Abstract
We present characterization and decidability results concerning bounded delay of L codes. It is also shown that, for L morphisms (morphisms applied in the “L way”), the sets causing ambiguities are in most cases effectively regular. The results are closely linked with some fundamental issues (bounded delay, elementary morphisms, Defect Theorem) in the theory of codes and combinatorics of words in general.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Berstel. Fibonacci words-a survey. In G. Rozenberg and A. Salomaa (ed.) The Book of L, Springer-Verlag, Berlin, Heidelberg, New York (1986) 13–27.
J. Berstel and D. Perrin. Theory of Codes. Academic Press, New York (1985).
V. Bruyere. Codes prefixes. Codes a delai de dechiffrage borne. Nouvelle thèse, Université de Mons (1989).
K. Culik II and A. Salomaa. Ambiguity and decision problems concerning number systems. Information and Control 56 (1983) 139–153.
A. Ehrenfeucht and G. Rozenberg. Simplifications of homomorphisms. Information and Control 38 (1978) 298–309.
C. Frougny. Linear numeration systems of order two. Information and Computation 77 (1988) 233–259.
J. Honkala. Unique representation in number systems and L codes. Discrete Applied Mathematics 4 (1982) 229–232.
J. Honkala. Bases and ambiguity of number systems. Theoretical Computer Science 31 (1984) 61–71.
J. Honkala. It is decidable whether or not a permutation-free morphism is an L code. International Journal of Computer Mathematics 22 (1987) 1–11.
J. Honkala. Regularity properties of L ambiguities of morphisms. In preparation.
A. de Luca and A. Restivo. Star-free sets of integers. Theoretical Computer Science 43 (1986) 265–275.
H. Maurer, A. Salomaa and D. Wood. L codes and number systems. Theoretical Computer Science 22 (1983) 331–346.
H. Maurer, A. Salomaa and D. Wood. Bounded delay L codes. IIG Technical Report (1990), submitted for publication.
A. Salomaa. Jewels of Formal Language Theory. Computer Science Press, Rockville (1981).
A. Salomaa. L codes: variations on a theme by MSW. In Ten Years IIG, IIG Report 260 (1988) 218.
A. Salomaa. Public-Key Cryptography. Springer-Verlag, Berlin, Heidelberg, New York (1990).
A. Salomaa. Cryptographic properties of L codes. In preparation.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Honkala, J., Salomaa, A. (1991). L morphisms: Bounded delay and regularity of ambiguity. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds) Automata, Languages and Programming. ICALP 1991. Lecture Notes in Computer Science, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54233-7_164
Download citation
DOI: https://doi.org/10.1007/3-540-54233-7_164
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54233-9
Online ISBN: 978-3-540-47516-3
eBook Packages: Springer Book Archive