
The Background of the DASDBS & COSMOS Projects 1

H.-J. Sehek, M.H. Scholl, G. Weikum

ETH Zurich, Department of Computer Science
Information Systems - Databases

CH-8092 Zurich, Switzerland
e-maih <lastname>@inf. ethz. oh

Abstract

This survey describes the conceptual framework behind the DASDBS and COSMOS projects. COS-
MOS is the current research program of the database research group at ETH Zurich. These activities
are a natural follow-on of DASDBS, the Darmstadt Database System project at the Technical Univer-
sity of Darmstadt. While most emphasis in DASDBS was on a database kernel system, the project at
ETH focuses on the cooperation between a database system and its environment. The environment
consists of clients asking for database service and other systems offering service to the database sys-
tem. The research objective is the exploration of the architecture of a COoperative System for the
Management of ObjectS (COSMOS). In short, we are on the way "from the kernel to the cosmos".

1. D A S D B S - A Family o f Database Systems

1.1 Overall Architecture of DASDBS

DASDBS is designed as a family of database systems as shown in Figure 1. A storage management
kernel serves as the lowest common denominator of the requirements of the various application
classes, and a family ofapplication-orientedfrontends provides semantically richer functions on top of
the kernel.

• The DASDBS kernel is a storage manager that provides only basic data management functions.
In particular, data independence, access optimization, and integrity checking are not included.
A simple but efficient query processing strategy and storage structures for NF 2 relations are im-
plemented in the kernel. Thus, the kernel is already a low-level platform for building high-per-
formance applications that would otherwise bypass a full-fledged DBMS. In this sense, the ker-
nel can also be viewed as an extended file system.

• AnApplication(--oriented) Object Manager (AOM) together with the kernel implements a full-
fledged DBMS tailored to an individual application class, such as business transactions, geo-
graphical information systems, office automation, or expert system support. The services pro-
vided in an AOM include an end-user and application programmer interface, query
optimization, and access path management. For business applications based on fiat relations,
the AOM corresponds to the RDS of System R. An application using a DASDBS system will
typically interface to its AOM, not to the kernel. The data models offered by distinct AOMs may
be different from each other and from the NF 2 model of the kernel.

1.2 Nested Relations as a Data Model for Storage Structures

NF 2 relations as a formal description of storage structures were an important concept in the DASDBS
project. In this subsection we describe this role of nested relations.

1. This surveyis an excerpt from [SPSWg0] and [sswg0].

http://nbn-resolving.de/urn:nbn:de:bsz:352-201360

378

~ A Bu~R(~S ~ 7 ~ GO0 ~ 7 , ~ r C~ffic6 ~'7 ~'~ AI ' ~ 7

t _ • , ,,, | I I s
; I oIat,ooe, I I S atie, l lo°°° e°tll I .oo,.t,on-
' I AOM I I AOM I I AOM I I AOM I , ~ speelfio , - , ° ,, , : " '
t i [[1 , j , j Frontends (AOMs)

~ . ,"" Kernel
. , Stable Memory Mgr. ,

Operating System

Fig.l: DASDBS Architecture

Physical Database Design and Impacts on Optimization

We were strongly convinced that a new system should not only have a more powerful data model at its
interface to the applications, but also a clear and well understood interface to its storage manager. The
main motivation for using NF 2 relations as the storage-level "data model" was on optimization: If
both the conceptual and the internal model can be rigorously described in a formal framework, it is
possible to describe the mapping between them algebraically. This allows us to apply and generalize

techniques of algebraic query optimization towards the physical level. As indexes can also be de-
scribed by NF 2 structures, we hoped to include access path selection in the framework of algebraic
optimization. The NF2model has been extended to cope with addresses (stored object identifiers) and
address materialization was included in order to support direct access to stored objects given their
addresses. It was shown in [DPS86,DPSW86,SPS87] that a large variety of known storage structures
for physical database design is encompassed by NF 2 data structures. Thus, using the NF 2 model at the
kernel level was supposed to simplify the physical database design and the related problem of query
transformation and optimization.

The idea was to broaden the scope of algebraic query optimization, since now the physical database
layout is taken into account in algebraic transformations. We concentrated on the case of a relational
frontend supported by the kernel, that is, we are given the choice to hierarchically materialize fre-
quent joins on the internal level. We developed a theory for algebraic query optimization, that is, a set
of transformation rules. These rules enable the query optimizer to eliminate unnecessary joins

[Scho86].

Functionality of the DASDBS Kernel

The concept of using a formal model as the interface of the storage subsystem also guided the choice
of the operational part of the DASDBS kernel interface. The idea was to provide only basic functions
that do not incur much overhead, yet are powerful enough so that semantically richer application-ori-
ented functions could be implemented with only a few kernel calls. What we had in mind was a storage
system similar to the Research Storage System (RSS) of System R. Unlike RSS, however, we wanted to
support efficient access to complex objects, and we strove for more flexibility with regard to index and
transaction management. The solution that we finally came up with was to implement a subset of the
nested relational algebra within the kernel, and to exclude index management from the kernel.

379

The notion of "single pass" queries was introduced in [Sche85,Scho86] to encompass all expressions of
the nested algebra that can be computed in a single hierarchical scan over the data (linear-time, con-
stant-space processible). A detailed analysis of single pass queries is contained in [Scho88]. Roughly,
we can use nested selections and nested projections, but not in all of their possible combinations. Set
comparisons have to be excluded from selections unless one of the operands is a constant. Any select-
project-join query involving only materialized joins can be mapped to one single pass expression
[Scho86].

An efficient evaluation strategy for single pass queries is implemented in the DASDBS kernel
[PSSWD87,Pau88]. The main objective here was to detect non-qualifying tuples as soon as possible.
Due to the nesting of conditions deep in the hierarchy, this was not a trivial task. The formal definition
of the operator semantics and their algebraic properties, such as commutativity, helped in designing
the optimal evaluation strategy.

1.3 Key Concepts and Overall Design of the DASDBS Kernel

Because of the kernel's central role in the architecture of the DASDBS family, it was clear from the
beginning that performance was very crucial. Our key concepts for achieving high performance have
been the following:

• complex-object support,

• set-orientation,

• multi-level transaction management,

• kernel extensibility.

By complex-object support we mean that the kernel should have knowledge about the structural as-
pects of complex objects, to allow physical clustering of related objects on disk. Because structurally
related objects are often accessed together, structure-driven clustering can indeed improve disk I/O
efficiency significantly. Complex objects directly serve as the physical storage unit, rather than being
decomposed into smaller units. In an application-oriented frontend, we can therefore achieve any
desired schema-driven clustering scheme by choosing the appropriate nested relational schema as the
kernel representation of complex objects [SPS87]. Such a storage scheme may, of course, be quite
different from the structures seen at the interface of the frontend.

Set-orientation was conceived as a complement to the concept of complex objects. As complex objects
are constituted by sets of subobjects, we anticipated a potential bottleneck in the repeated invocation
of certain services while iterating over such a set. To avoid this bottleneck, most functions in the
DASDBS kernel deal with sets of objects at a time. The performance advantages that we expected
were optimized data transfers, especially between disk and memory [Wei89], and a minimum amount
of crossing interfaces during the processing of a set of objects.

Advanced applications posed new challenges also in the area of transaction management. We wanted
to exploit the semantics of applications, so as to cope well with long-lived transactions that access
complex objects. Moreover, the architecture of the DASDBS family suggested that transaction man-
agement should be provided already in the kernel, but should be extensible in the application-ori-
ented layers. By carefully studying details and tricks of conventional high-performance transaction
managers, we finally came up with a general framework that is known as multi-level transaction man-
agement or layered transactions [Wei86,Wei87a,Wei87b,BSW88,WHBM90].

380

Extensibility considerations became important in the DASDBS project when we were confronted with
real-life spatial data from geosciences [DSW90]. These applications use a variety of different kinds of
lines, regions, or surfaces, and, orthogonal to it, many different discrete representations of these con-
tinuous geometric objects exist. Supporting only basic primitives such as points, point sets, or polygon
lines was not considered to be a satisfactory solution, for we wanted to avoid that every user of our
system had to convert his favorite data structure and his geometric representation into ours in order to
get database service for his application. Rather the system should take any geometric representation
and store it into the database without (much) conversion and interpretation. Vice versa, upon retrieval
from the database, data should be represented in the application format. We called this requirement
the support for externally defined types (EDTs) [WSSH88], to emphasize the combination of the type
systems of the application's implementation language and the database kernel. For the DBMS, an
EDT is regarded as an abstract data type, only known by its functions. It is implemented outside the
DBMS with the type.system of the programming language used in the application layer. Thus, the
DBMS has just the necessary knowledge, and the application retains its favorite data structure.

2. C O S M O S - A Cooperat ive DBMS Framework

Much research in databases in the past years was devoted to areas like logic and databases, complex
objects and the object-oriented approach, and their support by new system architectures. The com-
mon goal has been to increase the usability of database systems for applications beyond "classical"
business applications. While we will see much influence of this research in future database systems, we
observe that the cooperation between a database system and the "rest of the world" is often cumber-
some and has mostly been disregarded. More research is needed to make database systems more
cooperative for users (application programmers and data base administrators), for other system ser-
vices (operating system, file services, programming languages, application tools, other database sys-
tems), and for the database system itself in that it takes better advantage of foreign services.

A database system today requires that all data are converted and loaded into database data structures.
No coexistence with other data repositories is supported, and no interoperability with other services is
provided. Research in extensible databases is an important area but only a first step towards the adap-
tation of a database system to an application environment.

The principles of teamwork, of cooperation by delegation, and of autonomy and responsibility have
been proven advantageous in human enterprises. It is a question to what extent these principles are a
reasonable basis for the cooperation of computer subsystems as well [ACM 1,Sch90]. In our project we
want to find out how much autonomy can be left to a subsystem, depending on the service that this
subsystem offers. We want to see how we can gradually integrate heterogeneous subsystems and how
we can gradually turn a federated cooperation into a tight one. Within this overall framework, the goal
of making database systems more cooperative includes a variety of requirements:

• Coexistence of Multiple Data Representations:
Cooperation between the database system and other data handlers such as CIM tools requires
that any kind of application object (a vehicle, a turbo engine, a document, a folder, a map, a bank
account, ...) should be supported in any representation a user wants. Multiple representations,
views, and exchange formats must be provided for different applications, programming lan-
guages, and heterogeneous system environments.

• Transaction Model:
Cooperation between multiple subsystems requires a cooperative transaction model. Isolation,

381

atomicity, and durability should be properties that can be relaxed for each individual transaction
rather than being hard-wired in the transaction paradigm.

• Schema Evolution:

Long-term cooperation between the database system and the application developer requires
support for dynamic schema evolution. At any point of time, the schema of the database must be
changeable or refineable, i.e., it must be possible to add new applications and new data or new
representations. Cooperation between applications needing the old schema and those working
with the refined one is necessary. The database system is responsible for providing the appropri-
ate views and/or keeping several representations consistent.

• Adaptive Performance Tuning:

Performance tuning is an important issue in all database systems, but even more crucial in an
environment where applications with multiple data representations and multiple access de-
mands are to be supported. Better cooperation between the database system and the DBA is
crucially needed, ultimately aiming at the automation of performance-tuning decisions. For ex-
ample, storage structures should be automatically reorganized, and self-adaptation of the physi-
cal schema is a further feature of the envisioned cooperative system.

• Cooperation with the Operating System:

Cooperation is also needed between the database system and the operating system. For exam-
ple, intra-transaction parallelism should be automatically exploited, taking advantage of multi-
processor systems and operating-system features.

The COSMOS Subprojects

In the sequel, we give short descriptions of the four subprojects that are already established within
COSMOS. Figure 2 gives the global picture of cooperating services together with a rough approxima-
tion of what ends of the COSMOS the subprojects belong to. In COCOON, the main efforts are de-
voted to the development of a core object model and the related optimization issues; COMFORT is
oriented towards automating performance tuning and better cooperation between the database sys-
tem and the operating system; in the COAX subproject, we analyze cooperative and application-spe-
cific extensible databases with geographical and CIM applications in mind; finally, HYDRA tries to
evaluate and generalize the extensibility concepts developed in the geo area in the context of hyper-
media documents in a creative office environment.

2.1 C O C O O N - A Core Objec t -Or iented D B M S

COCOON is a recursive acronym standing for COcoon ... Complex-Object-Orientation based on
Nested relations. The overall objective of COCOON is to investigate the principal foundations and
architecture of a cooperative object-oriented database system. Within COCOON, our particular fo-
cus is on:

• Data Model Evolution:

Our approach towards an OODB model follows an evolutionary path from relations via nested
relations (or complex objects) to an object model that is perceived as a synthesis of concepts
from complex object models, object-orientation, nested query languages, and recursion. CO-
COON is considered a core object model: we include only a limited number of concepts, aiming
at an extensible model that facilitates inclusion of new (application-specific) concepts, such as
new base types (geometry, text, graphics, ...) or type constructors (array, list, ...). "Evolutionary"

382

• . ~, T f a h g a o t i o i ' i M 6 d 6 1 S

Fig. 2: The COSMOS Project and its Subprojects

means that the concepts and some of the formal foundations of the object model have been car-
ried over from the predecessor models; that is, rather than re-inventing known concepts, we try
to integrate and extend them, if necessary. Thus, cooperation between COCOON and relational
DBMSs, for instance, is facilitated by "talking the same language". Not only do the data models
evolve, so do the applications. Support for dynamic schema modifications is another cooperative
aspect of COCOON.

• Optimization:
Identifying good storage structures for a given object schema is the "data-definition-time" part
of the overall optimization problem. We exploit nested relations as the internal storage struc-
tures to implement composite objects. This provides a variety of schema-driven clustering op-
tions at the object level. (In addition, the COMFORT subproject investigates clustering and de-
clustering at the page and file level.) The "query-time" part of the optimization problem consists
of mapping the object-oriented queries to efficient query execution plans that take into account
storage clusters, object indices, replicated data, and streamed, buffered, or parallel low-level
query operators. Here again we investigate the use of existing technology for the description of
access plans in terms of nested relational algebra operators.

Foundations of the COCOON Object Model

As the COCOON model is an evolution from nested relations [SS90a,SS90b,SS90c], the principles of
an object-oriented query algebra could be drawn from the nested relational algebra. However, there
are subtle differences: For example, a distinction between object-preserving and object-generating
semantics of query operators is necessary [SS90c,HS91]; query results need to be classified in the ob-
ject lattice; the update language has to integrate generic and type-specific operations; updatability of
views has proven much easier than in relational databases [SLT90]. Statically type-checking the query
language while providing enough flexibility, such as meta-level querying or even mixed data- and
meta-level operations, are another concern.

383

Monitoring Database Integrity during Updates

In this subproject, we investigate efficient update processing. We focus on the updatability of views,
updates in the presence of multiple representations of objects, and integrity monitoring, particularly
the need for dynamic re-classification of modified objects: Rather simple update operations may
cause quite a large number of objects to be re-classified in the class lattice, based upon class predi-
cates. This generally undecidable problem should be alleviated by accounting for the semantics of
update operations.

Support for Dynamic Schema Evolution

A basic precondition for providing schema modifications is that the meta-schema of the objectbase
may be represented in the same way as the other objects. As a consequence, we can apply the CO-
COON operations to the meta-level objects too. Schema changes are then just updates on the meta
level. To provide efficient support for evolving schemas, however, means to avoid having to transform
the objects affected by the schema change (propagation to the instance level). We are developing a
framework for schema modifications including views (screening), lazy (deferred) propagation, and
eager (immediate) propagation [Tre91]. Particularly interesting in the context of COSMOS are the
possibilities and limitations of gradually changing from flat relational to full-fledged object schemas.
The latter aspect reflects the intent to support a smooth migration path, one of the ways in which CO-
COON is cooperative.

Query Optimization and Execution Strategies

In this subproject, we investigate the query processing issues, that is, developing reasonable execution
strategies for complex queries, such as joins between hierarchies [RRS90], depending on the nesting
levels of join attributes or cost estimation for various techniques of using a nested relational storage
manager. Depending on the choice of physical storage structures, the optimizer to be developed will
try to identify the optimal execution strategy, including alternatives such as set-oriented vs. streamed
vs. parallel mode of combining operators. Ultimately, we try to evaluate quantitatively the possible
performance gains from using a nested relational storage server as opposed to a fiat relational one to
implement an OODBMS.

Supporting Recursive Queries

We can define derived functions on objects in the COCOON querylanguage, COOL These functions
may be defined recursively. Additionally, COOL will be extended by some built-in constructs for ex-
pressing recursion. Our previous work in this area focused on efficient algorithms for special classes Of
recursive problems [Jia90a, Jia90b,Jia91]. For example, efficient graph algorithms for different types
of transitive closure queries have been investigated. Now we have to integrate them into the system,
and particularly into the optimizer.

2.2 COMFORT -- Compile-time Performance Tuning

COMFORT stands forCompile-time Perf.Q_rmance Tuning. The overall objective of COMFORT is to
automate tuning decisions for transaction processing in database systems. Our basic approach to-
wards this objective is to determine most tuning parameters and run-time strategies on the basis of a
compile-time analysis of the transaction programs and statistical information about the data and the
workload. Compared to currently available database systems, COMFORT is supposed to

• extend the range of tuning opportunities, e.g., by introducing transaction-type-specific system
parameters,

384

• eliminate, to a large extent, the need for a human tuning expert like a DBA,

• provide guidelines for building a database system that adapts itself to the workload without in-
curring much overhead, and,

• ultimately, remove (the need for) manual tuning tricks from (source-level) transaction programs
and make application development easier.

Database system tuning is usually considered hard. COMFORT is supposed to develop heuristic
guidelines and rules of thumb for "intelligent" tuning decisions, and to automate the application of
such rules in a system environment. This goal entails both classical DBMS performance issues and a
better cooperation between the DBMS and the operating system, so as to take more advantage of
advanced hardware technology and OS capabilities. Particular focus will be on issues that are expected
to become performance-limiting factors with a wider use of advanced technologies. Currently, we
concentrate on the following issues (see [WHMZ90] for details):

OPERA: The Case for Open Nested Transactions

Based on the framework of multi-level transaction management, we are investigating workload-cus-
tomized concurrency control and recovery protocols that exploit semantics yet do not incur much
overhead. In addition, we are investigating how one can benefit from multi-level transactions in a
federated DBMS environment with both global and local transactions [SWS91,WS91] (see also the
COEXIST project below).

RAPIDS: Resource and Processor Management with Intelligent DBMS Scheduling

We want to develop an approach toward "intelligent" resource management, which coordinates the
policies for load control, CPU scheduling, and memory management with the transaction manager
[WS91]. In particular, we have been investigating automatic load control that prevents a DBMS from
thrashing caused by excessive lock conflicts or excessive buffer steals.

FIVE: Intelligent Data Allocation, Migration, and Reorganization

To optimize data access in a storage hierarchy consisting of large memory, disk arrays, and optical
disks, we are studying "intelligent" strategies for data allocation and reorganization. In particular, we
have developed heuristic algorithms for dynamic file creations and file expansions in disk arrays
[WZS90], aiming at I/O parallelism to minimize the reponse time of file accesses and at balancing the
overall I/O load across all disks.

PLENT~ Parallelism in DBMS

We are investigating how parallel computers can be exploited in order to reduce transaction response
time, using multi-level transactions with parallel subtransactions as the execution model. In particu-
lar, we are investigating the performance impact of parallel algorithms for query- and update-proces-
sing in a multi-user environment [HW91].

2.3 COAX - Cooperation between Applications and Extensible DBMSs

COAX stands for COoperation between ~pplications and eXtensible database systems. Research on
the spectrum from loose to tight cooperation with different programming languages and with different
application tools is the main objective of this subproject. Geographical information systems (GIS) and
databases for computer integrated manufactoring (CIM) are used as example application areas. The
extensibility concepts studied in DASDBS are generalized in the following aspects:

385

• general structure mapping and conversion code generation,

• access methods for foreign objects, and

• foreign-object subsystem integration.

X-INFO: Integration of Foreign Objects by Extensibility

A foreign object in the simplest case is an ADT for the DBMS the realization of which is implemented
in a foreign type system, outside the DBMS (i.e., as an EDT). The connection to the DBMS (i.e.,
persistence) is established by the IN and OUT functions which produce legal instances of some type in
the DBMS and vice versa. The code of these functions is generated automatically in order to avoid
serious malfunctions at this critical subsystem interface. In addition to a foreign realization, also a
DBMS realization is useful in order to utilize generic DBMS functions better. This may be a "pure"
DBMS realization in rare cases, or more frequently one that uses a more primitive EDT in combina-
tion with data model structures.

In the ideal case, it must be possible that several realizations of an object can co-exist, so that the one
with the most convenient or most efficient realization can be selected to perform an operation. Note
that several realizations also occur if several programming languages must be supported and coopera-
tion is needed between these and the database. Therefore, the impedance mismatch is attacked by
studying different representations of objects and the transformations from one represention to anoth-
er. Program code must be generated automatically whenever possible, based on type definitions and
high-level specifications of the user.

PROMISE: Processing Methods on Index and Storage Structures for External Objects

As foreign objects bring their own predicates to be used in query selection expressions and their own
operations for deriving new objects from one or several input objects, index support for these foreign
objects seems difficult in the most general case. Solutions proposed so far include generic indexes and
index attachments [WSSH88,WWH88,DSW90]. We try to generalize these even further by utilizing
the observation that any known index can be regarded as 1) a set of precomputed queries and 2) a
special storage structure in order to quickly retrieve a precomputed query. It is obvious that (1) is
independent of the application. If the DBMS is able to perform foreign operations in queries, it also
can precompute queries. The main problem is (2), i.e., the storage organization of the precomputed
queries, and related to it, the selection of the sort of queries that should be precomputed. We hope
that concepts such as dominant predicates, disjoint or overlapping partitions, hierarchical decomposi-
tions, partial indexes, and object approximations help in finding a higher level of abstraction allowing
the implementation of more generic access mechanism code (see also the DASH project below).

COEXIST: Cooperation with External Information Systems

This subproject investigates the spectrum from loose to tight cooperation. While the other two sub-
projects aim at a rather tight cooperation, in this subproject we want to know what the minimal re-
quirements are to facilitate the most primitive cooperation and how much autonomy must be given up
when a federated cooperation is gradually turned into a tighter one. Stand-alone data dictionaries and
directories facilitate the loosest kind of cooperation in that they contain information on data struc-
tures and programs for application programmers. We study how this passive role of a directory can be
turned into a more active one. For example, multiple subsystems could be automatically controlled
and supervised by the directory, and the directory could be automatically kept consistent by the sub-

386

systems. Cooperative transaction management, versions and version-derivation book-keeping, and
workflow monitoring must be looked at (see also the OPERA project above).

2.4 HYDRA -- Database Service for Hypermedia Documents

HYDRA stands for HYpermedia in Databases: Requirements and 2ffchitecture. In this subproject,
we investigate the cooperation between database systems and hypermedia document servers as front-
ends. Office applications serve as example applications to study the needs of such front-ends. There-
fore, the HYDRA project complements investigations in the COAX project with its orientation to-
wards geographical and engineering information systems (GIS, CIM). The HYDRA project is also
part of a larger, joint project with the information retrieval and document management group at ETH.

HOMER: Hypermedia Documents in Object Models - Extensibility & Representation

Given the many proposals for document models we want to investigate how they fit with the proposals
.for semantic data models or object oriented concepts in databases. The following list of questions are
addressed: How can nonlinear documents (i.e., graph structures) be supported by the COCOON ob-
ject model? How does an "unstructured" document collection evolve into a generalization lattice sup-
ported by object models? What external data types and operations must be added in order to reflect
the multimedia aspect? How are multiple representations of documents kept consistent. Are there
specific requirements in the document area that are different from similar requirements in the engi-
neering field? How do extensibility approaches fit the object model in order to support flexible inte-
gration of new types of information representation?

DASH: Document Access Structures for Hypermedia

In order to support similarity searches and (non-Boolean) queries for relevant documents including
relevance feedback mechanisms, different access techniques have already been developed in the field
of textual databases. Some are based on inversion of keywords or descriptors, some use these for a
special encoding of a document, often called a document signature [Dep89]. These techniques aim at
an approximation of a document by its main features. The objective of DASH is to store these struc-
tures inside the DBS without knowing the details of methods that assign descriptors (often called auto-
matic indexing) or extract features suitable for object approximations. We will not try to invent new
automatic indexing or feature extraction techniques, because these are application-specific. We rath-
er investigate what generic components can be developed for an efficient storage organization of des-
criptors or features.

R e f e r e n c e s

[ACM1] ACM Computing Surveys, Vol. 22, No. 3, 1991, Special Issue on Heterogeneous Databases
~SW88] Beeri, C., Schek, H.-J., and Weikum, G.,Multi-Level Transaction Management, TheoreticalArt orPrac-

tical Need?, 1st Int. Conf. on Extending Database Technology, Venice, 1988, Springer, LNCS 303
[Dep89] Deppisch, U., Signatures in Database Systems, Ph.D. thesis, Technical University of Darmstadt, 1989 (in

German).
[DSW90] Drrge, G., Schek, H.-J., Wolf, A., Extensibility in DASDBS (in German), Informatik Forschung und

Entwicklung, Vol. 5, 1990
[HS91] Heuer, A., Scholl, M.H., Foundations of Object-Oriented Query Languages, Proc. GI Conf. on Database

Systems for Office, Engineering, and Scientific Applications (BTW), Kaiserslautern, March 1991, Springer
IFB

[HW91] Hasse, C., Weikum, G., Multi-Level Transaction Management for Complex Objects: Implementation,
Performance, Parallelism, Technical Report, ETH Zurich, 1991

387

[Jia90a] Jiang, B.,A Suitable Algorithm for Computing Partial Transitive Closures in Databases, IEEE Data Engi-
neering Conf., Los Angeles, 1990

[Jia90b] Jiang, B., Design, Analysis, and Evaluation of Algorithms for Computing Partial Transitive Closures in
Databases, Technical Report 132, Dept. of Computer Science, ETH Zurich, 1990

[Jia91] Jian& B., Traversing Graphs in a Paging Environment - BFS or DFS?, Information Processing Letters,
Vol. 37, No. 3, February 1991

[MW91] M6nkeberg, A., Weikum, G., Conflict-Driven Load Control for the Avoidance of Data--Contention
Thrashing, Proc. IEEE Data Engineering Conf., Kobe, April 1991

[Pau88] Paul, H.-B., The DASDBS Database Kernel System for Standard and Non-standard Applications- Archi-
tecture, Implementation, Applications (in German), Ph.D. thesis, Technical University of Darmstadt, 1988

[PSSWD87] Paul, H.-B., Sehek, H.-J., Seholl, M., Weikum, G., Deppisch, U., Architecture and Implementa-
tion of the Darmstadt Database Kernel System, ACM SIGMOD 1987

[Seh90] Scheuermann, P., et al., Report of the Workshop on Heterogeneous Database Systems, Northwestern Uni-
versity, Evanston, December 1989, ACM SIGMOD Record, 1990

[Sche85] Schek, H.-J., Towards a Basic Relational NF 2 Algebra Processor, Int. Con[on Foundations of Data
Organization, 1985

[Scho86] Scholl, M.H., Theoretical Foundation of Algebraic Optimization Utilizing Unnormalized Relations, 1st
Int. Conf. on Database Theory, Springer LNCS 243, 1986

[Scho88] Scholl, M.H., The Nested Relational Model - Efficient Support for a Relational Database Interface (in
German), Ph.D. Thesis, Technical University of Darmstadt, 1988

[SLT90] Scholl, M.H., Laasch, C., Tresch, M., Updatable Views in Object-Oriented Databases, Technical Report
150, ETH Zurich, 1990

[SPS87] Scholl, M.H., Paul, H.-B., Schek, H.-J., Supporting Flat Relations by a Nested Relational Kernel, Int.
Conf. on Very Large Data Bases, Brighton, 1987

[SPSW90] Schek, H.-J., Paul, H.-B., Scholl, M.H., Weikum, G., The DASDBS Project: Objectives, Experiences,
and Future Prospects, IEEE Transactions on Knowledge and Data Engineering Vol.2 No.l, 1990

[SS86] Schek, H.-J., Scholl, M.H., The Relational Model with Relation-Valued Attributes, Information Systems
Vol.ll No.2, 1986

[SS89] Schek, H.-J., Scholl, M.H., The Two Roles of Nested Relations in the DASDBSProject, in: S. Abiteboul, R
C. Fischer, and H.-J. Sehek (eds.), Nested Relations and Complex Objects in Databases, Springer LNCS
361, 1989.

[SS90a] Scholl, M.H., Schek, H.-J., A Synthesis of Complex Objects and Object-Orientation, Proc. IFIP TC 2
Conf. on Object-Oriented Databases, Windermere, 1990, North-Holland

[SS90b] Schek, H.-J., Scholl, M.H., Evolution of Data Models, in A. Blaser (ed.): Database Systems for the 90's,
Springer LNCS 466, 1990

[SS90c] Scholl, M.H., Schek, H.-J., A Relational Object Model, Proc. 3rd Int. Conf. on Database Theory, Paris,
1990, Springer LNCS 470

[SSW90] Schek, H.-J., Scholl, M.H., Weikum, G., From the KERNEL to the COSMOS- The Database Research
Group at ETH Zurich, Technical Report 136, Dept. of Computer Science, ETH Zurich, 1990

[SW86] Schek, H.-J., Waterfeld, W., A Database Kernel System for Geoscientific Applications, Syrup. on Spatial
Data Handling, 1986

[SW91] Schek, H.-J., Weikum, G., Extens/b///~, Cooperation, and Federation of Database Systems, Proc. GI Conf.
on Database Systems for Office, Engineering, and Scientific Applications (BTW), Kaiserslautern, March
1991, Springer IFB (in German)

[SWS91] Schek, H.-J., Weikum, G., Schaad, W., A Multi-Level Transaction Approach to Federated D B MS Trans-
action Management, Proe. 1st Int'l Workshop on Intreoperability in Multidatabase Systems, Kyoto, 1991

[Tre91] Tresch, M., A Framework for Dynamic Schema Evolution in COCOON, Draft, ETH Zurich, 1991
[Wei86] Weikum, G., A Theoretical Foundation of Multi-Level Concurrency Control, ACM PODS 1986

388

[Wei87a] Weikum, G., Enhancing Concurrency in Layered Systems, 2rid Int. Workshop on High Performance
Transaction Systems, 1987, Springer LNCS 359

[Wei87b] Weikum, G., Principles and Realization Strategies of Multi-Level Transaction Management, Technical
Report, TH Darmstadt, 1987, accepted for ACM TODS

[Wei89] Weikum, G., Set-Oriented DiskAccess to Large Complex Objects, IEEE Data Engineering Conf., 1989
[WHBM90] Weikum, G., Hasse, C., Broessler, R, Muth, E, Multi-Level Recovery, ACM PODS 1990

[WHMZ90] Weikum, G., Hasse, C., M6nkeberg, A., Zabback, P., The COMFORTProject: A Comfortable Wayto
Better Performance, Technical Report 137, Dept. of Computer Science, ETH Zurich, 1990

[WS91] Weikum, G., Sehek, H.-J., Multi-Level Transactions and Open Nested Transactions, in IEEE Data Engi-
neering Bulletin, Vol. 14, No. 1, March 1991

[WSSH88] Wilms, RE, Schwarz, P.M., Schek, H.-J., Haas, L.M., Incorporating Data Types in an ExtensibleData-
base Architecture, 3rd Int. Conf. on Data and Knowledge Bases, Jerusalem, 1988

[Wo189] Wolf, A., The DASDBS Geo-Kerneh Concepts, Experiences, and the Second Step, Int. Symp. on Design
and Implementation of Large Spatial Databases, Santa Barbara, 1989, Springer LNCS 409

[WWH88] Waterfeld, W., Wolf, A., Horn, D., How to Make SpatialAccess Methods Extensible, 3rd Int. Symp. on
Spatial Data Handling, 1988

[WZS90] Weikum, G., Zabbaek, R, Scheuermann, P., Dynamic File Allocation in DiskArrays, Technical Report
147, Dept. of Computer Science, ETH Zurich, 1990

	Text1: Zuerst ersch. in : MFDBS 91 : 3rd Symposium on Mathematical Fundamentals of Database and Knowledge Base Systems, Rostock, Germany, May 6 - 9, 1991; proceedings / B. Thalheim ... (eds.). - Berlin; Heidelberg [u.a.] : Springer, 1991. - S. 377-388. - (Lecture notes in computer science ; 495). - ISBN 3-540-54009-1
	Text2: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-201360

