Skip to main content

An efficient NC algorithm for finding Hamiltonian cycles in dense directed graphs

  • Parallel Algorithms (Session 10)
  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 510))

Included in the following conference series:

  • 142 Accesses

Abstract

Let G be a directed graph with n vertices such that whenever there is no arc from any vertex u to another vertex v, then the sum of the outdegree of u and the indegree of v is at least n. It is known that such a graph G always contains a Hamiltonian cycle. We show that such a cycle can be computed with a linear number of processors in O(log3 n) time on a CREW PRAM.

This work was supported in part by the NSF under grant CCR-8805978.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Aggarwal and R.J. Anderson, A Random NC-algorithm for Depth First Search, Combinatorica 8 (1988) 1–12.

    Google Scholar 

  2. A. Aggarwal, R.J. Anderson and M. Kao, Parallel Depth-First Search in General Directed Graphs, Proc. 21st ACM STOC (1989) 297–308.

    Google Scholar 

  3. S.G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989.

    Google Scholar 

  4. R.J. Anderson, A Parallel Algorithm for the Maximal Path Problem, Combinatorica 7 (1987) 315–326.

    Google Scholar 

  5. A. Awerbuch, A. Israeli and Y. Shiloach, Finding Euler Circuits in Logarithmic Parallel Time, Proc. 16th ACM STOC (1984) 249–257.

    Google Scholar 

  6. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York 1976.

    Google Scholar 

  7. N. Chiba and T. Nishizeki, The Hamiltonian Cycle Problem is Linear-Time Solvable for Four-connected Planar Graphs, J. Algorithms 10 (1989) 187–211.

    Google Scholar 

  8. E. Dahlhaus, P. Hajnal and M. Karpinski, Optimal Parallel Algorithm for the Hamiltonian Cycle Problem on Dense Graphs, 29th Annual Symp. on Foundations of Comp. Sci. (1988) 186–193.

    Google Scholar 

  9. G.A. Dirac, Some Theorems on Abstract Graphs, Proc. Lond. Math. Soc. 2 (1952), 69–81.

    Google Scholar 

  10. A.M. Frieze, Parallel Algorithms for Finding Hamiltonian Cycles in Random Graphs, Inf. Proc. Lett. 25 (1987) 111–117.

    Google Scholar 

  11. M. Fürer and B. Raghavachari, An efficient NC approximation algorithm for edgecoloring graphs with applications to maximal matching, In preparation.

    Google Scholar 

  12. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, W.H. Freeman, 1979.

    Google Scholar 

  13. M. Gondran and M. Minoux, Graphs and Algorithms, John Wiley & Sons, 1979.

    Google Scholar 

  14. A. Israeli and Y. Shiloach, An Improved Parallel Algorithm for Maximal Matching, Inf. Proc. Lett. 22 (1986) 57–60.

    Google Scholar 

  15. B. Jackson, Hamilton Cycles in Regular 2-Connected Graphs, J. Comb. Theory Ser. B 29 (1980) 27–46.

    Google Scholar 

  16. R.M. Karp and V.L. Ramachandran, A Survey of Parallel Algorithms for Shared Memory Machines, Handbook of Theoretical Computer Science, edited by J. van Leeuwen, MIT Press, 1990.

    Google Scholar 

  17. S. Khuller, On Computing Graph Closures, Inf. Proc. Lett. 31 (1989) 249–255.

    Google Scholar 

  18. G.F. Lev, N. Pippenger and L.G. Valiant, A Fast Parallel Algorithm for Routing in Permutation Networks, IEEE Transactions on Computers C-30 (1981) 93–100.

    Google Scholar 

  19. M. Meyniel, Une condition suffisante d'existence d'un circuit Hamiltonien dans un graphe orienté, J. Comb. Theory Ser. B 14 (1973) 137–147.

    Google Scholar 

  20. O. Ore, Note on Hamiltonian Circuits, Amer. Math. Monthly 67 (1960) 55.

    Google Scholar 

  21. D. Soroker, Fast Parallel Algorithms for Finding Hamiltonian Paths and Cycles in a Tournament, Report no. UCB/CSD 87/309, Univ. of California, Berkeley 1986.

    Google Scholar 

  22. K. Takamizawa, T. Nishizeki and N. Saito, An O(p 3) Algorithm for Finding Hamiltonian Cycle in Certain Digraphs, J. Inf. Proc. 3 (1980) 68–72.

    Google Scholar 

  23. W.T. Tutte, A Theorem on Planar Graphs, Trans. Am. Math. Soc. 82 (1956) 99–116.

    Google Scholar 

  24. D.R. Woodall, Sufficient Conditions for Circuits in Graphs, Proc. Lond. Math. Soc. 24 (1972) 739–755.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Javier Leach Albert Burkhard Monien Mario Rodríguez Artalejo

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fürer, M., Raghavachari, B. (1991). An efficient NC algorithm for finding Hamiltonian cycles in dense directed graphs. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds) Automata, Languages and Programming. ICALP 1991. Lecture Notes in Computer Science, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54233-7_153

Download citation

  • DOI: https://doi.org/10.1007/3-540-54233-7_153

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54233-9

  • Online ISBN: 978-3-540-47516-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics