Skip to main content

Recognizable complex trace languages (abstract)

  • Contributions
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1991 (MFCS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 520))

Abstract

A. Mazurkiewicz defined traces in order to modelize non-sequential processes. Complex traces have been recently introduced as a generalization of both traces and infinite words. This paper studies the family of recognizable complex trace languages. It is proved that this family is closed under boolean operations, concatenation, left and right quotients. Then sufficient conditions ensuring the recognizability of the finite and infinite iterations of a recognizable complex trace language are given. The notion of co-iteration is defined and the Kleene-Ochmanski theorem is generalized to complex traces.

This work has been partly supported by the ESPRIT Basic Research Actions No 3166 (ASMICS) and No 3148 (DEMON) and by the PRC Math-Info.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

7. References

  1. I.J. AALBERSBERG and G. ROZENBERG, “Theory of traces”, Theoretical Computer Science 60, p. 1–82, 1988.

    Google Scholar 

  2. P. BONIZZONI, G. MAURI and G. PIGHIZZINI, “About infinite traces”, Proceedings of the ASMICS Workshop on Partially Commutative Monoids, Tech. Rep. TUM-I 9002, Technische Universität München, 1989.

    Google Scholar 

  3. R. CORI and D. PERRIN, “Automates et commutations partielles”, RAIRO Theoretical Informatics and Applications 19, p. 21–32, 1985.

    Google Scholar 

  4. V. DIEKERT, R. GASTIN, A. PETIT, “Recognizable complex trace languages”, Tech. Rep. 640, LRI, Université Paris Sud, Orsay, France, 1991.

    Google Scholar 

  5. V. DIEKERT, “Combinatorics on traces”, Lecture Notes in Computer Science 454, 1990.

    Google Scholar 

  6. V. DIEKERT, “On the concatenation of infinite traces”, STACS'91, Lecture Notes in Computer Science 480, p. 105–117, 1991.

    Google Scholar 

  7. S. EILENBERG, “Automata, Languages and Machines”, Academic Press, New York, 1974.

    Google Scholar 

  8. M. FLIESS, “Matrices de Hankel”, J. Math. pures et appl. 53, p. 197–224, 1974.

    Google Scholar 

  9. M.P. FLE and G. ROUCAIROL, “Maximal serializability of iterated transactions”, Theoretical Computer Science 38, p. 1–16, 1985.

    Google Scholar 

  10. P. GASTIN, “Infinite traces”, Proceedings of the Spring School of Theoretical Computer Science on “Semantics of concurrency”, Lecture Notes in Computer Science 469, p. 277–308, 1990.

    Google Scholar 

  11. P. GASTIN, “Recognizable and rational languages of finite and infinite traces”, STACS'91, Lecture Notes in Computer Science 480, p. 89–104, 1991.

    Google Scholar 

  12. P. GASTIN, A. PETIT, W. ZIELONKA, “A Kleene theorem for infinite trace languages”, ICALP'91, appear in Lecture Notes in Computer Science, Tech. Rep. 90.93, LITP, Université Paris 6, France, 1991.

    Google Scholar 

  13. P. GASTIN and B. ROZOY, “The Poset of infinitary traces”, to appear in Theoretical Computer Science, Tech. Rep. 91-07, LITP, Université Paris 6, France, 1991.

    Google Scholar 

  14. M.Z. KWIATKOWSKA, “A metric for traces”, Information and Processing Letters 35, p. 129–135, 1990.

    Google Scholar 

  15. A. MAZURKIEWICZ, “Trace theory”, Advanced Course on Petri Nets, Lecture Notes in Computer Science 255, p. 279–324, 1986.

    Google Scholar 

  16. Y. METIVIER, “On recognizable subsets in free partially commutative monoids”, ICALP'86, Lecture Notes in Computer Science 226, p. 254–264, 1986.

    Google Scholar 

  17. E. OCHMANSKI, “Regular behaviour of concurrent systems”, Bulletin of EATCS 27, p. 56–67, October 1985.

    Google Scholar 

  18. D. PERRIN, “Partial commutations”, ICALP'89, Lecture Notes in Computer Science 372, p. 637–651, 1989.

    Google Scholar 

  19. B. ROZOY, “On Traces, Partial Order Sets and Recognizability”, ISCIS V, Cappadocia, Turkey, proceedings to appear, 1990.

    Google Scholar 

  20. J. SAKAROVITCH, “On regular trace languages”, Theoretical Computer Science 52, p. 59–75, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diekert, V., Gastin, P., Petit, A. (1991). Recognizable complex trace languages (abstract). In: Tarlecki, A. (eds) Mathematical Foundations of Computer Science 1991. MFCS 1991. Lecture Notes in Computer Science, vol 520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54345-7_56

Download citation

  • DOI: https://doi.org/10.1007/3-540-54345-7_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54345-9

  • Online ISBN: 978-3-540-47579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics