Abstract
We investigate the watchman problem for rectilinear art galleries with an arbitrary number of holes. An efficient algorithm for the placement of the guards with running time O(n 3/2 log2 n log log n) is presented. Each guard has to watch an r-star of constant size.
Part of the research was done while the first author was visiting the Fachbereich Informatik, Universität des Saarlandes supported by a grant from DAAD. The second author was supported by a grant from DFG, SFB 124 VLSI-Entwurfsmethoden und Parallelität, B2.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Györi: “A short proof of the rectilinear art gallery theorem, SIAM J. Alg. Disc. Math. 7 (1986), 452–454.
F. Hoffmann: “On the rectilinear art gallery problem” Proc. ICALP'90, ed. M.Paterson, LNCS 443, pp. 717–728.
J. Kahn, M. Klawe, and D. Kleitman: “Traditional galleries require fewer watch-men”, SIAM Journal of Alg. Disc. Math. 4 (1983), 194–206.
K. Mehlhorn: “Data structures and algorithms” Vol. 3, Springer (1984)
J. O'Rourke: “Art gallery theorems and algorithms”, Oxford Univ. Press, New York, 1987.
J.R. Sack and G.T. Toussaint: “ Guard placement in rectilinear polygons” in “Computational Morphology”, edited by G.T. Toussaint, North-Holland 1988.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoffmann, F., Kaufmann, M. (1991). On the rectilinear art gallery problem algorithmic aspects. In: Möhring, R.H. (eds) Graph-Theoretic Concepts in Computer Science. WG 1990. Lecture Notes in Computer Science, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53832-1_46
Download citation
DOI: https://doi.org/10.1007/3-540-53832-1_46
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-53832-5
Online ISBN: 978-3-540-46310-8
eBook Packages: Springer Book Archive