Abstract
We relate the logical and the automata theoretic approach to define sets of words, trees, and graphs. For this purpose a notion of “graph acceptor” is introduced which can specify monadic second-order properties and allows to treat known types of finite automata in a common framework. In the final part of the paper, we discuss infinite graphs that have a decidable monadic second-order theory.
Research supported by EBRA Working Group 3166 “Algebraic and Syntactic Methods in Computer Science (ASMICS)”
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Berstel, L. Boasson, Context-free languages, in: Handbook of Theoretical Computer Science, Vol. B (J. v. Leeuwen, ed.), Elsevier, Amsterdam 1990, pp. 61–102.
D. Beauquier, J.E. Pin, Factors of words, Proc. 16th ICALP (G. Ausiello et al., eds.), Springer LNCS 372 (1989), 63–79.
F. Bossut, M. Dauchet, B. Warin, Automata and Rational expressions on planar graphs, in: Proc. MFCS 1988 (M.P. Chytil et al., eds.), Springer LNCS 324 (1988), 190–200.
J.R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundlagen Math. 6, 66–92.
J.R. Büchi, On a decision method in restricted second order arithmetic, in: Logic, Methodology and Philosophy of Science. Proc. 1960 Intern. Congr. (E. Nagel et al., eds.), Stanford Univ. Press, 1–11.
D. Caucal, On the regular structure of prefix rewriting, in: CAAP 90 (A. Arnold, ed.), Springer LNCS 431 (1990), 87–102.
B. Courcelle, Fundamental properties of infinite trees, Theor. Comput. Sci. 25 (1983), 95–169.
B. Courcelle, Graph rewriting: An algebraic and logic approach, in: Handbook of Theoretical Computer Science, Vol. B (J. v. Leeuwen, ed.), Elsevier, Amsterdam 1990, pp. 193–242.
C.C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc. 98 (1961), 21–52.
C.C. Elgot, M.O. Rabin, Decidability and undecidability of extensions of second (first) order theories of (generalized) successor, J. Symb. Logic 31 (1966), 169–181.
H. Gaifman, On local and non-local properties, in: Proc. of the Herbrand Symposium, Logic Colloquium '81 (J. Stern, ed.), North-Holland, Amsterdam 1982, pp. 105–135.
D. Harel, Effective Transformations of infinite trees, with applications to high undecidability, dominoes, and fairness, J. Assoc. Comput. Mach. 33 (1986), 224–248.
W.P. Hanf, Model-theoretic methods in the study of elementary logic, in: The Theory of Models (J.W. Addison, L. Henkin, A. Tarski, eds.), North-Holland, Amsterdam 1965, pp. 132–145.
K. Hauschild, W. Rautenberg, Interpretierbarkeit und Entscheidbarkeit in der Graphentheorie II, Zeitschr. Math. Logik Grundl. Math. 18 (1972), 457–480.
T. Kamimura, G. Slutzki, Parallel and two-way automata on directed ordered acyclic graphs, Inform. Contr. 49 (1981), 10–51.
H.R. Lewis, C.H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Englewood Cliffs, NJ, 1981.
A. Mazurkiewicz, Basic notions of trace theory, in: Linear Time, Branching Time, and Partial Order in Logics and Models of Concurrency (J.W. de Bakker et al., eds.), Springer LNCS 354 (1989), 285–363.
D.E. Muller, P.E. Schupp, The theory of ends, pushdown automata, and second-order logic, Theor. Comput. Sci. 37 (1985), 51–75.
G.H. Müller (ed.), ω-Bibliography of Mathematical Logic, Vol. III (Model Theory), Springer-Verlag, Berlin, Heidelberg, New York 1987.
M.O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969), 1–35.
D. Seese, The structure of models of decidable monadic theories of graphs, Ann. of Pure Appl. Logic, to appear.
S. Shelah, The monadic theory of order, Ann. Math. 102 (1975), 379–419.
D. Siefkes, Decidable extensions of monadic second-order successor arithmetic, in: “Formale Sprachen und Automatentheorie” (K. Dörr, G. Hotz, eds.), Bibliographisches Institut, Mannheim, 1969, pp. 441–472.
J. Stupp, The lattice-model is recursive in the original model, manuscript, The Hebrew University, 1975.
W. Thomas, The theory of successor with an extra predicate, Math. Ann. 237 (1978), 121–132.
W. Thomas, Automata on infinite objects, in: Handbook of Theoretical Computer Science, Vol. B (J. v. Leeuwen, ed.), Elsevier, Amsterdam 1990, pp. 135–191.
W. Thomas, On logical definability of trace languages, in: Proc. ASMICS Workshop “Free Partially Commutative Monoids” (V. Diekert, ed.), Rep. TUM-I9002, TU München 1990.
Th. Wilke, An Eilenberg Theorem for ∞-languages, in: Proc. ASMICS Workshop “Logics and Recognizable Sets”, Tech. Rep. 9104, Inst. f. Informatik u. Prakt. Math., Universität Kiel, 1991 (Extended Abstract in these Proceedings).
W. Zielonka, Notes on finite asynchronous automata, RAIRO Inform. Theor. 21 (1987), 99–135.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thomas, W. (1991). On logics, tilings, and automata. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds) Automata, Languages and Programming. ICALP 1991. Lecture Notes in Computer Science, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54233-7_154
Download citation
DOI: https://doi.org/10.1007/3-540-54233-7_154
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54233-9
Online ISBN: 978-3-540-47516-3
eBook Packages: Springer Book Archive