Skip to main content

Running time to recognize nonregular languages by 2-way probabilistic automata

  • Complexity (Session 4)
  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 510))

Included in the following conference series:

  • 148 Accesses

Abstract

R. Freivalds proved that the language {0m1m} can be recognized by 2-way probabilistic finite automata (2pfa) with arbitrarily high probability 1-ɛ. A.G.Greenberg and A.Weiss proved that no 2pfa can recognize this language in expected time \(T(n) = c^\circ{(n)}\). For arbitrary languages C.Dwork and L.Stockmeyer showed somewhat less: if a language L is recognized by a 2pfa in expected time \(T(n) = c^{n^\circ{(1)} }\), then L is regular. First, we improve this theorem replacing the expected time by the time with probability 1-ɛ. On the other hand, time bound by C.Dwork and L.Stockmeyer cannot be improved: for arbitrary k≥2 we exhibit a specific nonregular language that can be recognized by 2pfa with probability 1-ɛ in expected time \(T(n) = c^{n^{{1 \mathord{\left/{\vphantom {1 k}} \right.\kern-\nulldelimiterspace} k}} }\). Finally, we show that the running time for the recognition of nonregular 2-dimensional languages by 4-way pfa can be essentially smaller, namely, linear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.Andžāns. On advantages of probabilistic automata over deterministic ones in maze walks and recognition of 2-dimensional domains.-In: Probabilistic Automata and their Applications. Kazan University Press, 1986, p.64–68 (Russian).

    Google Scholar 

  2. M.Blum and C.Hewitt. Automata on a 2-dimensional tape.-Proc. 8th Annual Symp. on Switching and Automata Theory, 1967, p.155–160.

    Google Scholar 

  3. C.Dwork and L.Stockmeyer. Interactive proof systems with finite state verifiers.-Report RJ 6262, IBM Research Division, San Jose, CA, 1988.

    Google Scholar 

  4. C.Dwork and L.Stockmeyer. On the power of 2-way probabilistic finite state automata.-Proc. 30th FOCS, 1989, p.480–485.

    Google Scholar 

  5. C. Dwork and L. Stockmeyer. A time complexity gap for two-way probabilistic finite state automata.-SIAM Journal of Computing, December 1990, v.19,No.6,p.1011–1023.

    Google Scholar 

  6. R. Freivalds. Probabilistic two-way machines.-Lecture notes in Computer Science, Springer, 1981, v.118, p.33–45.

    Google Scholar 

  7. R. Freivalds.Space and reversal complexity of probabilistic one-way Turing machines.-Lecture Notes in Computer Science, Springer, 1983, v.158, p.159–170.

    Google Scholar 

  8. A.G. Greenberg and A. Weiss. A lower bound for probabilistic algorithms for finite state machines.-Journal of Computer and System Sciences, 1986, v.33, p.88–105.

    Google Scholar 

  9. J. Hromkovič. Hierarchy of reversal and zerotesting bounded multicounter machines.-Lecture Notes in Computer Science, Springer, 1984, v.176, p.312–321.

    Google Scholar 

  10. O.H. Ibarra. Reversal-bounded multicounter machines and their decision problems.-Journal of the ACM, 1978, v.25, p.116–133.

    Google Scholar 

  11. N.D. Jones. Space bounded reducibility among combinatorial problems.-Journal of Computer and System Sciences, 1975, v.11, p.68–85.

    Google Scholar 

  12. H.Jung. On probabilistic time and space.-Lecture Notes in Computer Science, Springer, 1985, v.194.

    Google Scholar 

  13. J. Kaņeps. Stochasticity of the languages recognizable by 2-way finite probabilistic automata.-Diskretnaya Matematika, 1989, v.1, n.4, p.63–77 (Russian).

    Google Scholar 

  14. J. Kaņeps and R. Freivalds. Minimal nontrivial space complexity of probabilistic one-way Turing machines.-Lecture Notes in Computer Science, Springer, 1990, v.452, p.355–361.

    Google Scholar 

  15. R.E. Ladner, R.J. Lipton, and L.J. Stockmeyer. Alternating pushdown and stack automata.-SIAM Journal of Computing, 1984, v.13, p.135–155.

    Google Scholar 

  16. F.T. Leighton and R.L. Rivest. The Markov Chain Tree Theorem.-MIT Laboratory for Computer Science TM-249, MIT, Cambridge, Mass., 1983.

    Google Scholar 

  17. B. Monien and I.H. Sudborough. On eliminating nondeterminism from Turing machines which use less than logarithm worktape space.-Lecture Notes in Computer Science, Springer, 1979, v.72, p.431–435.

    Google Scholar 

  18. M.O. Rabin. Probabilistic automata.-Information and Control, 1963, v.6, No.3, p.230–245.

    Google Scholar 

  19. A. Salomaa and M. Soittola. Automata-theoretic Aspects of Formal Power Series.-Berlin: Springer, 1978.

    Google Scholar 

  20. K. Wagner and G. Wechsung. Computational Complexity.-Mathematische Monographien, Band 19, VEB Deutscher Verlag der Wissenschaften, Berlin, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Javier Leach Albert Burkhard Monien Mario Rodríguez Artalejo

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaņeps, J., Freivalds, R. (1991). Running time to recognize nonregular languages by 2-way probabilistic automata. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds) Automata, Languages and Programming. ICALP 1991. Lecture Notes in Computer Science, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54233-7_133

Download citation

  • DOI: https://doi.org/10.1007/3-540-54233-7_133

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54233-9

  • Online ISBN: 978-3-540-47516-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics