instance of an abstract data

type, we need only little changes in the algebra for nested relations and consequently in related query

languages. For instance, we add a type test predicate as a consequence of subtyping (is.a).

As an introductory example let us identify all companies producing at least one red vehicle: This

is a usual nested selection:

select [0 # select [color=-'red'] (produces)] (Company)
Or suppose we want to produce a report which shows for every company the name and the zip-codes of

the cities where the company is located (extract is a particular form of (nested) projection, see below).

e x t r a c t [coname := name, cityinf := e x t r a c t [zipcode] (location)] (Company)

We will discuss all operations in detail in Section 3, but these preliminary examples already

demonstrate that the basic structure of nested relational languages is preserved. Re-interpreting (nested)

tuples as instances of an abstract data types is fairly natural. We can even imagine that a number of

nested relational views are contained within these type definitions, such as

Companies(name, location(zipcode), president, produces(id,color))

or Cities(zipcode, has_comp(name, president, produces(id, color)))
or Cities(zipcode, has_comp(name, location(zipcode, has_comp(name, location(zipcode)))))))).

Our algebra, in fact the NF 2 algebra as shown in [35], will enable us to dynamically create all

these different representations (views). Things become slightly more complicated when the i sa-graph

is considered in connection with updates and with views.

2.2 The Object Model

Essentially, our object model is an object-function-model (el. [47, 13, 12]). Its constituents are

• objects,

• functions,

• t y p e s ,

• classes and variables.

93

Objects are instances of abstract data types (ADTs). Objects can be manipulated only by means of

their interface, a set of functions. Particularly, object identity is maintained by the system (we can think

of internal invisible identifiers, Olds, used for representing objects).

We may distinguish a few primitive object types ("literal" objects in [47], "concrete" objects in [20]).

They are considered elementary, that is, they are not defined using other types (leaves of the type graph).

Essentially, these primitive objects have a name known outside the system [7].

Functions are defined by giving a name, domain, and range. Domain and range of functions are given

by names of types. Functions can be single-valued or set-valued. In the latter case, lower and upper

bounds on the number of result values can be specified. For instance,

function f: A --+ set_of In:m] B;

defines a functionf that returns between n (minimum) and m (maximum) objects of type B, when applied

to an object of type A. Functions are a uniform abstraction of "attributes" and "relationships" of classical

data models.

A useful feature is the capability of defining inverses of functions. In the example above, we can

imagine a function g mapping back from objects of type B to those object(s) of type A that relate to

them viaf. In this case the function definition of f above would be changed to "function f: A ~ set of

[n:m] B inverse g". This is an integrity constraint on legal values of f and g; the constraint will be

enforced by the system.

Types describe the common interface of all instances of that type, that is, the collection of applicable

functions. The definition of a type consists of a type name and, optionally, a list of functions. Functions

with more than one argument will usually be defined separately from types. For example, the following

two forms defining a type A with two functions f and g are equivalent:

type A= type A ;

f." setof In:m] B, function]'.' A --+ setof In:m] B;

g: C; function g: A --+ C;

Subtyping. If type A' is defined as a subtype of type A (type A' i s a A ;), then all instances a'

of A' are also instances of A. Therefore, a ' may occur in all places where an instance of A is required

(substitutability). If the subtype relationship is_a (generalization) holds botween supertype A and subtype

A', the following must be true:

• functions(A) C functions(A'); that is, all functions defined on A are defined on A' too; and

* functions on A' may be more restricted than they are on A (that is, domain and/or range of the

function in A' may be subtypes of those in A, and/or cardinality restrictions can he sharper) and/or

a different implementation may be assigned to them (overriding).

The first condition reflects the Cardelli-like [10] semantics of subtyping. The specialization of functions

in the second condition is similar to "role restrictions" and "role differentiation" in KL-ONE [8] (see

the AutoCompany example). Subtyping defines a partial order " _ ' ' on types. Typically, this ordering

forms a (semi-) lattice of types, such that for types A,B their lowest upperbound is always defined. The

top element of the lattice is the most general type "Object" (therefore, all instances of defined types in

94

the database are also instances of "Object"). We allow multiple inheritance, that is, a type may have

more than one (direct) supertype.

As a consequence of subtyping, objects may be an instance of more than one type. For an object

o, each of its types provides a certain view on the object [19]; if viewed as an instance of type T,

then only the functions defined in T are applicable to o. The algebra is strongly-typed and allows static

type checking [9]. We assume a (type test) predicate T to be defined for each type T. T(o) is true iff

object o is an instance of type T. Type predicates can serve as selection predicates, or to guard (sub-)

type-specific operations [48].

Classes. We distinguish types from classes, following e.g. [3, 7]. A class is a set of objects that is

associated with a type. There may be more than one class of a type (for instance, as the result of

defining a selection view; see below). Notice that object sets are homogeneous in the sense that one

single object type is associated with the set (class), even though objects in the set may also be instances

of several other types. A subclass relationship can be defined on classes as a combination of the subtype

relationship among their types and the subset relationship among their extents: class C' is a subclass

of superclass C, iff

• type(C') _ type(C); (that is, the underlying type is a subtype), and

• extent(C') C_ extent(C); (that is, set C' is a subset of set C).

Notice that, unlike e.g. [14, 24, 21], we consider a class C as the set of objects in C and all of its

subclasses.

In a class definition, we specify a class name and the element type, for instance:

class Employees: setof Employee
As a standard naming convention we use the type name also as a class name denoting the set of all

instances of that type, e.g., the above is equivalent to "class Employee" (cf. the O2-option "with extension"

for type definitions). In our query language, we can use variables in the usual programming language

sense, that is, as temporary names for objects or object sets.

2.3 Comparison with Relations
Our claim in the beginning was, that little reinterpretation would suffice to "turn the nested relational

model into an object model", that is, allow nested relational-style operations to be applied to objects in the

usual way. Table 1 summarizes the correspondence between nested relational and object models. Such

correspondences have already been observed between relations and objects, see e.g. [6, 46]. However,

it is essential to start from nested relations when moving towards objects, for relation-valued attributes

reflect set-valued functions in object models, and nesting of algebraic subexpressions corresponds to

function composition. This explains why object query languages proposed to date are in the spirit of

nested relations [2, 7].

Apart from the important organization of types in an is_a graph which will be visible when views

and updates are discussed in the next section, the only essential change is that now objects are abstract

(instances of ADTs). Therefore, references are no longer by means of (user-controlled) 'foreign keys'

like in relations, but a built-in feature of the model (by object identity, which is system-controlled).

However, we need not explicitly introduce Olds or surrogates, as done in LauRel [23], for instance.

Rather we assume implicit Olds that are transparent at the model interface, following [7] and object

oriented languages, such as Eiffel [27], or functional data models, e.g., PDM [13, 12].

95

Nested Relational Model Object Model

nested relat ion class

schema o f a relat ion ... set o f aUributos A type .., set o f funct ions f

extension o f a relat ion _. set o f tuples t extension o f a class ... set of objects o

topic t ... maps attributes to values pbjeet o ... instance o f an A D T

attribute va lue t (A) ... atomic, or function value f(o) ... pr imit ive type, or

... tuple-valued, or ,.. abstract type, or

... relat ion-valued ... set o f some type

domains ... finite, defined bottom-up "domains" .,. infinite, not defined explici t ly

Table L Nested relat ional versus object model concepts

3 Object Algebra and View Definition

Variables and Assignments. In order to be able to refer to objects and to results of previous algebra

expressions, we allow the use of variables and assignments. Variables are used as temporary names

("handles") for objects or object sets. They have to be declared with their type in the database

sublanguage---either explicitly or by a query--, such that compile-time type checking applies to variables

too. For example,

var My_Cars : s e t _ o f Automobile,

var MyChevy : Automobile

declares variables of type s e t o f Automobile and Automobile, respectively. Hence, the set variable can,

for instance, keep the result of a selection on the database class Automobile; the object variable can, for

example, be assigned the result of an object creation in order to identify the new object in subsequent

operations:

My_Cars := s e l e c t [P] (Automobile);

My_Chevy := insert [...] (Automobile).

In the example, the query defines My_Cars to have as value a subset of the persistent objects from the
input class.

All updates that are eventually applied to variables are propagated to the persistent database objects

they hold as values (at end-of-transaction). In this sense, objects are not copied into the variable, rather

the variables serve as temporary names for the object or the object set. Additional operations (clone,

equal) may then be useful for (shallow) copying and (shallow) equality tests between objects. These

notions have been introduced in object-oriented languages, e.g., in Eiffel [27], and in [5, 14, 24]. They

can easily be derived from the operations defined here.

Object Views. It is our goal to allow queries to serve as view definitions. That is, if <query> is a
well defined query, then

define view <name> as <query>

is a view definition. We distinguish two kinds of views: object views and relational views. For object

views, after execution of this statement, <name> will appear as a (persistent) class of the database, pretty

much like the other classes. The "extension" of an object view, however, is usually not stored explicitly,

but rather computed upon demand from the extent-defining query. An important problem, as noticed in

[21], is to define the position of the view class in the object lattice. That is, the relevant questions are

(i) what is the type of the result objects, (ii) where is this (usually new) type located relative to the input

96

types in the is_a graph, and (iii) what is the relationship between input and output classes (i.e., are the

result objects new or pre-existing). As one of our primary goals in the algebra is suitability for view

definitions, unlike [21, 42], we will mainly consider object preserving and not object creating operators.

For object preserving operations, the resulting objects shall be identical with input objects so as to allow

subsequent operations on them (e.g., updates) to propagate to the stored objects. Queries can thus be

used as view definitions, as the argument of (set-oriented) update operations, or to assign their result to

(set) variables of the appropriate type for later use.

Like a relational algebra, the object algebra consists of some independent basic operators that can

be combined to define derived operators. We will concentrate on basic operators in this paper. The

(intuitive) semantics of the operators introduced is obvious from the relational context. The algebra is

a set-oriented language, that is, its inputs and outputs are sets (of objects). If we--syntactically--apply

operators to a class, the semantics are to operate on its extent, i.e., a seL Therefore, all query results are

sets. In the sequel, however, we discuss the positioning of the results in the class lattice, since we are

interested in where a view class defined by a query belongs. In fact, the view definition "define view

V as <query>" turns the query result (a set) into a class.

3.2 Selection

Selection in the relational model selects a subset of the tuples in the input relation. The output relation

consists of those tuples satisfying the selection predicate, the schema of the output relation is the same as

that of the input. Essentially, selection in the object algebra does the same: Selections require a predicate

that is evaluable on the type of the input class. It returns the subset of the objects in the input class

satisfying the predicate. Theselection predicate is a boolean-valued function defined on the type of the

input. Basic comparators are built-in (such as "=" for all types, and possibly others, like "<", for some

types), arbitrary further (type-specific) comparison operators, i.e., boolean functions, can be defined by

type implementors or users.

Selection views are a subclass of the input class with the same type, but only a subset of the

instances. Like in the nested relational model, selection predicates may include nested subqueries on

set-valued functions and/or other classes. For instance, we Can select companies having at least one

branch in New York:

NYComp := select [0 # select [name = 'New York"] (location)] (Company).

This is a well-defined selection, since "0 # select [name = 'New York'] (location)" is a valid predicate,

which happens to include a (sub) query. Technically, a query is a (set-valued) function mapping an input

set to an output set. Thus, queries can be used in predicates as any other functions can. In order to

make the query syntax more legible, we can (temporarily) assign a new name to a composite function.

For instance, the above is equivalent to:

let NYloc = select[name='New York'](location) in {

NYComp := select [¢ # NYloc] (Company) }.

Here, we defined a function NYloc as a (func-

tional) composition of location and the ' inner ' se-

lect. The scope of NYloc is limited to the query

enclosed in the braces of the let statement (cf. the

"use" statement in [31]).
Figure 2. Selections create subclasses.

97

3.3 Projection

Projections in the relational model drop some columns of tables, that is, reduce the number of attributes

of the tuples. Also, duplicates that may eventually result from dropping distinguishing attributes are

eliminated. This operation serves two main purposes: (i) to determine the information that is to be

output by a query, and (ii) to "hide" some attribute values from views such as the salary component

of employee tuples).

Object projection shall behave similar to relational projection. However, duplicate elimination is not

an issue, since two objects are different even if they have some (or even all) function values in common. +
This helps in avoiding some of the problems with (updates on) projection views over relations. We will

use two operators for the two purposes. For purpose (i) the operator extract (as introduced in [41]) will

be used. This is an object- (in fact, tuple-) generating operator, similar to the projection used by, e.g.,

[42, 21], or the relation-generating operations of [2, 7]. We will not discuss extract in detail in this

paper. For purpose (ii), though, we need an object-preserving semantics of projection, this is our project

operator. To our knowledge, none of the previous object algebras provided a means of projecting objects

onto some of their functions while preserving their identity. But if we want to use projections in view

definitions, we need this very feature.

Projections require a list of functions defined on the type of the input. The type of the output of

a projection is a (usually new) type, a supertype of the input type, as less functions are defined on the

output, namely only those listed in the projection. The objects in the input set are also elements of the

output set (object preservation). Thus, a projection view is a superclass of the input class.

For example, we may wish to "hide", i.e., project out, the salary from some users by giving them a

view on Employee that does not contain the salary function:

define view PubticEmpl as

project ["all but salary"] (Employee).
Notice that, as type checking works on the class level, using the salary function on class PublicEmpl would

resuk in a (compile-time) type error, even though each employee object "has" both types, Employee and
PublicEmpl.

If the projection list includes all functions defined on the immediate supertype of the input class,

Person, in our example, then the new type becomes a subtype of this immediate supertype. Otherwise

it becomes a subtype of a more general type.

~ hit edate

Figure 3. Projections create superela~ses.

Users of this view operate on exactly the same

objects as those in Employee, they can use all the

employee functions, except salary. That is, pro-

jection "has no effect" on the instance level, it just

affects object types by "hiding" some functions

(like a "type cast"). Particularly, also updates can

be performed on the view. These updates will af-

fect the elements of class Employee, since they are
the same as those of PublicEmpl.

98

As in the relational model, some updates will ~aot be possible on views. For example, after mat ing a

new PublicEmpl object, we can not assign a salary to the object unless we explicitly make it an Employee.
On the other hand, relational view update probiems arising from projections and duplicate eliminiation

do not occur here, since projection views preserve object identity.

3.4 Extend

Projection, as in the (flat) relational case, eliminates functions. For views, defining some new, derived,

functions can also be a very useful operation. We can, for instance, define a derived function resp_for
for employee objects (that are presidents of some company) by the following query. The new function

is the inverse of president;, that is, for each employee, resp_for returns the set of companies for which

he/she is president:

PresEmpl := extend [resp_for :=
select [president=self.Employee] (Company)
] (Employee).

Notice that we used self.Employee as a variable

being bound to the "current" employee, the selec-

tion on Company is performed once per object in

Employee. An alternative would be to use a query

language syntax with explicit object variables (like

"Select ... From e in Employee ...", cf. [6, 41]).

pres iden~ . ~

~ resp ffor

Figure 4. Extend defines subtypes with new functions.

Notice that all employees will be contained in the result (resp_for returns an empty set for non-president

employees). If we want to retain only presidents, i.e., those for which the new function actually yields

a value, we can use a subsequent selection "resp_for ~ 0". In general, extend takes as input an object

set and a (set of) function definitions. The function(s) have to be defined on the input type, that is, the

functions need to be evaluable in the context of the objects in the input set (cf. "dynamic constants" in

the NF 2 algebra [34]). As functions are added to the type of the input, the result type is a subtype of

the input type, for all the old functions plus the new one are defined on it; The objects of the input set

are preserved, that is, extend views create a new class that is a subclass of the input class, with the

same set of instances but a new type, a subtype of the input type. Notice again, we use our definition

that objects may 'have' more than one type and be a member of more than one class.

If necessary, we can make an extend operation automatically define the inverse of the new function,

too. We simply append the phrase "with inverse <invname>" to the expression to give the inverse

function a name of our choice.

3.5 Join

Here, we consider an operation comparable to the relational join. In a relational database, information

about entities is often spread among several relations, such that applications heavily depend on collecting

data by (natural) joins. Unlike relations, object models provide explicit means of building "complex

objects" or "linking" related objects together (in our case by functions). Thus, neither in order to collect

information describing complex entities nor for following relationships among entities do we need to

formulate joins. Rather, we follow the predefined "links" by applying functions (this results in what

99

is called a query graph in [21]). However, it is often useful to provide a query facility for 'arbitrary'

(sometimes called 'unstructured') joins. This supports queries relating objects via conditions that are not

(directly) represented in the predefined functions.

Object Preserving Join. We have already seen a way of establishing new 'relationships" among objects,

that is, defining new functions between them: the extend operator does this. So, one way of expressing

'joins' in our model is to define the required relationship as a (set of two inverse) new function(s)

connecting the "matching pairs" of objects. For example, to answer a query like "employees living in a

town in which some (not necessarily their) company is located" - - which would require an (equi-) join of

the two corresponding relations on the predicate "COMP.LOC=EMP.ADDR" in a relational database.--,

we can define a new function LocalComp on the employee class returning companies located at the

employees' home town by the following extend operation:

define view JoinedEmpl as extend [LocalComp := select [address E location] (Company)] (Employee).

The resulting view JoinedEmpl will be a sub-

class of Employee containing all Employee-objects
(see above), the new function returns the set

of "join partners". A simple subsequent selec-

tion with the predicate "LocalComp ~ 0" will

return the qualifying employee objects, that is,

JoinedEmpl, as defined above, is actually a (one-

sided) outer join; the additional selection makes it

an inner one.

LocalEmpl

Figure 5. Result of "joining" by symmetrle extend.

Adding the clause "with inverse LocalEmpl'" to the definition of LocalComp in the extend operation

will result in a symmetrical "join" result, since the inverse function will then connect the companies

back to the employees. Technically, the symmetric extend operation results in two new classes, one

new subclass for each of the input classes. Notice that, if we were interested in employees living in the

same town as their company's location, we would have used the "works_for" function instead of the

class "Company" in the extend operation. "Joining" objects by means of the extend operator is object
preserving, that is, the result of this "join" is a new "relationship" among existing objects.

It appears that we do not need an explicit join operation in our algebra, the desired functionality can

already be expressed using extend's. This has also been observed in the context of nested relations [37,

38], where it turned out that join (or relational product) can be derived from nested projection (which

corresponds to extend). In fact, any "join" with a predicate P among classes 6"1 and C2 can be expressed

as a (symmetric) extend operation using the predicate P for a selection inside the extend. Hence, a

derived p-join operator could be added based upon extend that perserves objects.

Object Creating Join. If we want to create objects by an explicit join operator in the object algebra,

we are given two choices, depending on the "structure" of the result: talking relationally, shall the result

be a set of pairs (like the result of a straight set-theoretic produc0, or do we want to "flatten" the result,

such that we obtain (n+m)-tuples? Relationally, in order to retain the closure property, the result must

be a set of (n+m)-tuples. Secondly, a set-of-pairs semantics has the disadvantage that joins would not be

associative, that is, (R join S) join T would be different from R join (S join T). This, however, would

exclude some of the most significant optimization means. The first argument does no longer hold since

100

we have richer structures anyway, so the dear, mathematical semantics of product, and hence join, seems

to be more attractive. The second argument, however, is still worth consideration, since we do want to

optimize object algebra queries in a way similar to relational algebra.

Nevertheless, let us start with the "pairs" alternative and focus on the associativity problem later: let

join be an operator of the object algebra that takes two input classes and a predicate defined over the

types of both, then an operation like

define view CE as

Employee join [addressElocation] Company

results is a new object class CE, the type of which

contains two functions Employee and Company.
For each (new) object in the result set, these func-

tions return the employee and the company, re-

spectively, that 'contributed' to the result object.

That is, this join creates a new type (direct sub-

type of "object"). The result class contains new

objects (of this new type).

~ C o m p a n y ee

Figure 6. Join creating new objects.

Two functions relate the new join objects to the two input objects. The same is true in [42] for

"non-tuple" input types, whereas tuple input types result in (n+m)-tuples. In [21], the join result is a set

of pairs of old Olds as long as the result is not "saved" in the database (as a snapshot), if saved, new Olds

are generated for the tuple components. In a way, our result is still useful as a view, since the contributing

input objects can be 'reached' from the join-objects. The remaining problem is non-associativity.

The result can easily be made associative, though, by defining new derived functions (with the extend

operator): one for each "attribute" of the input types of the join. By composing the function defined by

the join and the "old" attribute function, we can construct an "associative result", CE' in our example:

CE':= extend [ename := name(Employee) name := dname(Company)] (CE).

The result CE t is a class (subclass of CE) with a type that has (n+m+2) functions defined on it: the (n+m)

functions from the two join-input classes, plus one function per input class "pointing" to the objects that

resulted in the join-object (inherited from CE). Thus, if we want associative joins (for optimization

purposes), we can use this "associative join" operation (which is derived from the former join and the

extend as shown above). If this new join operation is used, the system is f~e to decide on join orders.

It should be noted that already the non-associative join operator, and thus the derived associative one,

can be defined in terms of, a new type and class definition, extend and a few other operators, just like in

the nested relational case. That is, if we restrict our scope of interest to the basic independent operators

of the object algebra, we can disregard join anyway.

3.6 Other Operators

Set operations. We do not need to take any special care about set operators (union, difference, and

intersection). As we operate on sets of objects, we can perform set operations as usual. One notable point

101

is the criterion for duplicate elimination (or equality determination): the mathematical notion of equality

is identity in case of abstract objects. So, this is the notion that is used in the set operations 1. Other types

of equality 0ike shallow or deep equality) can be defined based on the values of functions defined on the

objects, recursively. They may also be useful for creating new objects as "copies" of existing ones.

Pick. Note that we did not introduce (persistent) names for single objects. For getting hold of single

objects, users have to use class names in combination with functions and selection predicates. Even

selections with only one qualifying object return a (singleton) set, though. Therefore, we need an

operator for converting singleton sets into the only element (that is, drop spurious set braces), we called

it pick [41]. Notice, that pick is a limited version of "unnest" known from the nested relational model.

Extract. The operators presented so far result in (sets of) abstrac t objects. One operator of our language,

however, can be used to produce sets of tuples (that is, values [7]): the extract operator [41]. Essentially,

extract is another kind of projection that constructs tuples with one component for each element of the

projection list. If, recursively, all components are either sets of tuples or primitive data values, then

the output of an extract is a (nested) relation. Hence, we can include explicit relations [2] or generic

tuple objects [42] into our model, given that we provide the standard (relational) operations on them.

Also, extract can serve as a means of coupling an ooDBMS with other (value-based) services in a

heterogeneous environment.

3.7 Remarks on Update Operations

Update operations are described in detail in [41]. Here we add a few remarks on updates on views and

explain differences between (set) variables and views in case of updates.

Updat ing Views. Views can be used as the arguments of update operations, as they are simply names

for queries. As already observed in the relational context, updating views, however, may be subject

to restrictions. For example, insertions into (projection) views result in undefined attribute values in

relations. In the object model, due to object identity, these problems are less severe. Nonetheless,

suppose we create a new employee object i n the Publ icEmpl view defined by the project operation as

shown in Section 3.3. Obviously, we cannot assign a salary to the new object, since this function is

hidden in the view. Thus, in order to pay the new employee, we have to make him/her an instance of

the more specific type E m p l o y e e first:

NewEmp := [name : addr : ssec# :] (PubIicEmpt);

add [NewEmp] (Employee);

set [salary := 2000] (NewEmp).

A detailed discussion of the effects of all update operations on views, depending on the query operators

used in the view definition, is contained in [40].

Variables versus Views. As we permit the use of variables (and assignments) as part of our database

sublanguage, a natural question to ask is, what are the effects of update operations applied to variables?

Partienlarly, what are the differences between set variables and views?

1 this is the problem of determining uniqueness of objects as mentioned in [21]. The other two problems mentioned
there, heterogeneity and scope of classes, are ~reated differently in our model: classes are considered homogeneous, and the
extension always includes all subclasses (see above).

102

The idea behind variables in our language is the standard programming language concept: variables

may be used to hold temporaries in a complex program interacting with the database. The idea of object

sharing applies to variables too. That is, if a variable v holds an object o and an update operation m is

applied to v, then o gets updated, and this update is visible everywhere in the database where o occurs.

The same is true for set variables: if a set variable V holds a set of objects {Ol on}, then all operations

performed on V are actually performed on {Ol on}. Particularly, the updates are visible in all persistent

classes of the database that contain some oi from the set.

In contrast to set variables, views are persistent classes of the database, that is, their scope starts with

the transaction that created them and eventually ends with the (other) transaction that might drop them.

In the meantime, no user or application program can distinguish views from base classes. Set variables,

on the other hand, are only existent during the execution of the one database program that declared them.

Their scope ends at the end of the enclosing transaction.

3.8 Algebraic Equivalences

The main advantage of using an object algebra in the spirit of (nested) relational algebra is that we

can draw from a broad background on query processing and optimization. An extensive discussion of

optimization rules is beyond the scope of this paper. In fact, rather than develop a new theory of algebraic

equivalences and optimization heuristics, we try to adopt results obtained previously for the nested and

fiat relational algebras. Actually, in looking at first work on optimization of object algebra expressions,

see [42, 44], strong similarities can be observed. For instance, commutativity of selections, distribution

of selections over unions or joins, or composition of nested subqueries are algebraic properties that hold

for nested relational algebra, too. Since we have already investigated nested algebra in some detail [36,

39, 38], and others have also worked on query optimization in this context (see, e.g. [1]), we hope to

obtain object algebra optimization results also in an evolutionary way.

To illustrate how algebraic optimization carries over from the nested relational to the object algebra,

we list a few equivalences from [36, 38], rewritten into the syntax of our object algebra:

(1) select [P~] (select [P2] (C'))
_= select [P2] (select [/'1] (C))
- select [P/AP2] (C)

(2) select [P] (project [L] (C))
---- project [L] (select [P] (C)), if L contains all functions mentioned in P

(3) extend [g := <expr2>(t)] (extend [f := <expr~>] (C))
-- extend [g := <expr2>(<exprl>)] (C)

(4) select [e(<expr>) l (C)
------ project ["all but./'] (select [e(])] (extend [f := <expr>] (C)))

(5) image [f] (C), w h e r e f : C - - . s e t o f B
-- select [¢ ~ select [self.BE f] ('C) l (B)

Equivalence (1) is the commutativity and combination of selections, (2) is commuting selection and

projection, (3) is combination of subsequent extends, which is a transcript of rules on nested projections,

and (4) shows that nesting of algebra expressions into selections is not essential, as already shown in

[34]. Essentially, we can define the nested subexpression as a derived function (using extend) first, apply

a simple selection, and finally remove the derived function, if necessary.

103

An operator, usually found in functional models, extends functions defined on a type T to type set_of

T. It is called image in [42], other usual names for the same operator include "map" and "apply_to_all".

Let f: A ~ B be a function and S be of type set__of A, then image It] (S) is the image of set S under the

function f (in the mathematical sense), i.e., image [/1 (S) = { f(s) I sES }. Image differs from (single-
function) projection in that the result is the set of function values, whereas a projection returns the set

of objects in the input set, but with just this one function left. Notice that image is a derived operator,

k can be defined by a (nested) selection as shown in equivalence (5).

4 Conclusions

Many object models are based on the notion of objects as abstract data types with type-specific functions

(object-function-models), Usually functions may return sets of objects as well as single objects. Set-

valued functions are the reason why a nested relational query language is better suited as a starting

point for an object query language than a fiat relational one: objects are very similar to a tuple in a

nested relation, where attributes (the functions) may be single-valued or set-(of-tuple)-valued. We have

shown that in fact the reinterpretation of tuples as abstract objects, the "recursive relational schema

definitions" obtained this way, and the use of reference semantics for assignments and equality (i.e.,

identity) predicates turn the (nested) relational model into the core of an object model. That is, there

is in fact an evolutionary path from relational to object models. Nested relations play the role of an

intermediate stage, where nesting of query language expressions according to the nesting structure of the

complex objects is already possible.

The strong similarities between query languages proposed so far for object models and complex

object models is therefore quite natural. Hence, a reasonable direction of future research is to try and

carry over the theoretical results obtained about completeness, complexity, and optimization of complex

object (nested relational) algebras to the new object algebras. We sketched, how some equivalences of

our nested relational algebra still apply. For the implementation of OODBMS, this similarity should

make it easier to map an OODB interface to a complex object storage manager, since the conceptual

distance between their query languages is smaller.

The additional important ingredient of all object models is the notion of subtypes and supertypes and

its organization into a type/class lattice. We investigated the problem of how to fit query results into

the class hierarchy. This problem has received high attention in current research. We have shown that

it is crucial to distinguish object preserving operations from object generating operations. We put more

emphasis on object preserving operations because they can be used to define views over the existing

object base providing some potential for view updates. We introduced operators to select subsets of

objects, to hide functions from views (project), to define new (derived) functions in views (extend), and,

put particular emphasis on how to provide object preserving join semantics (by using extend to define

new relationships between objects). In summarizing, the object algebra presented here allows arbitrary

operations in view definitions because all necessary operators preserve object identity.

A prototype system including most of the described retrieval and update functions has been imple-

mented with a SQL-like query language. In its current implementation it maps the (KL-ONE) object

model to a fiat relational interface (ORACLE). At present we are working on a re-implementation on top

of our NF 2 relational DASDBS Kernel system [30, 33] to make use of advanced clustering and query

processing techniques and will compare and evaluate the two solutions. The interface of this storage

manager is a subset of the nested relational algebra. Therefore, we expect query optimization to benefit

104

from the uniformity o f query representations from the object mode l all the way down to the storage

structures. Besides algebraic optimizat ion along the lines o f nested relational techniques, we will include

extensible opt imizat ion techniques like those discussed in [16, 25, 17].

References

[1] S. Abiteboul, P. C. Fischer, and H.-J. Schek, editors. Nested Relations and Complex Objects in Databases, volume 361
of Lecture Notes in Computer Science. Springer, Heidelberg, 1989.

[2] S. Abitoboul and P.C. Kanellakis. Object identity as a query language primitive. In Proc. ACM SIGMOD Conf. on
Management of Data, pages 159-173, Portland, June 1989. ACM, New York.

[3] A. Albano, L. Cardeffi, and R. Orsini. Galileo: A strongly-typed, interactive conceptual language. ACM Transactions on
Database Systems, 10(2):230-260, June 1985.

[4] F. Bancilhon. Query languages for object-oriented database systems: Analysis and a proposal. In T. Harder, editor, Proc.
GI Conf. on Database Systems for Office, Engineering and Scientific Applications, pages 1-18, Ziirich, March 1989.
Springer IFB 204, Heidelberg.

[5] F. Bancilhon, T. Briggs, S. Khoshalian, and P. Valduriez. FAD, a powerful and simple database language. In Proc. Int.
Conf. on Very Large Databases, pages 97-105, Brighton, September 1987.

[6] D. Beech. A foundation for evolution from relational to object databases. In J.W. Sehmidt, S. Ceil, and M. Missikoff,
editors, Advances in Database Technology --EDBT'88. Springer LNCS 303, March 1988.

[7] C. Beeri. Formal models for object-oriented databases. In W. Kim, J.-M. Nicolas, and S. Nishio, editors, Proc. 1st Int'l
Conf. on Deductive and Object-Oriented Databases, pages 370-395, Kyoto, December 1989. North-Holland.

[8] R. J. Brachman and J. G. Sehmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science,
9:171-216, 1985.

[9l V. Breazu-Tannen, P. Buneman, and A. Ohori. Smile type-checking in object-cdented databases. IEEE Data Engineering,
12(3):5-12, September 1989. Special Issue on Database Programming Languages.

[10] L. Cardelti and P. Wegner. On understanding types, data abstraction, and polymorphism. ACM Computing Surveys,
17(4):471-522, December 1985.

[11] M. J. C.~rey, D. J. DeWitt, and S. L. Vandenberg. A data model and query language for EXODUS. In Proc. ACM
SIGMOD Conf. on Management of Data, pages 413-423, Chicago, IL, May 1988. ACM, New York.

[12] U. Dayal. Queries and views in an object-oriented data model. In R. Hull, R. Morrison, and D. Stemple, editors, 2nd
Int'l Workshop on Database Programming Languages, pages 80-102, Oregon Coast, June 1989. Morgan Kaufmann,
San Mateo, Ca.

[13] U. Dayal, F. Manola, A. Buchmann, U. Chakravarthy, D. Goldhirsch, S. Heiler, J. Orenstein, and A. Rosenthal.
Simplifying complex objects: The PROBE approach to modelling and querying them. In H.-J. Schek and G. Schlageter,
editors, Proc. GI Conf. on Database Systems for Office, Engineering and Scientific Applications, pages 17-37, Darmstadt,
April 1987. Springer IFB 136, Heidelberg.

[14] O. Deux et al. The story of O~. IEEE Trans. on Knowledge and Data Engineering, 2(1):91-108, March 1990. Special
Issue on Prototype Systems.

[15] K.R. Dittrich, W. Go,hard, and P.C. Lockemann. DAMOKLES - the database system for the UNIBASE software
engineering environment. IEEE Database Engineering Bulletin, 10(1), March 1987.

[16] G. G-raefe and D. L DeWitt. The EXODUS optimizer generator. In Proc. ACM SIGMOD Conf. on Management of Data,
pages 160-172, San Francisco, May 1987. ACM, New York.

[17] G. Graefe and D. Maier. Query optimization in object-oriented database systems. In K. R. Dittrich, editor, Proc. Int.
Workshop on Object-Oriented Database Systems, pages 358-363, Bad Mflnster, September t988. Springer LNCS 334,
Heidelberg.

[18] L.M. Haas, J.C. Freytag, G.M. Lohman, and H. Pirabesh. Extensible query processing in StarbursL In Proc. ACM
SIGMOD Conf.. on Management of Data, pages 377-388, Portland, OR, May 1989. ACM, New York.

[19] S. Heiler and S.B. Zdonik. Views, data abstractions, and inheritance in the FUGUE data model. In K.R. Dittrich, editor,
Advances in Object-Oriented Database Systems, Heidelberg, September 1988. Springer LNCS 334.

[20] R. Hull and R. King. Semantic database modeling: Survey, applications, and research issues. ACM Computing Surveys,
19(3):201-260, September 1987.

[21] W. Kim. A model of queries for object-oriented databases. In Proc. Int. Conf. on Very Large Databases, pages 423-432,
Amsterdam, August 1989,

[22] W. Lamersdorf, G. Mttller, and J, W. Schmitt. Language support for office modelling. In Proc. Int. Conf. on Very Large
Databases, pages 280-288, Singapore, August 1984.

105

[23] P.-A. Larson, The data model and query language of LauRel. IEEE Database Engineering Bulletin, 11(3):23-30,
September 1988. Special Issue on Nested Relations.

[24] C. L6cluse and P. Richard. Modeling complex structures in object-oriented databases. In Proc. ACM SIGACT/SIGMOD
Syrup. on Principles of Database Systems, pages 360-368, Philadelp~, PA, March 1989. ACM, New York.

[25] G.M. Lohman. Grammar-like functional rules for representing query optimization alternatives. In Proc. ACM SIGMOD
Conf. on Management of Data, pages 18-27, Chicago, June 1988. ACM, New York.

[26] D. Maier. Why isn't there an object-oriented data model? Technical Report CS/E-89-002, Oregon Graduate Center,
Beavetton, OR, May 1989.

[27] B. Meyer. Object-Oriented Software Construction. International Series in Computer Science. Prentice Hall, Englewood
Cliffs, 1988.

[28] B. Mitschang, Extending the relational algebra to capture complex objects. In Proc. Int. Conf. on Very Large Databases,
pages 297-305, Amsterdam, August 1989.

[29] S.L. Osbom. Identity, equality, and query optimization. In K.R. I~ttrich, editor, Advances in Object-Oriented Database
Systems, pages 346-351, Heidelberg, September 1988. Springer LNCS 334.

[30] H.-B. Paul, H.-J. Scbek, M. H. Scholl, G. Weikum, and U. Deppiseh. Architecture and implementation of the Darmstadt
database kernel system. In Proc. ACM SIGMOD Conf. on Management of Data, San Francisco, 1987. ACM, New York.

[31] P. Pistor and R. Trannmiiller. A data base language for sets, lists, and tables. Information Systems, 11(4):323-336,
December 1986.

[32] M. A. Roth, H. F. Korth, and D. S. Batory. SQL/NF: A query language for -qNF relational databases. Information
Systems, 12(1):99-114, March 1987.

[33] H.4. Schek, H.-B. Paul, M.H. Scholl, and G. Weikum. The DASDBS project: Objectives, experiences and future
prospects. IEEE Trans. on Knowledge and Data Engineering, 2(1):25-43, March 1990. Special Issue on Prototype
Systems.

[34] H.4. Sehek and M. H. Scholl. The relational model with relation-valued attributes. Information Systems, 11(2):137-147,
June 1986.

[35] H.-J. Schek anti M. H. Scholl. The two roles of nested relations in the DASDBS project, tn S. Abiteboul, P. C. Fischer,
and H.-J. Schek, editors, Nested Relations and Complex Objects in Databases. Springer LNCS 361, Heidelberg, 1989.

[36] M. H. Scholl. Theoretical foundation of algebraic optimization utilizing unnormalized relations. In ICDT '86: Int. Conf.
on Database Theory, pages 380-396, Rome, Italy, September 1986. LNCS 243, Springer, Berlin, Heidelberg.

[37] M. H. Scholl. Towards a minimal set of operations for nested relations. In M. H. SchoU and H.-J. Sehek, editors,
tlandout Int. Workshop on Theory and Applications of Nested Relations and Complex Objects, Darmstadt, April 1987.
(Positicaa paper).

[38] M. H. Schotl. The Nested Relational Model - - Efficient Support for a Relational Database Interface. PhD thesis,
Deparunent of Computer Science, Technical University of Darmstadt, 1988. (in German).

[39] M.H. Scholl, H.-B. Paul, and H.-J. Schek. Supporting fiat relations by a nested relational kernel. In Proc. Int. Conf. on
Very Large Databases, pages 137-146, Brighton, September 1987. Morgan Kaufmann, Los Altos, Ca.

[40] M.H. Scholl, C. Laasch, and M. Tresch. Views in object-oriented databases, submitted for publication, July 1990.
[41] M.IL Scholl and H.-J. Schek. A synthesis of complex objects and object-orientation. In Proc. IFIP TC2 Conf. on Object

Oriented Databases - Analysis, Design & Construction (DS-4), Windermere, UK, July 1990. North-Holland. to appear.
[42] G.M. Shaw and S.B. Zdonik. An object-oriented query algebra. IEEE Data Engineering, 12(3):29-36, September 1989.

Special Issue on Database Programming Languages.
[43] M.R. Stouebraker and L.A. Rowe. The design of POSTGRES. In Proc. ACM SIGMOD Conf. on Management of Data,

pages 340-355, Washington, D.C., May 1986. ACM, New York.
[44] D.D. Stranbe and M.T. 0zsu. Query transformation rules for an object algebra. Technical Report TR 89-23, Dept. of

Computing Science, University of Alberta, Edmonton, Alberta, Canada, August 1989.
[45] D.C. Tsichritzis and O.M. Nierstrnsz. Fitting round objects into square databases. In S. Gjessing and K. Nygaard, editors,

Proc. European Conf. on Object-Oriented Programming, pages 283-299, Oslo, August 1988. LNCS 322, Springer
Verlag, Heidelberg.

[46] G. Wiederhold. Views, objects, and databases. IEEE Computer, December 1986.
[47] K. Wilkinson, P. LyngbaeK and W. Hasan. The Iris architecatre and implementation. IEEE Trans. on Knowledge and

Data Engineering, 2(1):63-75, March 1990. Special Issue on Prototype Systems.
[48] N. W'Lrth. ~ extensions. ACM Transactions on Programming Languages and Systems, 10(2):204-214, June 1988.

	Text4: Konstanzer Online-Publikations-System (KOPS)URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-178796
	Text5: Zuerst ersch. in : Proceedings / ICDT 90 : Third International Conference on Database Theory, Paris, France, December 12 - 14, 1990 / S. Abiteboul ... (eds.). INRIA. - Berlin ; Heidelberg [u.a.] : Springer, 1990. - S. 89-105. - (Lecture notes in computer science ; 470). - ISBN 3-540-53507-1DOI : 10.1007/3-540-53507-1_72

