Abstract
Let V be a bounded semialgebraic hypersurface defined by a regular polynomial equation and let x1, x 2 be two points of V. Assume that x 1 , x 2 are given by a boolean combination of polynomial inequalities. We describe an algorithm which decides in single exponential sequential time and polynomial parallel time whether x 1 and x 2 are contained in the same semialgebraically connected component of V. If they do, the algorithm constructs a continuous semialgebraic path of V connecting x 1 and x 2 . By the way the algorithm constructs a roadmap of V. In particular we obtain that the number of semialgebraically connected components of V is computable within the mentioned time bounds.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bochnak J., Coste M., Roy M.-F.: Géométrie algébrique réelle. Springer Verlag (1987).
Canny J: Some algebraic and geometric computations in PSPACE. ACM Symptosium on the theory of computation, 460–467 (1988).
Canny J.: The complexity of motion planning. M.I.T. Thesis 1986, M.I.T. Press (1988).
Canny J.: A new algebraic method for robot motion planning and real geometry. Proc. 28th IEEE Symp. on Found. of Comp. Science (FOCS), 39–48 (1987).
Canny J., Grigor'ev D., Vorobjov N.: Defining connected components of a semialgebraic set in subexponential time. Manuscript Steklov Mathematical Inst., Leningrad, LOMI (1990).
Coste M., Roy M.-F.: Thom's lemma, the coding of real algebraic numbers and the topology of semialgebraic sets. J. Symbolic Computation 5, 121–129 (1988).
Fitchas N., Galligo A., Morgenstern J.: Algorithmes rapides en séquentiel et en parallèle pour l'élimination des quantificateurs en géométrie élémentaire. Sém. Structures Algébriques Ordonnées, Sélection d'exposés 1984–1987 Vol I. Publ. Univ. Paris VII, No. 32, 29–35 (1990).
von zur Gathen J.: Parallel arithmetic computations; a survey. Proc. 13th Conf. MFCS (1986).
Grigor'ev D.: Complexity of deciding Tarski algebra. J. Symbolic Computation 5, 65–108 (1988).
Grigor'ev D., Vorobjov N.: Solving systems of polynomial inequalities in subexponential time. J. Symbolic Computation 5, 37–64 (1988).
Grigor'ev D., Vorobjov N.: Counting connected components of a semialgebraic set in subexponential time. Manuscript Steklov Mathematica Inst., Leningrad, LOMI (1990).
Grigor'ev D., Heintz J., Roy M.-F., Solernó P., Vorobjov N.: Comptage des composantes connexes d'un ensemble semi-algébrique en temps simplement exponentiel. To appear in C.R. Acad. Sci. Paris.
Heintz J., Roy M.-F., Solernó P.: On the complexity of semialgebraic sets. Proc. IFIP'89, 293–298 (1989).
Heintz J., Roy M.-F., Solernó P.: Complexité du principe de Tarski-Seidenberg. Comptes Rendus de l'Acad. de Sciences Paris, 309, 825–830 (1989).
Heintz J., Roy M.-F., Solernó P.: Sur la complexité du principe de Tarski-Seidenberg. Bulletin de la Soc. Math. de France 118, 101–126 (1990).
Heintz J., Roy M.-F., Solernó P.: Construction de chemins dans un ensemble semi-algébrique (II). Preprint (1990).
Heintz J., Krick T., Roy M.-F., Solernó P.: Geometric problems solvable in single exponential time. Preprint (1990).
Renegar J.: On the computational complexity and geometry of the first order theory of the reals. Technical Report 856, Cornell Univ. (1989).
Roy M.-F., Szpirglas A.: Sign determination on 0-dimensional sets. To appear in Proc. MEGA'90, Castiglioncello (1990).
Schwartz J., Sharir M.: On the piano movers' problem: II General Techniques for calculating topological properties of real algebraic manifolds. Adv. Appl. Math. 298–351 (1983).
Solernó P.: Complejidad de conjuntos semialgebraicos. Thesis Univ. de Buenos Aires (1989).
Solernó P.: Construction de fonctions de Morse pour une hypersurface régulière en temps admissible. Preprint (1990).
Trotman D.: On Canny's roadmap algorithm: orienteering in semialgebraic sets. Manuscript Univ. Aix-Marseille (1989).
Valiant L., Skyum S., Berkowitz S., Rackoff C.: Fast parallel computation of polynomials using few processors. SIAM J. Comp. 12, 641–644 (1983).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heintz, J., Roy, MF., Solernó, P. (1991). Single exponential path finding in semialgebraic sets Part I: The case of a regular bounded hypersurface. In: Sakata, S. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1990. Lecture Notes in Computer Science, vol 508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54195-0_50
Download citation
DOI: https://doi.org/10.1007/3-540-54195-0_50
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54195-0
Online ISBN: 978-3-540-47489-0
eBook Packages: Springer Book Archive