Skip to main content

L morphisms: Bounded delay and regularity of ambiguity

  • Formal Languages (Session 14)
  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 510))

Included in the following conference series:

Abstract

We present characterization and decidability results concerning bounded delay of L codes. It is also shown that, for L morphisms (morphisms applied in the “L way”), the sets causing ambiguities are in most cases effectively regular. The results are closely linked with some fundamental issues (bounded delay, elementary morphisms, Defect Theorem) in the theory of codes and combinatorics of words in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Berstel. Fibonacci words-a survey. In G. Rozenberg and A. Salomaa (ed.) The Book of L, Springer-Verlag, Berlin, Heidelberg, New York (1986) 13–27.

    Google Scholar 

  2. J. Berstel and D. Perrin. Theory of Codes. Academic Press, New York (1985).

    Google Scholar 

  3. V. Bruyere. Codes prefixes. Codes a delai de dechiffrage borne. Nouvelle thèse, Université de Mons (1989).

    Google Scholar 

  4. K. Culik II and A. Salomaa. Ambiguity and decision problems concerning number systems. Information and Control 56 (1983) 139–153.

    Google Scholar 

  5. A. Ehrenfeucht and G. Rozenberg. Simplifications of homomorphisms. Information and Control 38 (1978) 298–309.

    Google Scholar 

  6. C. Frougny. Linear numeration systems of order two. Information and Computation 77 (1988) 233–259.

    Google Scholar 

  7. J. Honkala. Unique representation in number systems and L codes. Discrete Applied Mathematics 4 (1982) 229–232.

    Google Scholar 

  8. J. Honkala. Bases and ambiguity of number systems. Theoretical Computer Science 31 (1984) 61–71.

    Google Scholar 

  9. J. Honkala. It is decidable whether or not a permutation-free morphism is an L code. International Journal of Computer Mathematics 22 (1987) 1–11.

    Google Scholar 

  10. J. Honkala. Regularity properties of L ambiguities of morphisms. In preparation.

    Google Scholar 

  11. A. de Luca and A. Restivo. Star-free sets of integers. Theoretical Computer Science 43 (1986) 265–275.

    Google Scholar 

  12. H. Maurer, A. Salomaa and D. Wood. L codes and number systems. Theoretical Computer Science 22 (1983) 331–346.

    Google Scholar 

  13. H. Maurer, A. Salomaa and D. Wood. Bounded delay L codes. IIG Technical Report (1990), submitted for publication.

    Google Scholar 

  14. A. Salomaa. Jewels of Formal Language Theory. Computer Science Press, Rockville (1981).

    Google Scholar 

  15. A. Salomaa. L codes: variations on a theme by MSW. In Ten Years IIG, IIG Report 260 (1988) 218.

    Google Scholar 

  16. A. Salomaa. Public-Key Cryptography. Springer-Verlag, Berlin, Heidelberg, New York (1990).

    Google Scholar 

  17. A. Salomaa. Cryptographic properties of L codes. In preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Javier Leach Albert Burkhard Monien Mario Rodríguez Artalejo

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Honkala, J., Salomaa, A. (1991). L morphisms: Bounded delay and regularity of ambiguity. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds) Automata, Languages and Programming. ICALP 1991. Lecture Notes in Computer Science, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54233-7_164

Download citation

  • DOI: https://doi.org/10.1007/3-540-54233-7_164

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54233-9

  • Online ISBN: 978-3-540-47516-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics