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Abstract

Acceptance Automata, a particular case of labelled transition systems
whose semantics is given in terms of the Failures Model, are presented. It
is shown how parallel composition and hiding can be defined for themin a
way consistent with the TCSP model. A notion of canonical automaton is
presented. In the finite case it can be effectively computed and used for
proving implementations correct. Finally, the TCSP concept of refinement
is characterized in the acceptance automata domain.

1 Introduction

In a previous paper, see [PA 89], a technique for the specification, refinement and proof of
correctness of parallel systems, was presented. The Failures Model [BHR 84][Hoa 85] was used
as the mathematical model for Communicating Processes. Process behaviours were defined by
means of a partial abstract type with certain characteristics. One of the advantages of this
technique was that deductive methods developed in the general framework of algebraic
specifications, could be used for proving properties concerning the specification of a process.

We call a refinement the decomposition of a process into a set of lower level processes,
possibly abstracting the synchronization events. Proving that a refinement exhibits the same
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behaviour as the original process was considerably more difficult: a few and simple syntactic
transformations were applied to the refinement. Such transformations were based upon the
algebraic laws satisfied by the mathematical model. A similar verification technique is used in
[HoJi 85]. Since then the style of specification has evolved, and we feel that it is powerful and
general enough to be useful in most problems. Nevertheless, proving refinements correct by
manipulation of algebraic expressions does not seem practical.

In what follows the algebra of Acceptance Automata is introduced. It provides another formal
framework for communicating processes, while preserving the semantics defined by the Failures
Model. Acceptance automata could be used in the definition of processes. However, their main
interest is that they are amenable for mechanical manipulation and that verification techniques
similar to bisimulations [Par 81] can be used. As it will be shown, there exists most often, a
family of acceptance automata defining the same process. Nevertheless it will always be possible
to choose a canonical and unique representative of a given family. When considering finite-state
systems, the canonical form might be effectively computed to mechanically prove a refinement
correct.

The idea of using transition systems to define processes in the Failures Model goes back to
[Jos 88]. There are some differences with the approach taken here. In order to model non-
determinism, there it was necessary to use several transitions, with the same original state and
labelling event, and with different final states. This amounts to say that there is a family of
transition systems defining the same process. The relationships among those transition systems
are not clear enough. Moreover, none of them is marked as the canonical form, and it doesn't
seem possible doing such a choice. Finally, in [Jos 88] a number of simple rules are provided,
by means of which a process can be shown to be a refinement of another. Those rules are
sufficient conditions but not general enough.

Another related approach is that of Acceptance Trees as described in [Hen 85][Hen 88]. The
differences are mainly two: on the one hand we are interested in the parallel composition and
hiding. These operations are not defined for Acceptance trees. On the other hand, we remain in
the Failures Model, restricting ourselves to non-divergent processes.

Finally, a similar approach has been described in [AGS 90], where the so-called CSP
automata are defined. They are similar to our acceptance automata, the main difference being the
use of a refusals mapping in their definition. A notion of canonical form is also given. There are
some minor differences: the work is restricted to finite-state systems and parallel composition and
hiding are not defined. Besides that, the concept of refinement is not defined and different
automata defining the same process are not compared.

2. Acceptance Automata

Definition 2.1 An Acceptance Automaton is given by a tuple (A, X, 1, M, =) where:
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* Ais a non-empty alphabet of events,

+ X is the set of states

* 1€ I, is the initial state

e M c X x P(A), is a menu relation, that will be denoted: m € M(0)

¢ — ¢ I X AXx X, is a transition relation, that will be denoted: 6 —, ¢’
M and — shall be defined so that:
1) M is total in its domain, i.e.: Vo € Z,I3me P(A). m € M(0)

2) Voe Z,me M(0),ee A.ee m=>30c'e £.6 5,0

3) Vo,0'e Z,ee A.oc >, ,0'=(Ime M(0).c€ m)

The role of the menu relation is to represent the internal non-determinism in the system,
whilst the states represent the past of the system. We want to remark in this point, that the initial
state is unique. Moreover, the transition systems defined in [Jos 88] can be translated into
acceptance automata, provided that their initial states are unique. In particular, it is possible to
define an acceptance automaton with several transitions, with the same original state and labelling
event, and with different final states. The reason for which we allow this situation will be made
clear later in the paper. Nevertheless, we will say in advance that acceptance automata used in the
definition of processes do not exhibit this characteristic.

