Abstract
Based on a simplified test for determining whether a finite monadic string-rewriting system R presenting a group is confluent on [e]R. a procedure for completing a system of this form on [e]R is derived. The correctness and completeness of this procedure are shown.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J.M. Autebert, L. Boasson, G. Senizergues; Groups and NTS languages; J. Comput. System Sci. 35 (1987), 243–267.
R.V. Book; Decidable sentences of Church-Rosser congruences; Theoretical Computer Science 23 (1983), 301–312.
R.V. Book; Thue systems as rewriting systems; J. Symbolic Computation 3 (1987), 39–68.
H. Bücken; Reduction systems and small cancellation theory; in: Proceedings 4th Workshop on Automated Deduction (1979), 53–59.
R.H. Gilman; Presentations of groups and monoids; J. of Algebra 57 (1979), 544–554.
J.E. Hopcroft, J.D. Ullman; Introduction to Automata Theory, Languages and Computation (Addison-Wesley, Reading, MA, 1979).
M. Jantzen. Confluent String-Rewriting (Springer, Berlin, 1988).
D. Kapur, P. Narendran; The Knuth-Bendix completion procedure and Thue systems; SIAM J. on Computing 14 (1985), 1052–1072.
D. Knuth, P. Bendix; Simple word problems in universal algebras; in: J. Leech (ed.), Computational Problems in Abstract Algebra (Pergamon, New York, 1970), 263–297.
Ph. LeChenadec; Canonical Forms in Finitely Presented Algebras (Pitman: London, Wiley: New York, Toronto, 1986).
R.C. Lyndon, P.E. Schupp; Combinatorial Group Theory (Springer, Berlin, 1977).
K. Madlener, F. Otto; Using string-rewriting for solving the word problem for finitely presented groups; Information Processing Letters 24 (1987), 281–284.
K. Madlener, F. Otto; About the descriptive power of certain classes of finite string-rewriting systems; Theoretical Computer Science 67 (1989), 143–172.
K. Madlener, F. Otto; Decidable sentences for context-free groups, in: C. Choffrut, M. Jantzen (eds.) Proceedings of STACS '91, Lecture Notes in Computer Science 480 (1991), 160–171.
K. Madlener, P. Narendran, F. Otto: A specialized completion procedure for monadic string-rewriting systems presenting groups, SEKI-Report SR-90-24. University of Kaiserslautern (1990).
D.E. Muller, P.E. Schupp; Groups the theory of ends, and context-free languages; J. Comput. Systems Ci. 26 (1983), 295–310.
P. Narendran, C. O'Dunlaing, F. Otto; It is undecidable whether a finite special string-rewriting system presents a group: Discrete Math., to appear.
F. Otto; On deciding whether a monoid is a free monoid or is a group; Acta Informatica 23 (1986), 99–110.
F. Otto; On deciding the confluence of a finite string-rewriting system on a given congruence class; J. Comp. Sci. Sciences 35 (1987), 285–310.
F. Otto; The problem of deciding confluence on a given congruence class is tractable for finite special string-rewriting systems; Preprint No. 4/90, FB Math., GhK, Kassel, West Germany, 1990.
F. Otto; Completing a finite special string-rewriting system presenting a group on the congruence class of the empty word; Preprint No. 8/90, FB Math., GhK, Kassel, West Germany, 1990.
C.C. Squier; Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra 49 (1987), 201–217.
L. Zhang; The word problem and undecidability results for finitely presented special monoids; submitted for publication.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Madlener, K., Narendran, P., Otto, F. (1991). A specialized completion procedure for monadic string-rewriting systems presenting groups. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds) Automata, Languages and Programming. ICALP 1991. Lecture Notes in Computer Science, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54233-7_141
Download citation
DOI: https://doi.org/10.1007/3-540-54233-7_141
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54233-9
Online ISBN: 978-3-540-47516-3
eBook Packages: Springer Book Archive