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Abstract  
Local area networks (LANs) and everyday speech inspire a model of com- 

munication by unbuffered broadcast. Computation proceeds by a sequence of 
messages, each transmitted by one agent and received by zero or more others. 
Transmission is autonomous, but reception is not. Each message is received 
instantaneously by all agents except the transmitter, but is read only by those 
who were monitoring it at the time; others discard it. As in CCS, agents learn 
about the environment only through the messages they read. Programming 
such a system is hard because we have to ensure that messages are read. 

Testing resembles a viva-voce examination. Observation, restriction and 
hidden actions differ from their CCS counterparts, as does testing equivalence. 

We capture this model in a Calculus of Broadcasting Systems (CBS). We 
use transition systems with transmit, read and discard actions. Discards are 
self-loops, and only auxiliary. We have some results on strong bisimulation 
and testing, but much work remains to make CBS tractable. 

1 Pre l iminar ie s  

T h e  s e t t i n g  The natural means of communication in local area networks (LANs) has 

always been broadcast [Abr70] [MB76], not point-to-point message passing. But theories 

like CSP[Hoa85] and CCS[Hen88][MiI89] deal only with the latter, even though they de- 

veloped at the same time as LANs[Hoa78][Mi180]. Most books on distributed systems, 
too, [SK88] for example, treat  broadcast only as a hardware feature, not as a programming 
primitive. This mismatch would appear firstly to throw away a lot of the communica- 
tion bandwidth. That  it might also throw away simple solutions to some programming 
problems is suggested by the several algorithms that  use broadcast, and the great interest 

[CNL89] in implementations of (reliable) broadcasting. 
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Prev ious  semant ic  s tudies  of  b roadcas t  p rog ramming  include an informal study 
[Geh84], and denotational semantics for broadcasting [SNP87] [Sro88]. ESTEREL[BCGS6] 
is an imperative, synchronous, deterministic language with broadcast as a programming 
primitive. LINDA (Chap. 8 of [BA90] gives a description) is in effect a programming 
model using broadcast. ESTEREL has been given a behavioural semantics. I know of 
no theory of broadcast communication giving equivalences, etc., in the process calculus 
tradition. 

Buffered  and unbuffered  b roadcas t  Both [Bro88] and LINDA are buffered broadcast 
systems, like mass mailing: receivers can pick up messages any time after they have been 
broadcast. 

Unbuffered broadcast, the topic of this paper, is like radio or TV communication, or 
everyday speech in some situations. Each message has one transmitter, and zero or more 
receivers. Messages are received instantaneously by all receivers (i.e., by the antenna). 
The receiver can choose whether to read, but it is the transmitter that determines what 
is received and when. 

Broadcas t  in process  calculus Broadcast cannot be described unless actions are 
divided into transmissions and receptions. So the following "broadcast" operator due 
to Harel[Pnu85] would be better called "enforced multiway synchronisation'. Note the 
symmetric role played by all participants. 

E '? ,E  I F - ~ F  ~ 

a ! 

Harel's operator does capture two aspects of broadcast: the multiway synchronisation, 
and the fact that it is unreasonable for someone listening for a message to discard it when 
it appears. The negative premise ensures this does not happen. 

Overv iew of this p a p e r  Section 2 develops an informal model (PA) of broadcasting. 
Section 3 formalises PA into a calculus (CBS), and checks that the transition system has 
the properties required. Section 4 gives basic bisimulation results. Section 5 is a first look 
at testing and observational equivalence in CBS. It gives an example of the use of tests 
as specifications. Section 6 discusses some design issues, and contrasts CBS and CCS. 
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2 Informal models  of  broadcasting 

Concepts  f rom CCS We shall see systems as consisting of agents whose identity per- 
sists through time, and whose behaviour consists of discrete communication actions, trans- 
mission or reception of messages. Agents evolve from state to state via these actions. 
There is no formal distinction between agent and state. Agents can be built up out of 
other agents, so we do not distinguish between agents and systems. They learn about 
their environment only through communication. 

2.1 Local area networks (LANs) 

Messages consist of headers and contents (values). The header (name or signed) specifies 
who is to read the message. Each message is received by all systems connected to the 
network. Each receiver monitors certain headers. It examines each message and reads it 
if the header is one it is monitoring, otherwise it discards it. This is sometimes called 
multicast. A message may be read by any subset of the agents in a system. Usually, only 
one agent can broadcast at a time. This is called the single channel assumption. 

If two agents try to broadcast simultaneously over a LAN, a collision occurs, and no 
message is transmitted. There are well known algorithms to deal with collisions, typically 
using random delays before attempting to transmit again. We will not model this level 
of detail, but a level above it that already incorporates collision detection and resolution. 

A straightforward formalisation of LANs in a CCS like framework leads to CBS. The 
model below is more intuitive, and ensures that we are free of incidental details of existing 
LAN architectures. 

2.2 Speech as b r o a d c a s t  c o m m u n i c a t i o n  

Speech is very like unbuffered broadcast. It is autonomous; no one has to listen. Hearing 
is controlled; it happens only when someone speaks. Everybody within earshot hears 
everything that is said, but only those who wish to listen do so; others ignore what they 
hear. Even collisions, detection and resolution are features of conversation. Hearing is a 
silent activity, and cannot be directly observed by others. If the hearing was listening, it 
might be deduced from later utterances by the hearer. 

Everyday speech does not have a single channel, address groups, and anonymous 
participants. These features can be found in public address (PA) systems. 

The  public address  (PA) model  Imagine a PA system in a friendly airport where 
anyone can hand in a message. Messages can only be read out one by one, so there may 
be a priority system to choose among competing messages. Everyone monitors certain 
signals. Mr. K, catching BA412, listens for "BA412" and "Mr. K", as well as "bomb", 
say. He listens to messages with these names in them; the rest he hears and ignores. 
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Most signals specify several listeners: messages about BA412 are for all those travelling 
by it. "Would Mr. K please meet Ms. 0 at the desk" indicates both source and intended 
listener. 

3 F o r m a l i s i n g  t h e  m o d e l  

We now design CBS to mimic the behaviour of PA. We represent agents and changes of 
state by labelled transition systems and communicating agents as being in parallel with 
each other. CBS agents are very like those in CCS as far as dynamic operators go. The 
static operators differ because we use broadcast instead of handshaking. CBS describes 
automata communicating by "speech". 

We shall motivate the various rules, referring forward to the summary in Table 4. We 
write a(v)  for the message with name or signal a and value v. 

3.1 Actions and action prefixes 

The rules for action prefix are given in the first three rows of Table 4. Ignore the r rules 
for now. 

a (v) ! is the transmit prefix. The agent a (v) ! P can do only one action, a transmission. 

It transmits a (v) and becomes P. We write a (v) [ E ~(~):, E. 
a (x)? is the monitor prefix for the name a. The agent a (x)? Q (x) will read any 

message it receives with this name, and become Q (v). We w~te a (x) ? Q (x) °!~)?, O (v). 
0 has nothing to transmit or monitor. 

3.2  Discards 

a! P will only transmit, and discards all messages it receives, a (x) ? Q (x) monitors only 
a, and discards messages with any other name. 0 discards everything it receives. These 
rules are all in the discard column of Table 4. 

For any agent in PA, the set of signals it monitors is well defined. So its response to 
any message is also well defined: read it if the signal was monitored, discard it otherwise. 
Thus we expect a (v) ? and a (v) : to be mutually exclusive and exhaustive. Since agents 
do not change state as a result of discards, we could build CBS using the predicate "not 
monitoring a"; essentially the same calculus results. Discards reflect reality at a lower 
level than the predicate. 

In state diagrams, discards are self-loops. The : arcs can be deduced from the ?'s. 
If a state does not have an a? leading out from it, it has an a: self-loop. These discard 
self-loops are therefore never shown, only ? and ! actions are. We will not have a: P in 
the syntax. 
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3.3 Example:  a cat,  her owner,  and his friend 

MEIOSIS ~f meiosis? miao! MEIOSIS 

OWNER ~f meiosis! miao? ha? SUCC 

FRIEND ~ meiosis? miao? ha! 0 
d~f [ [ CATSYSTEM = MEIOSIS OWNER FRIEND 

Table 1: Cat, owner and friend 

In Table 1, Meiosis is a cat who answers to her name. Her owner can prove this by doing 
the test OWNER, where SUCC is a state denoting that the test has succeeded. The ha 
comes from the amused friend. 

Thus at the start the address group monitoring meiosis is MEIOSIS and FRIEND, 
while the address group miao is empty (at this stage none of our three protagonists is 

for this signal). We will define [ to allow listening 

MEIOSIS [ OWNER ,~eio~i~, miao! MEIOSIS [ miao? ha? SUCC 

CATSYSTEM ,~e~o~s~ miao! MEIOSIS [ miao? ha? SUCC [ miao? ha! 0 

Note that unary operators bind tighter than binary ones. 

3.4 Paral le l  composition 
B r o a d c a s t  We derive the second transition above, showing that both cat and friend 
hear the owner's meiosis, by using the communication rule in Table 2 twice. We have a 
binary parallel composition, rather than one of arbitrary arity, that simulates broadcast. 

We need the rule Join-read to make ] associative. 
I 

8.4.1 Discards  and the  parallel  combina to r  

In [Win84], the interleaving actions of CCS are expressed as synchronous actions by both 
components, but with one idling. This is exactly what we do in the interleaving rule, 
except that instead of a general idling we have a selective discard of the message named. 

A message can be read by one receiver and discarded by another (one application each 
of the communication and interleave rules). The read-discard rule ensures associativity 
here. 

Enforced  reading The ~(~)~ premise in the interleaving rule ensures that exactly 
one of the two rules, interleave or communicate, will apply, depending on whether the 
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E "("~',~ E'  F "(")?~F' 
Communication and commutative pair 

ElF  "(0'~ E' 1F' 

E "(")?,E' F .(.)7~FI 
Join-read 

ElF  "(')? , E' I F' 

-(.)! -(.): 
E , E  t F , F  

Interleave ElF  .(.): ) E ~ I F and commutative pair 

.(.)? a(~): 
E ~E t F , F  

Read-discard and commutative pair 
E F "(')?~E ~]F 

E "("): "('): "E  F ) F  
Join-discard 

ElF  " ( ' ) : ,ELF 

Table 2: Rules for parallel composition 

,(.)? 
receiver is monitoring the message. This premise and the negative premise /, are 
both equivalent to "not monitoring a ' .  

With negative premises, we would expect to be able to derive them first, independently 
of the positive transitions. (For an explanation of this "stratification" technique and other 
details see [Gro90]). So we expect to be able to derive discards independently of other 
transitions. 

Synehronisa t ion  a lgebra  The eight rules in Table 2 can be compressed into the single 
rule of Table 4, using a synchronisation algebra[Win84] of actions. This is the a~lvantage 
of discards over negative premises. 

Since there can only be one message at a time, we do not define multiplication between 
actions unless they refer to the same message. The product of two transmissions is always 
undefined. This ensures that every transmission can be registered. 

o is commutative and associative. The latter is easy to check because there is a ranking: 
a (v)! first, then a (v)? "and a (v): last. To multiply two actions is to pick the higher 
ranking of the two. [Win84] shows that if the synchronisation algebra is commutative and 

associative, so is 1" We went the other way. 

3 .5  S u m  a n d  r e c u r s i o n  

Recursion and sum are as in CCS for transmits and reads, but not for discards. 
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] 
E d-4f CH\{c} IF[C] ~/ "% 

F ~¢ f I F  \{c} [¢] 

C H ~f c! C [ h? H ~/" "N J. 
c!C h? H F 

Table 3: A small tower of Babel 

a? P + b! Q will say b unless preempted by an a from someone else. If it receives a c, 
both branches will discard the message. The usual sum rule here would drop one branch, 
thus changing state on a discard. Hence the new rule sum-discard. If only one branch 
can discard a message, the other can read it, so the familiar + rule applies. 

The recursion rule for discards is a special case of the usual one. It lets us derive 

recX. b? X a: ~ recX. b? X from b? X a: ~ b? X. The usual recursion rule would let us 
derive recX. b? X .~: ~ b? X,  which is irritating, since we would like to capture syntactically 
the fact that  discards never cause a change of state. 

We still have a problem with recX. X,  which can do neither a? nor a:. To ensure that 
discards and reads are duals, recursion for discards should take the largest fixed point 
instead of the least. If we restrict ourselves to guarded recursion, we can get away with 
the simpler rule in Table 4. 

3.6  Renaming and Scoping 

T h e  s t a t i c  s t r u c t u r e  of  s y s t e m s  $coping and renaming are static unary operators 
as in CCS. It would be reasonable to restrict a subsystem to only listening (or only 

transmitting) on some names, but we simply scope transmission and reading together. 
We take renaming to be a bijection. 

Table 3 shows a tree structured PA system in a tower of Babel. All nodes speak 
English except F ,  which speaks French. c and h are the topics of cricket and history, 
and ¢ a translation from French to English. ¢ ( f )  = h. The leaves are agents built from 
dynamic operators• All other nodes are labelled by scoping or renaming, and under each 
such are all the subsystems governed by it, in parallel. The root could be labelled by just 

• Note that  prefixes bind tighter than renaming or scoping. 

The subsystem CH\{c}  does not expect anyone else to be interested in cricket, but 

h is of interest to all subagents of E.  So the c! request is sent only up to \{c}, which 

broadcasts c! to all its subnodes. The ¢ (jr!) = hi request goes upto E,  getting translated 
as it passes up through the renaming node. Messages broadcast down through such a 
node are simultaneously interpreted. 
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R u l e s  A c! by C H \ { e }  is hidden outside the node. Being autonomous, transmission 
cannot be restricted away. Instead, it is translated into a silent action, r!, which no 
agent can read. Thus the rules hide-transmit and expr-discard in Table 4. As with 
internal actions in CCS, we need only one r .  The notation r! emphasises that  this is a 
transmission, so autonomous, but hidden. It is not quite the CCS r .  

The hide-discard rule says that  CH\{c}  ignores any c it receives. 
In other cases, the usual CCS restrict rule applies. Thus P \ { a }  has all a?-paths from 

the state P pruned (replaced by a: self-loops), and all a!-arcs renamed to r!. 

3.7 Syntax and semantics of CBS 

Let 3 be the set of signals or message names, and 7- ~ $ be a special name. Let V be 
the set of values passed between agents. Let Sv = S x V. Then the set of messages 
is Sv U {r}, and Act = (Sv x {!, ? }) U {T! } is the set of transmissions and reads. The 
elements of Act are called reM actions. The arcs of synchronisation trees are labelled by 
real actions. If there is no danger of confusion, we say "actions" to mean real actions. 
The set of all actions, both real ones and discards, is Act: = Act U (Sv  x {: }) U {r: }. 

Let a, b, c , . . .  range over S; u, v over V; # over Act; and g over Act". 
The function sign: Act: --* {!, ?,  : } says whether an action is a transmission, a read, 

or a discard. The function message: Act: --~ Sv  U {T} throws away the sign of an action 
and returns the message. The function name: Sv  U {r} --* S U {T} throws away the 
value carried by a message. We abuse notation and apply name also to actions, writing 
name (u) to mean name (message (u) ). 

The syntax of CBS expressions is as follows. Recursion must be guarded. 

Here E is an expression, X a variable, N" C_ S a set of message names, and x a variable 
internal to an agent. We represent by E the set of expressions, and by P the set of agents, 
i.e., the closed expressions of CBS. Note that  a: P is not part of the syntax, nor is T? P. 

Renamings ¢ : S  V {r} ~ S U {r} are bijections over S and ¢ ( r )  = r .  Renaming 
extends naturally to actions. It cannot change the sign of an action. 

Since we do not have infinite sums, we cannot encode value passing in the pure calculus 
unless V is finite. 

The operational rules for CBS are given together with the synchronisation algebra of 
actions in Table 4. Note that  some of the rules are applicable in more than one of the 
columns; this is indicated by broken vertical rules between the columns. The parallel, 
restrict, and rename rules apply to all three kinds of action; the first two sum rules and 
the first recursion rule to both transmission and read. 
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~,°'=: ~::-- ~ I ° I "'~ I °(°)'" I °(')'~ I" + ~ I" J~ I ~ I't~ I '°c~." 
signals a, b E ,9 values u, v E V Recursion must be guarded 

S v = S  x V  p E A c t = ( S v  X { t ,?})U{r[}  . ,u l ,  v 2 E A c t ' = ( S v × { ! , ? , : } ) O { r [ , r :  

Operator 

0 

Expr 

Transmit 

I" 

Monitor 

Sum 

Transmit Read Discard 
o(~): 

0 , 0  

E-Z.~E 

r! E ~: E r] E *(~): , t i E  

a (v).l E 4 0 '  E a (v) [ E b(.):, a(v)!E 

a (z)  ? E (z)  ,, 5 ~): , E ( , )  

E~---.E ' E---~E' 

E + F ~....~ E , F + E ".-~ E I 
I 

a#b 
a(x)?E b(~):,a(x)?E 

E 4~): E F *(v):,F 

E + F  "(v)', E + F 

Parallel 

o a(.)! a(.)? a(.): o 

a(v)! undefined a(v)! a(v)! r! 

a(.)? a(.)! a(v)? a(.)? ~: 

a(v): a(v)! a(v)? a(v): 

E ~ ' ,E '  F ~ , F '  

E l F  ~,°~ , E' J F' 
I 

r! 
undefined 

r! 

"l o "2 defined 

T: 
r! ul o "2 undefined 

if 
, :  message / . , t  ¢ 

message t v~ ) 

Scope 
:Restrict', 

(rode) 
E a(v).t, E t 

E\Af v E'\Af 

E - %  E' 

E\Af _L, E'\Az 

a~.,V 

name (.) ¢ X 

E\Af ,  ?(v):, E\Af 
a e.,V" 

Rename 
E--% E' 

Z[4 ~(~), E'[¢] 
I 

for I E[recX. E/X] 
i 

Let Y stand for reeX. E and U 

Rec 
U ~ E '  
Y --~ E' 

! 

Table 4: Syntax and semantics of CBS 

V ttl| g 

y a: t y 
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3 . 8  P r o p e r t i e s  o f  t h e  t r a n s i t i o n  s y s t e m  

We show that discards can be derived first, without using any other transitions. This 
confirms their role as negative premises. Then we show that discards leave the state 
syntactically unchanged, and lastly that discards and reads are duals. ---- is syntactic 
equality. 

P r o p o s i t i o n  3.1 Discards can be derived independently of ocher actions. 
P r o o f :  Directly from the operational rules. Some rules for discards have no 

premises. The sum, restrict, rename and rec rules yield the same action in the 
conclusion as they use in the premise. For the parallel rule, a (v): can result 
only if both components do a (v) :. ! 

L e m m a  3.2 I rE  F then E ~ F. 
P r o o f :  Directly from the discard rules. ! 

L e m m a  3.3 Discards and reads are mutually exclusive: E ~(~)=~ E iff E /~, and 

E - - ~ .  (We already have E ~=, E.) 
P r o o f :  By induction on the structure of E. 

"r? 
r first. If E is 0 or has an action prefix as the outermost operator E /~ follows 
directly. Sum, restrict, rename and  rec cannot produce a r? unless a simpler 
expression does so. Hiding and parallel cannot produce a r? at all. 

Now for audible messages. 
Base case: 0 discards all messages and reads none. 

Step: Suppose F ?(~): ~ F iff F ~(vj/~- for all expressions F simpler than E. 

If E has an action prefix outermost, the step is immediate. 

If E is of the form F -k F I, any message a (v) it discards is discarded by both 
F and F t, which cannot therefore read a (v), by hypothesis. So E -b F cannot 
read a (v). If E reads a (v), one of F ,  F must do so, therefore one of them 
cannot discard it, therefore E cannot discard it. Similar reasoning holds for E 

of the form F ] F'; for E to read a (v), at least one of F, F' must do so. 

If E is F \Af ,  we have two cases. If a ~ Af, E can read or discard messages 
exactly when F does. If a E Af, then E can only discard messages of name a; 
it cannot read them. 

Since renaming does not change the sign of actions, F[¢] satisfies the hypothesis 
if F does. Lastly, if E is recX. F ,  E can read or discard messages exactly when 
a simpler agent does. ! 

In the rest of this paper, we deal mostly with the pure calculus with no value passing. 
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4 Strong Bis imulat ion  

Def in i t ion  4.1 A binary relation ~ C P x P is a strong bisimulation if, whenever P7~Q 
and v 6 Act:, 

(i) f f  P - ~  P' then, for some Q', Q _L~ Q, and pLT~Q', 

(ii) i f  Q _Z~ Q, then, for some P', P ~ P' and P'TCQ' a 

For any 7~ C_ P × P we may define 5 ~- (T~) to be the set of pairs (P, Q) satisfying clauses 
(i) and (ii). Clearly, T~ is a strong bisimulation if n C_ ~-(T~). 

P r o p o s i t i o n  4.2 There exists a largest strong bisimulation given by 

~--  U{7~ [ 7"~ C_ ~'(7~)}. ~ is the maximum fixed point of .7:, and is an equivalence 

relation, a 

If P ~ Q, we say P and Q are strongly bisimilar. 

P r o p o s i t i o n  4.3 P ~ Q iff for a/1 v 6 Act:, 

(i) f f  P __L, p, then, for some Q', Q --% Q' and P' ~ Q', 

Oi) if  Q --~ Q' then, for some P', P v ~ p, and P' .~ Q' ! 

As long as we consider all actions including discards, the above standard theory is 
directly applicable. But we can reduce our work. The following lemma tells us that  when 
proving strong bisimutation, we do not need to consider discards. 

L e m m a  4.4 ffT~ _C P x P is a binary retation such that whenever PT~Q and # 6 Act, 

(i) if P ~ , P' then, for some Q', Q ~ > Q' and P'~Q',  

(ii) if Q ~ Q' then, for some P', P ~-~ P' and P'~Q'  
then R is a strong bisimulation. 

Proof." Suppose PT~Q and 7£ satisfies (i) and (ii). Now if P ~('): , P,  we 
? a(v)? 

know by Lemma 3.3 that P ~(')fi. Then we know that Q /7. Otherwise P 
would have had to have been able to read a (v), since reads are covered by the 

conditions on ~ .  By another application of Lemma 3.3, we have Q a(v): . . . .  ) Q0 

The target states after the matching discards a (v) : are already in the relation. 
Similarly for the other direction. Thus 7~ is a strong bisimulation. I 

Discards can be left out of state diagrams since they can be deduced from reads; now 
we know we can ignore all derivations where the last step is a discard. Discards axe only 
needed in derivations when they contribute to a read or a transmit. 

P r o p o s i t i o n  4.5 .-, is a congruence for CBS, i.e., P ..~ Q implies C[P] ..~ C[Q] for any 
CBS context C. 
Proof: By ax]apting the proof in [Mi189]. ! 
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There are also general theorems from which we can conclude this proposition. The 
rules in CBS are both in the well-founded pure ty[t format of [VG89], and in the GSOS 
format of [BIM88]. These papers prove that for calculi whose rules are in their respective 
formats, ,,, is a congruence. We can now quotient P by ,-*. 

Before we give a few bisimulation laws, we define sorts. 

Defini t ion 4.6 For any £, C S, i f  the reM actions of P and all its derivatives have their 
names in £ U {r} then we say P has sort £, or £ is a sort of P, and write P: £. ! 

This is a modification of the standard definition in two ways. The restriction to real 
actions has- been motivated informally, and will soon be further justified. Note that if 
sorting were to deal with discards as well, every agent would have the sort S. 

We use names of actions rather than the a~tions themselves because we scope reads 
and transmits together. This produces a coarser sorting than in CCS, and makes the 
definition of the syntactic sort of an expression (by induction on its structure) slightly 
simpler than the standard one. We omit the details. 

Propos i t ion  4.7 St rong bis inmlat ion laws 

1. (~) ( P / ~ ,  +, O) is an abe~ian monoid. 
( b ) P + P ~ P  

2. (P / ~, l, o) an  bolian monoid 

3. (a) P \ H \ M  ~ P \ : ~ \ H  ~ P\~V u M 
(b) (~ P) V ¢  ~ a! (PV¢)  if ~ ¢ :¢, ~! p o~he~wise. 
(a? P)\A/" ,,, a? (P\A/') ira q~ A/', 0 otherwise. 
(r! P) \A/" ~ r! (PkA/') 
(c) (P + Q) \Af ~ P \ H  + QkA/" 
(d) P \ H  ~ P if ~ ( P) n :¢ = 0 

(b) (P + Q)[~] ~ p[~] + Q[~] 

(d) (P[@ [~] ~ P[~ o ~] 

5. e[~] \~v ~ ( P \ [ ~ ] - i x ) [ ~ ]  
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5 Testing 

Strong bisimulation is too strong to be an observational equivalence. For example, a? 0 
b? 0, and yet we do not expect to tell such agents apart, since they say nothing. In this 
section, we take a first look at testing equivalence, using the ideas of [dNH84]. 

In the informal model, tests are just conversations between a tester and an agent, like 
viva-voce examinations held in public. The agent passes if the tester is satisfied by the 
conversation, a? 0 and b? 0 cannot make their presence felt. They can only satisfy testers 
who do not require the agent to speak. 

Before we can define testing, we need to formalise conversation as computation. First 
we extend transitions to strings of actions. If s is the sequence ul, u2, ..., u~, we write 

p .A_, p,  if there are agents Po = P,  PI, P~, ..., P,, = P '  such that  Pi ~+1 ~ Pi+l for 

0 < i <: n. We write P- -~  to mean 3P  s such that P --~ pr. 

5.1 Autonomy and computation 

What makes transmission autonomous and reception controlled? Formally, nothing dis- 
tinguishes the three kinds of transition so far, so MEIOSIS could do a meiosis? all by 
herself! The definition below rules this out. An isolated system can only transmit. 

Def in i t ion  5.1 Suppose S is a sequence of actions and P-£-}. Then s is a computation 
of P i f  every element of s is a transmission. ! 

So the only computations of the C A T S Y S T E M  are meiosis!, meiosis! miao! and 
meiosis! miao! ha!. MEIOSIS will not change state by herself. 

The reads and discards of a subsystem are interesting only if they contribute to a 
transmission by the whole (isolated) system. 

5.2 Testing equivalence 

We add a special signal succ to the signal set S. Let SUCC de=f succ! O. Testers are now 
just CBS agents. We test an agent by putting it in parallel with a tester, and observing the 
computations of this composite system. A successful computation is one that  includes 
succ. Note that  we require the succ to appear in a finite number of steps. If s is a 
successful computation, every starting subsequence s ~ of s is said to have a successful 
extension. 

Def in i t ion  5.2 We say that an agent P may pass a test T i f  P [ T has ~ successful 
I 

P must pass T if  every computation s of P [ T is either successful or has computation. a 

successful extension. 
We abbreviate "must pass" by must and "may pass" by may. P must T implies P 

T. We say P fails T if not P may T, i.e., if P [ T has no successful computation. m a y  



° 

2. 
3. 

P Q 

a!O ¢~ b!O 

a?0  -- b?0 
a? c! 0 ;~ b? c! 0 

4. a?O+c!O~b?O+c!O 

5. a l ( b I O + c ! O ) - ~ a ! b l O + a ! c ! O  

6. a!(b?O + c!O) ~ a!b?O+ a!c!O 
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Tester T P 's  result Q's result 

a? SUCC must fails 

a! c ?. SUCC must fails 

b! c? SUCC fails must 

a! c? SUCC fails may 

a? c? SUCC must may 

Table 5: Some testing results 

Thus in the CATSYSTEM, the subsystem MEIOSIS [ FRIEND must OWNER. We 

could also say OWNER must MEIOSIS[ FRIEND, or that  MEIOSIS must OWNER[ 

FRIEND, or that  CATSYSTEM must O, and so on. It is only convention who is the 
"process" and who the tester. 

We define agents P and Q to be equivalent, P ~_ Q, if no test can tell them apart. 

Def in i t i on  5.3 
P "%=u Q i fVT,  P mayT  iffQ mayT.  
P "~,~= Q ffVT, P must T if fQ must T. 
P ~ Q iff P ~ , ~  Q and P -~ .~ t  Q. 

P r o p o s i t i o n  5.4 _~ is substitutive wrt . If P ~_ Q, then F I R  ~ Q [ R. 

Proof :  With any tester T, P and Q can be thought of as in the presence of a 

tester T [ R. This tester cannot tell them apart, since P _~ Q. But the success 

 ,re i,, which thiok  it  ostin _ [R =d CiR. is, =d 

Q [ R cannot be told apart. | 

To prove agents unequal, we have to find a test to distinguish them. There are some 
examples in Table 5. (4) shows that  ~ is not respected by + and so ~- is not a congruence. 

To prove agents equal is hard; we have to show that no test can tell them apart. But 
we can informally see the equalities in the table. Agents that  never transmit (2) cannot 
be told apart by any test, since they never affect the tester. 

In (5), our experience with CCS leads us to expect that P must a? b? SUCC, while Q 
may a? b? SUCC. Indeed Q can fail this test by choosing the a! c] branch, but so can PI 
Whatever any tester does, all it can tell about these agents is that  they will do al b! or 
a! c!, deciding internally which. 
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(s .  st) do=f ez? T~ (a, s.) + e~? T~ (s~, a) + t3 T~ (p, s~) + tr? T~ (s .  p) + hi! Hi (s .  s~) 
if not sz = s~ = p, 
Hi (st, s~) d~f et? Hi (a, s~) 5r e~? Hi (st, a) + tt? Hi (p, sr) + tT? Hi (st,p) 

Hi (p, p) d£ et? Hi (a, p) + e~? Hi (p, a) + el! Si (p, p) 
zi(st,~r) do=f ti!Ti(~,s~) 

SYS def 4 = 1-i,=0 T~ (p,p) led 
where ¢i renames subscripts I to i - 1 mod 5, and r to i + 1 mod 5. 

if not sl = sr = a, 
Si,j (si, sj) d_cf ei? Sid (a, sj) + ej? Sij  (si, a) + ti? Si,j (p, sj) + tj? Si,j (si, p) 

Sij(a,a) d¢j SUCC 

Table 6: Conversing philosophers 

P r o p o s i t i o n  5.5 P .... Q implies P "~ Q. 
Proof :  P --~ Q implies P I T  ,.~ Q IT for any tester T. The rest follows easily. 

Thus the strong bisimulation laws previously listed hold also for -~. 

5 . 3  E x a m p l e :  T o w a r d s  c o n v e r s i n g  p h i l o s o p h e r s  

The dining philosophers problem usually concerns philosophers who eat, think, and have 
lively discussions with forks. We use a more abstract version [CM88]. There axe five 
philosophers around a table. Each has three states, thinking, hungry and eating, and 
cycles between these states. A transition from hungry to eating is permitted only if 
neighbours are not eating; so neighbours do not eat simultaneously. 

Table 6 shows how to model this in CBS. The ith philosopher has states Ti, H; and 
El, with moves ti!, hi!, el! leading to them. The neighbours use the moves el, er, tt and 
tr. Their states are a (for "active", i.e., eating) and p (for "passive", i.e., thinking or 
hungry). 

Si,j is a tester that  checks whether philosophers i and j ever eat simultaneously. 
The requirement that neighbours not eat simultaneously is formulated as the test S -- 

4 I'[i=0 Si,i+l moa s (p,p), which we want SYS to fail 
Write Ri (s,, sr) for the subsystem T2 (s,, s~) [ $2,3 (s,, st) [ Ta (s,, sT). Then R, (a, a) is 

the only state of this form that has a succ!. We can check that there is no move to this 
state from any of the three states Ri (a,p), t~ (p,p) or Ri(p,a). It is now easy to see 
by induction that  Ri (p,p) only leads to one of these tlu'ee states. So no computation of 
Ri (p, p) can be successful. 

Now consider SYS[S. The Si do not transmit anything except for the final succ. Their 

presence does not affect the Pi, and each Si is affected only by "its" pair of philosophers. 
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None of the Si therefore get to SUCC, and S Y S  fails S. 
Conclusions: By formulating requirements as tests, we can do some work even with- 

out proving equivalence. CBS seems more like a shared-state system than a distributed 
system. The broadcast is really useful; each ei above was received by four other agents, 
two testers and two philosophers. 

5.4 Silent actions and testing 

1. T!a?b!O~a?b!O 

2. T!b!O"~ b!O 
a! 7"! b! 0 "~ a! b! 0 
a? T! b!O _ a?b!O 

3. "r!P + P"~ P 

Table 7: Some testing results with r! 

(1) in Table 7 shows that r! can cause timing problems. Let T ~t a! b? SUCC. Then 
a? b! 0 must T, but r! a? b! 0 may T. Note that c! a? b! 0 could fail the test for exactly the 
same reason; only the fact that the r is silent could mislead us to expect equivalence. 

However, all is not lost, as (2) shows. Any tester will get a b from both agents. It 
cannot detect the r. Nor can the tester do a timeout; to do this, we need to be able to 
do a clock tick that can be multiplied with any other transmission without afffecting the 
latter. There is no such action. 

The corollaries to (2) are absorption laws. The latter says that internal computation 
between a service request a and provision b does not affect the user. 

6 D i s c u s s i o n  

6.1  A u t o n o m y  

An autonomous action should absorb no information. Receptions absorb information, 
and so are controllable: delayed till the information is available. The autonomy of trans- 
missions does not follow from the transition system itself, but is imposed from outside by 
the definition 5.1 of computation. However, this definition is not arbitrary. 

Scoping Computation should be defined so that scoping restricts controllable actions 
and hides autonomous ones. 

Rank ing  For any action t~, a! ov is either undefined or equal to a!. We say a! is perfect, or 
has the highest ranking. An agent doing a perfect action is not affected by synchronisation, 
and absorbs no information. Perfect actions are natural choices for autonomy. 
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Suppose we defined reads to be autonomous instead of transmits. Then a? Q could 
do an a? in any context, thus absorbing no information. The perfection of a! means 
a! P cannot absorb any either. Thus there would be no communication at all. A related 
problem is that a! P would be unable to act in any context. Perfect actions offer more 
progress. Speech takes hearing along with it, not the other way around. 

Audib i l i ty  r! and a! are both autonomous, but a! is audible, while r! is silent. CBS 
captures this by the fact that r! can only synchronise with discards, which never absorb 
information. 

6 . 2  D i f f e r e n c e s  b e t w e e n  t h e  C B S  a n d  C C S  m o d e l s  

r vs. r! Some properties of actions in CBS: 

internal actions r! / 

result of communication ] 
perfect (highest ranking) / audible actions a! 
autonomous 
cannot be restricted, only hidden 
silent } 
indirectly observable controlled actions a? 
abstracted from in ~- 

In a CCS handshake, the two-way information flow means both actions are audible as 
well as controlled. Both are low ranking, r is high ranking, and therefore autonomous. 
It is the linchpin in CCS. It has all the properties in the list, while no other action has 
any of them! CBS shows that some decoupling of these properties is possible; how much 
further we can go (in other calculi) is an interesting question. 

Some differences between the calculi are summarised in Table 8. 

6 . 3  S y n c h r o n y  o r  a s y n c h r o n y ?  

[BKT84] classify models of concurrency into synchronous or asynchronous along two di- 
mensions, cooperation and communication. CCS has asynchronous cooperation and syn- 
chronous communication. CBS is hard to classify. 

C o o p e r a t i o n  Synchronous cooperation is typified by SCCS, MEIJE and ASSCS: every 
agent has to act at every step. Discards give CBS a spurious synchronous appearance, 
since all agents have to "act" together on every step. However, CBS seems asynchronous 
at a higher level, when we ignore discards. I would classify cooperation in CBS as asyn- 
chronous, since transmissions cannot be combined, and because we cannot program a 
timeout in CBS. But since T! P ~ P, CBS is still "more synchronous" than CCS! 
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CCS CBS 
Communication Inaudible to others Audible to others 
Observation 
Input=Output? ' 
Silent actions 

Abstraction 

T m practice 

Interleaving 

Affects observed agent 
In pure CCS 
Only one, r. Can be in- 
directly detected. 

From r.  Because it is 
internal? autonomous? 
silent? 
Central. Any interesting 
computation involves r. 
Because an observer can 
hear only one thing at a 
time. 

Observecl,,,,agent unaffected 
Not even in pure CBS 
a?, b?, c:,  and T! are different 
silent actions, a?, b? and r! can 
be indirectlY detected, but not c: 
From silent actions. We have 
an abstracting equivalence even 
without r!; a? 0 ___ b? 0 
Much less important. Meaningful 
examples without r!. 
Because of the single channel. 
Same order for atl observers, a 
meaningless remark in CCS. 

Table 8: Some differences between CCS and CBS 

C o m m u n i c a t i o n  In synchronous communication, actions communicate only if per- 
formed simultaneously. CBS would thus appear to use synchronous communication. 
But [SNP87] argue that broadcast communication is asynchronous since the sender of 
a message does not wait for the receiver. CBS (everyday speech!) thus uses synchronous 
communication by one criterion, and asynchronous by another. 

CBS makes more distinctions than truly asynchronous calculi. Those in [JJH90] and 
[JUg0] have the results a! b] P _~ b! a! P and a? b? P _ b? a? P, neither of which hold in 
CBS. 

6 . 4  A l t e r n a t i v e  d e s i g n  c h o i c e s  

W i t h o u t  recept ions  We could have just one sort of transition and rules of the form 

Q ~!: Q, 

Such rules mix a semantic requirement on one component with a syntactic one on the 
other. More importantly, they do not reflect the experience of the listener. Hearing is 
silent, but that is no reason to deny that it is an activity. 

No discards  Agents would be always prepared to listen, and explicitly discard uninter- 
esting messages. This is more natural with buffered broadcast[Bro88], where uninteresting 
buffers need never be looked at. 
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More  paral lel ism? In this paper, even a r! in a subsystem prevents any other com- 
munication in the whole system. We can relax this, but not to the extent of hi orI = h!. 
Then h? H\{c} could miss a h! as follows. 

clC C:;C h ? H  C:~h?H 

c!clh?M  ',clhT  c e {c} 

r! or! = r! is the extent to which we could allow more parallelism, allowing subsystems 

to proceed independently. The law (P ] Q) \Af .~ (P\Af) (Q\Af) if £ (P ) f l£  (Q)VIAf = 13 

would then no longer hold, for (a!0 ] b!0) \{a,b} would still need two steps to move to 

while a[ 0\{a, b}lb! 0\{a, b} could do so in one. The law would hold for --, however. 0, 

6 . 5  R e l a t e d  v a r i a t i o n s  o n  C C S  a n d  C S P  

That input and output are different affects us perhaps more than the multiple receivers 
for each communication. Most of the theory of process calculi abstracts from input and 
output to uninterpreted actions. It will therefore not be directly applicable to CBS. 

Even in handshake communication, value-passing causally distinguishes sender from 
hearer. So theories of asynchronous communication [Jon90] [JJH90] [JU90] are of interest, 
as are theories of value-passing [HI89], and [Hen90] which adds value-passing to CSP. This 
last has a notion of broadcasting, with a! on? = a!. The intuition is very different from 
ours, however, because transmitters can synchronise, but listeners may not. 

7 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

This is a working paper. Much needs to be done before any useful work can be done with 
CBS: some proof method for testing equivalence, as well as work on a testing congruence, 
for example. All process calculus can be applied to CBS, even if only to raise questions. 

We have achieved an intuitively appealing model of communication, based on everyday 
speech. We have captured this in a calculus. The transition system seems well behaved. 
CBS has cast light on issues such as autonomy and asynchrony, and so on CCS as well. An 
intuitively reasonable testing equivalence has been defined, which shows some interesting 
results. Tests are just agents, and can be used as specifications. 
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