Two examples of acceptance automata follow: the first one is a finite state system, while the
second one is a system with an infinite number of states:

A={ab,c}

X ={0, 1)

1=0

M = {(0, {a}), (1, {b}), (1, {c]D)}
- ={(0,a, 1), (1, b, 0), (1, c, 0)}

A = {in, out}
=N
1=0

M= {(@, {in})lie N} U {(, {in, out}) lie Nt}
—={(@,in,i+1)lie N}uU {G,out,i-1)lie N*}

The following definitions introduce the concepts of traces and reachable states in this context.
After that we will define the failures semantics of an acceptance automaton. In what follows we

assume an acceptance automaton ¢ = (A, X, 1, M, —).

Definition 2.2 The reflexive-transitive closure — < X X A* x I of the transition relation is
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defined as the smallest relation satisfying:

VoeZ.o—-_0

*
V 6,,6,,6€ L,te A",ee A.0; 5, 0AC >, 0, =0 —,0,

Definition 2.3 traces(Q) is the set defined by: traces(Q) = {te A*. o€ Z.1 -, 0}

Definition 2.4 The reachability set of & after the trace t is the set defined by:

Ut ={oce 1> 0}

Definition 2.5 The reachability set of U is the set defined by:
reach(U) = U ¢ yacescer )Wt

Definition 2.6 The set of next possible events, for every state 6 € Z, is the set defined by:

next(c) = {ee A.Jc'€ .6 —>_ o'}

Definition 2.7 The failures semantics of ¢ is given by a relation F (A) c A* x P(A) defined
as the smallest relation satisfying:

1) Vte traces (U), c € QA/t, m e M(0). (t, -m) e F(Q)
2) Vte traces (A), F;,F, e P(A). (,F)e FAAF,cF, = (,F)e F(Q)

Lemma 2.8 Given an acceptance automaton & = (A, X, 1, M, —), the triple (A, F(Q), 9)
defines a non-divergent process in the failures model. In what follows, we simply use & (Q) to
denote this process.

Proof We only have to show that the following conditions hold [Hoa 85]:

(<>, D) e F(Q)

this is trivial from condition 1 in definition 2.7

6, X)e F(UA)=>G6,0) e F(Q)

this comes from the fact that traces(Q) is prefix closed, hence if (st, X) € F(Q) then
s € traces (U) and so (s, @) e F(Q)

6, Y)e F@AXcY=2(,X)e F(Q)

this is trivial from condition 2 in definition 2.7,

5, X)e FCYAxe AD(s, XU x))e F(Q)v(sx,D)e F(&)

this comes from the fact that, s being a trace of , there exists state ¢ € C/s, and from
the fact that, (s, X) being a failure, there exists a menu m € M(0) such that Xg —m.
Hence, from definition 2.7, if x € m, then (s, X U {x}) € F(Q). Otherwise, if x € m

then from condition 2 in definition 2.1 there exists a transition ¢ —, C' 50 sx is a trace
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of & and (sx, @) e F(Q). 0

This lemma implies that divergent processes can not be modelled by means of acceptance
automata. We have taken this decission because we find no practical interest in specifying
processes which are allowed to diverge.

The following definition introduces a notion of equivalence between acceptance automata
given in semantic terms. Later on, this concept will be characterized in terms closely related to
bisimulations defined between transition systems.

Definition 2.9 Given acceptance automata ¢, and €, they are said to be observationally
equivalent, denoted by @, = C,, if F(U,) = F(U,), i.e. if they have the same failures
semantics.

See in the following example two equivalent acceptance automata:

A = {tick)
z = {"onll}
1 = llon"

M = {("on", {tick})}
— = {("on", tick, "on")}

A = {tick}
=N
1=0

M = ((j, {tick})lie N}
— = {(, tick, i+1) lie N}

Up to this moment, the basic notions related with acceptance automata have been established.
We proceed now to define the basic operations over acceptance automata. These operations shall
correspond to the parallel composition and hiding defined in the Failures Model. None of these
operators is defined for acceptance trees defined in [Hen 85], [Hen 88]. Whilst the parallel
composition of acceptance trees seems to be rather simple, we think that the definition of the
hiding operator will not be so simple if we try to do it strictly in the acceptance tree domain.

Definition 2.10 Given acceptance automata &, = (AU A, Z;, 4, M, —)and &, = (AU
Ay Zo, 1, M, —3,), with A, A, A, pairwise disjoint, the parallel composition of &, and U,
denoted by (’.ll il (’12 = (Al, Z,1, M, =), has A as synchronization alphabet and is defined as
follows:

) AL=AUAUA,
2) T=X, %3,
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3) 1= (1),
4) M c X x P(A), is the smallest relation satisfying:

V m,; € M,(g,), m, € M)(G,):

(m; "m,) U (A; "m,) U (A, "m,) € M((0,, G,))

5) - ¢ X x A x Z,is the smallest relation satisfying:

Vee A, 0 5y, 0y Iy 9, Hy (O, By) 2 (0y, Ky)

Vee A, 0 9,0y L€ I, (O, W) D, (Cy, 1)

Vee Ay, 0e I, 4 99 U, (0, 1) =, (0, Uy)

Fact 2,11 The parallel composition of acceptance automata ¢, and Q,, is another acceptance
automaton Q.

Fact 2.12 Observe that the following predicate holds for acceptance automata &, and €&,, and
its parallel composition ¢:
Vt, € traces(U,), 0, € U /t;, 4, € traces(U,), 0, € Uy/ty, te traces(Q).
t; =tT(AUA)) AL, =tT(AUA,) & (0, 0)) € A/t
where tTA denotes the trace t restricted to the events in A. This fact is simple to prove by
induction on the lenght of the traces.

Lemma 2.13 Given acceptance automata &; = (AU A, X1, M, > )and U, = (AU
Ay, 2y, 4, My, —,) its parallel composition satisfies:
8"((’11 e, = F (@) 3’(02)

Proof Let (1, X) € & (Q,) Il ¥(CQ,), then from the definition of parallel composition in the
failures model, there exist (t;, X,) € F(,) and (t,, X,;) € F(Q,) such that:

tTAUA, = t;,tTAUA, = 1, X=X, UX,
Now, from definitions 2.1 and 2.7, there are 6, € U,/t; (resp. 6, € U,/t;) and menu
m, € M,(0,) (resp. m, € M,(0,)) such that:

X, € (AUA))-m, (resp. X, € (AU A,) -my)
Thus, from definition 2.10 and fact 2.15:

(0),0,) € (&, At
and

m = (m; N m,) U (A; "m,) U (A, "m,) e M((5,, G,)).
It is easy to see that:
X=X,UX, c(AUA UA)-m
so by definition 2.7, (t, X) € & (Q, Il &,). The inverse holds for a similar reasoning. ¢
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In what follows, we define the hiding operator on acceptance automata. As it was pointed
above, divergent processes can not be modelled by means of acceptance automata. Since the
hiding operator might cause divergence, even when applied to non-divergent processes, it is
impossible to define a total operator over acceptance automata, while preserving the failures
semantics. In order to overcome this difficulty, we first introduce the notion of divergence-free
automaton, and then define hiding as a partial operator.

Definition 2.14 [Jos 88] Given an acceptance automaton & = (A, Z, 1, M, =), and a set of
events A, € A, we say that C is divergence free with respect to Ay, if the following holds:
V s e traces(U). -V ne N.3te A" #>n Aste traces(U)

Lemma 2.15 The acceptance automaton & = (A U A, Z,1, M, —), is divergence free with
respect to the set of events A, iff there exists a well founded set (Q, <) and a metric:
: reach(&) — Q
satisfying:
V1te Ay, 6,6 0(0) <w(0)
This is a simple consequence of the definition of well-founded set.

Definition 2.16 Given an acceptance automaton & = (A U A, Z,1, M, —), which is
divergence free with respect to the set of events A,, U after hiding A,, denoted by A\Ay, = (A,
Z,1, M, o)), is defined as follows:
1) M, c X% ®(A), is the smallest relation satisfying:
Voe Z,me M(©).(A,nm)=@=>me M,(0)
V 6,,0,€ Z,m; € M(0,), m, € M,(0,), Te (A, nm,).
0, =, 0, = (m;—A;) U m,y, m, € M,(G,)
2) 9, XX AXE, is the smallest relation satisfying:
Vee A, 0, 2,0, 6, 9 O,

Vee A,te A, 0 3, 0,0 >, 0,. 0 ¥, 0,

Although this definition is recursive, A\A, is well-defined unless € is not divergence free

with respect to the set of events A;. Otherwise, if ¢ is divergence free then there might exist
paths of inestable states, the last element in such a path being a stable state. However, there will
never exist closed paths made up of inestable states. Basically, this definition causes the copy of
menus from the final state up to the initial state in such a path.

Fact 2.17 If ¢ is an acceptance automaton, which is divergence free with respect to the set of
events A, then U\, is an acceptance automaton.
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Fact 218 If & = (A U A, Z,1, M, —) is divergence free with respect to the set of events A, ,
then the following predicates hold:

Vte traces (Q1). tTA € traces(U\A,)
V te traces (U), o € A/t, m e M(0).
m NA, =@ = 3o, e (WA/TA). me M,;(c)))
This is simple to prove by induction on the lenght of t.

Lemma 2.19 Given an acceptance automaton A = (A U Ay, Z, 1, M, —), which is divergence
free with respect to the set of events A;: F(AMW,) = F (AN

Proof Let (t;, X;) € F(U)\A,, then, from the definition of the hiding operator in the failures
model, there exists (t, X) € F(Q), such that:

tTA =1, X=X, UA,
Now, from definitions 2.1 and 2.7, there are ¢ € €/t and menu m € M(0) such that:

X=X, UA cAUA -m
Thus, m N A, = @. Then from fact 2.18 there exists a state 6, € (QU\A)/t;, such that m €
M, (6,). So by definition 2.7, (t,, X;) € F (A\A}). The inverse holds for a similar reasoning. ¢

3. Standard Acceptance Automata

In the previous section, the basic notions and operations concerning acceptance automata have
been introduced. It is important to remark that acceptance automata, as defined in 2.1, might
exhibit some non-desirable features. For instance, they can include non-reachable states. As it
will be discussed below, this was necessary in order to define the most interesting operations:
parallel composition and hiding. In this section we select a particular class of acceptance
automata, the so-called standard acceptance automata, that will serve as the basis both for
defining and comparing processes, possibly in a mechanical way. Through this section we

assume an acceptance automaton & = (A, Z,1, M, ).

Definition 3.1 & is said to be junk free if:
Voe X.3te traces(U). c € AU/t

Fact 3.2 We can always define the corresponding junk free acceptance automaton junk-free(C1)

= (A, reach(Ql), 1, M*, %), with the same failures semantics as C. M * is defined as the
smallest relation satisfying:

VY o € reach(Q), m € M(6). m € M*(0)
Similarly, —* is defined as the smallest relation satisfying

V 0,0'€ reach(Q),ee A.6 5,0 =06 o* ¢
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Obviously, since there is no interest in considering non-reachable states, we could try to
restrict the definition of acceptance automata to those tuples with this property. Nevertheless, it
must be observed that the parallel composition of junk-free automata does not define, in general,
another junk-free automata. The same holds for the hiding operator. Thus, if we want to define
those operations over acceptance automata, it must be posible for them to have non-reachable
states. This is of no concern because, as it has been pointed above, it is always possible to define
the equivalent junk-free automata.

Definition 3.3 & is said to be unambiguous if:

V t € traces (Q). | Cl/t| =1
We will use the term ambiguous when referring to an acceptance automaton that is not
unambiguous.

The following examples define an ambiguous and an unambiguous automaton, both with the
same failures semantics:

A = {a, b}
X={0,1,2}
1=0

M = {(0, {a}), (1, {b}), 2, D)}
- ={(0, a, 1), (0, 3, 2), (1, b, 2)}

A={a, b}
X={0,1,2}
1=0

M = ((0, {a}), (1, @), (1, {b}), (2, D))
—={(0,3,1),(1,b,2)

As it is shown in this example, the process defined by an unambiguous acceptance automaton
is not in general deterministic. Moreover, the process defined by an ambiguous acceptance
automaton could be deterministic. This motivates our next definition:

Definition 3.4 € is said to be a deterministic automaton if it is unambiguous and:
V t e traces (W), c € QU/t. | M(O’)I =1

Fact 3.5 The parallel composition of unambiguous automata defines another unambiguous
automata. This is trivial from the definition of the parallel composition, and in particular, from

the definition of its transition relation.

Observe that the hiding operation applied to an unambiguous acceptance automaton does not
define, in general, another unambiguous acceptance automaton. The menu relation was included
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in the definition of acceptance automata to model the non-deterministic behaviour of concurrent
systems. The intuitive idea is that non-determinism should be represented by the existence of
several menus in a given state. However, the use of ambiguous acceptance automata allows the
modelling of non-deterministic behaviour, even when there is a unique menu associated with
every reachable state. According to this, it might seem appropiate to restrict the definition of
acceptance automata to those which are unambiguous. This is not possible if we want to define
the hiding operator over acceptance automata. In what follows we show how to deal with this
situation defining the equivalent unambiguous acceptance automaton.

Definition 3.6 The unambiguous form of & is the acceptance automaton U, = (A, Zp 10
M >, defined as follows:
« I ;= traces(Q)/ =,
where = ¢ traces(C) % traces(CQl), is defined as the smallest relation satisfying:
V t1, ty € traces(Q). A/t =U/tp =t =12
* LWy T [<]
¢ Mjc I X P(A), is the smallest relation satisfying:
V te traces (U), 6 € Q/t, me M(c). me M ([t])
* osE T exXAx X ¢ is the smallest relation satisfying:
Vte traces(U), e € A.te € traces(Q) = [t] =, [te]

Lemma 3.7 Given an ambiguous acceptance automaton € and its unambiguous form Qg U =
Cye

For finite acceptance automata, there is an effective procedure to build its unambiguous form.

Definition 3.8 A is said to be saturated if:

Voe X me®P(A), m e M) m'c mc next(c) = me M(0)

Note that the parallel composition and hiding of saturated automata define another saturated
automata. Moreover, given a non-saturated acceptance automaton, the derivation of its saturated
form is trivial and it is easy to prove that its failures semantics is the same. This fact is directly
reflected in the TCSP laws.

Definition 3.9 Given an acceptance automaton C1, we say that it is in standard form if it is
junk-free, unambiguous and saturated.

This is the most important concept in this section. It must be observed that for finite state
acceptance automata we can build mechanically its standard form. Moreover, the result of this
transformation process is unique, regardless of the definition of the original automaton. The main
interest of this reduction procedure will be made clear in the next section.
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. Minimal Attoiit

Given a non divergent TCSP process [P, there are many standard automata exhibiting its
behaviour. The purpose of this section is to explore the category SAut (IP) of all the standard

automata that have IP as semantics. The morphisms will be a restricted version of the classical
notion of bisimulation that we call a simulation. We show that in this category there exist both
initial and final objects. The initial one or maximal automaton is the automaton with the greatest
number of states corresponding to the TCSP normal form [Nic 85]. The final one or minimal
automaton is the automaton with the least number of states. For practical purposes this is the
most interesting one. For finite acceptance automata there is an efective procedure to compute
their final versions.

Definition 4.1 Given a non-divergent process in the Failures Model P = (A, &, D), with
F < A* x P(A) and O =@, its maximal acceptance automaton U(P) = (A, I, 1, M, -), is
defined as follows:

» Adis the alphabet of PP,

e X={te A%, (1, @) e P},
+ 1is the empty trace <
e M c X x P(A), is the smallest relation satisfying:
V (6,F)e P. (V (6,F)e P.F ¢ F) = —F € M(0)
Voe 2, me®P(A), me MO). m'c mg next(c) = me M(0)
e — ¢ Xx AXxZX is the smallest relation satisfying:

V (0,9), (ce,B) e P.c -, oe

The first line in the menu relation introduces as menus the complements of the maximal
refusal sets after a given trace. The second line is the convex closure of the previous menus
[HoJi 85]. It is interesting to note that the menu relation conveys more information than an
alternative refusal relation as used for instance in [AGS 90]. From the first one it is immediate to

obtain the second one (see definition 2.7). To do the opposite we need next(c), the set of

possible events after a trace ©, i.e. we need also to look at transition relation, i.e. at the whole
failures set.

It is obvious to see that this definition satisfies the constraints of an acceptance automaton, in
particular those of a standard one, and that its failures semantics coincides exactly with the

original process PP. In fact, this maximal automaton is exactly the TCSP term in normal form that
can be constructed from the failures set as in [Nic 85].

Now we proceed to the construction of the category: given the non-divergent TCSP process
PP, let SAut (IP) be the class of all the standard acceptance automata that have IP as semantics.
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Definition 4.2 Given U, = (A, Z,,1,, M, =), U, = (A, 2,1, M, —>,) standard
automata, we say that a mapping f: X,— Z, is a morphism or a simulation from Q, to C, if it
satisfies the following conditions:

1) f) =1,
2) Voe . M,(0) = M,(f(0))

3) Vo 9, 0 f(0) 9, f(c)

A simulation is a particular case of the classical notion of bisimulation that can be adapted to
acceptance automata in the following way:

Definition 4.3 Given standard acceptance automata U, = (A, X;,1,, M;, ;) and &4, =
(A, Z,, 1, M,, —,) a bisimulation of U, and Q, is arelation B ¢ | X Z,, satisfying:
D ,,)e B
2) V(6,,05) € B.M,(0;) = My(0y)

3) V(o,,0,)e B,ee A, 0 —1, 0, Oy =¥, ¢.(c,00)e B

The difference between a general relation and a mapping is that the last one will allow us to
go from automata with more states to automata with less states.

Lemma 4.4 Given standard acceptance automata €, and U,, &, = &, iff there exists a
bisimulation between ¢, and Q.

Proof Let us first see the following fact :
If B is a bisimulation of ¢, and Q, then the following predicate holds:

V t etraces(q,). (U, /t, U/ e B
Where €, /t, &,/t denote the unique state reached after the trace t. This is simple to prove by
induction on the lenght of t. From this fact and definition 2.7, it follows that if there exists a
bisimulation of €, and @, then &, = C,. The opposite is also simple to prove. Given that &, =
Q,, let us define W € X, x X, to be the smallest relation such that:

V t etraces(U,), 6, € U,/t, 6, €C,/t = (0,,0,) €B
B trivially satisfies conditions 1 and 3 of definition 4.3. Then from &, = &, and the fact that
they are standard, it comes condition 2. So B is a bisimulation. ¢

It its easy to prove that the composition of morphisms gives another morphism and that it is

associative with the identity morphism being the identity mapping. So SAut (IP) together with all
the morphisms defined between them turns out to be a category.
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In SAut (P), an isomorphism will be a bijective morphism and two isomorphic automata will
be in fact equal up to renaming of states. As usual, there will be a morphism from the initial
object (if it exists) to any other object in the category and from any object to the final one (if it
exists). The initial and final objects (if they exist) are unique up to isomorphism. We shall see

that these objects exist in SAut (IP).
Lemma 4.5 Given IP, the maximal acceptance automaton ¢ (IP) is initial in SAut ().

Proof: Given any acceptance automaton ¢ & SAut (IP) the mapping f:traces(&y (P)) = Z,
defined by f(t) = C4/t, where Cl/t denotes the unique state reached after the trace t, is a morphism
and it is unique. This follows from lemma 4. 4. 0

Now we proceed to the proof of existence and construction of the final automaton Qg (IP) of

SAut(P). First, we need the concept of congruence and of quotient automaton by a
congruence.

Definition 4.6 Given an standard acceptance automaton & = (A, X, 1, M, =), a congruence
in Q is an equivalence relation = ¢ X x X satisfying the following properties:
1) Vo,,0,€ X.0,=0,=>M(0)) = M(o,)

2) Vo,,0,€ X,e€ AG;=0,A0, >, 0OA0, > U=DC0=U

Definition 4.7 Given an standard acceptance automaton & = (A, X,1, M, —>) and a
congruence = in & the quotient acceptance automaton of & by =, denoted by U/= = (A, Z=, 1=,
M=, —=) is defined as follows:

1) Z== X/Q, is the quotient set of X by =

2) ==1]

3) M=([c])=M(o)

4) [o] —,[o'iff 6 >, O

It is inmediate to show that this definition is independent of the representative ¢ chosen for

the class [o]. There is a strong connection between congruences and simulations as the following
lemmas show:

Lemma 4.8 Given an acceptance automata & = (A, Z,1, M, —) and a congruence = in {, the
mapping f: A — Q/=defined by f(o) = [0] is a simulation.

Proof Properties 1, 2, and 3 of definition 4.2 are a direct translation of properties 2,3, and 4 of
definition 4.7. ¢
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Lemma 4.9 Given acceptance automata U, = (A, Z,,1,, M|, =) and &, = (A, ., M,
—,), with &, &, € SAut (IP), if there is a simulation f: &, — C&,, then the equivalence
relation in X, defined by:

o, =0, iff f(o,) = f(c,)
is a congruence in €&, and /= is isomorphic to &,.

Proof
1) =is acongruence:
condition 1 of definition 4.6 follows directly from condition 2 of definition 4.2. With
respect to condition 2 of definition 4.6, let us assume:
G, =, 01> 0y —%, O, and f(c)) = f(0,)
by being f a simulation we have
f(0,) =,, f(0,) and f(c,) —,, f(c,)
then, as Q, is standard f(c,’) = f(6,) s0 6, =0’
2) First observe that:
V o, € L, Jte traces(U,). {0,} = Uyt
and as f is a morphism: f(0,) = 6,, where {0,} = Q/t. So fis surjective.
Then, the mapping f*: U,/= — €, defined by:
f*([o]) = f(o)
is a biyective morphism and € ,/= is isomorphic to &,. 0

As a consequence, doing the quotient of an automaton by a congruence, preserves the
behaviour.

Definition 4.10 Given an acceptance automata & = (A, Z, 1, M, —) and two congruences
=,, 5, in U, the sum =, +=, ¢ T x I is defined as the transitive closure of =, U =,.

Fact 4,11 Given an acceptance automata ¢ = (A, Z, 1, M, —) and two congruences =, =, in
Q, the sum =, + =, is another congruence on Q.

Since the identity mapping on states is a congruence, and since the sum and intersection of
two congruences is another congruence, the set (Cong(Q), <), with Cong(Q) denoting the
family of congruences in &, turns out to be a complete lattice. Let us now denote by =(Qt) the

maximum congruence on ¢ constructed by suming up all the congruences on Q.

Definition 4.12 Given a non-divergent process TCSP process [P its minimal acceptance
automaton Ug(P) is defined by C(IP)/=¢(Q(PP)). Given an acceptance automaton Q, we will

use the term normal form, denoted by &, when referring to the corresponding minimal
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automaton.
Lemma 4.13 U ,(P) is final in SAut(P).

Proof We need to show that for all & in SAut(PP), there is a unique morphism f: & — G (IP).
As Q(IP) is initial, there exists a unique morphism fj: Q(P) — & and congruence = such that
QU (IP)/= is isomorphic to €. Also there is a unique morphism fg: A (P) — QUg(P) induced by
=p(U(IP)). As this is the maximum congruence in Cong(C,(IP)), we have that =, c =x(U;(P))
and the mapping f: & — C(PP), defined by f([t];) = [t]g for any trace t, is well-defined. It is
straightforward to show that f is a morphism, and since fp = f * f;, f must also be unique. 0

Fact 4.14 If & (IP) is finite, then the procedure for computing U g(P) is algorithmic. The
procedure will be an adapted version of the Moore algorithm [Woo 87].

This fact provides in many situations an effective mean to verify the correctness of parallel
systems. The complete method, already advanced in [PA 89], will consist of the following steps:

+ specify the system at the outermost level. Construct the acceptance automaton Clsp of the
specification. Let us assume that it is finite

 implement the system as a parallel composition of automata ., .., Q,, with
synchronization alphabet A

» use the definitions in this paper to compute the automaton Q. = @ I Ta N

« verify that the normal forms of Clsp and ('Aimp are isomorphic, Clspi = Climpl

3. Refinements

Usually the implementation of a system is obtained by first composing in parallel a family of
subsystems and then hiding those events corresponding to their internal activity. Asking the
implementation to behave exactly like the specification amounts to say that their initial
(respectively final) forms are isomorphic. Nevertheless this is a too strong requirement in most
situations. For this reason we will adopt the notion of refinement as defined in the Failures
Model, and provide an alternative characterization in terms of acceptance automata that will be
amenable to mechanical verification.

Definition 5.1 Given acceptance automata Clsp and U, Climp is said to be a refinement of
Q. denoted by Uimp E Uy if F (@) € F ().

mp =

Definition 5.2 Given an acceptance automaton & = (A, Z, 1, M, —) it is said to be dead-
lock free if: V ¢ € reach(Q). @ ¢ M(0)
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Lemma 5.3 Let ¢ p = (A, Zsp, Lo Msp, —)sp) and Qimp = (A, Zimp, Vimp? M -—)imp) be
initial acceptance automata:

Uimp & U, iff Ve traces(Q,,,,). (t € traces(Q ;) A M, (D © M,,(1)
where Mimp(t), Msp(t) < ®(A), denote families of menus.

A similar fact might be stated by comparing the respective final forms. In this case, a means
for relating states in the specification and implementation must be provided in the form of a
relation over states. Most often, this relation will be a mapping even though this is not the general
case.

Fact 5.4 Let (’.{sp = (A g4, Mg, —5p) and Climp = (A, Zipps limpr Mimp —)imp) be
final acceptance automata. Climp is a refinement of Qsp if there exists a relation ® < Zimp X Zsp
satisfying:
(1imp’ l‘sp) E ®’
+ V(o,, ,csp) e O. Mimp(oimp) c Msp(csp)
V(0. csp) e O, Oimp —Yimpe Himp» Csp ~spe Msp- (uimp, usp) e ®
We shall use the term abstraction relation when referring to this relation.

Fact 5.5 Given acceptance automata Clsp and (’limp, Climp is dead-lock free iff (lep is dead-lock

free and (’.limp is a refinement of C'.lsp.

This is a general fact concerning refinements and coming from the Failures Model. Besides
that, fact 5.4 provides an effective procedure for proving correctness of refinements when
dealing with finite state systems. Although this is the case with a great number of interesting
problems, finite state systems are fdr from being the general situation. The following fact
attempts to handle this problem.

Fact 5.6 Let Clsp = (A, I 15 M, =) and Uimp = (AU Ay, Zimp» Yimp* Mimp» ~imp)
be standard acceptance automata. Provided that Q. is divergence free w.r.t Ay, then QM
is a refinement of Qsp iff there is a mapping @ < Zimp X Zsp satisfying:
(timp, tsp) e O,
* VYV (Oinp Gsp) e d,me M imp(<)'imp).
m NA, =@ =>me M(0,)
m N Ap#@ = m- Ay next(0,)
* YV (Oimp Osp) € P, Cipny impe Himp» Tsp ~spe Mspr (Himp» Hsp) € D
e Vv (Oimp’ osp) € D, 1€ A, Oimp —Yimpy Himp’ (Kimp? Oyp) € o
Observe that if Clsp and Qimp are in initial form, then this relation is in fact a mapping I:

traces(Ql;y, ) — traces(Q,), defined by I(t) = tTA.
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