Skip to main content

Efficient constructions of test sets for regular and context-free languages

  • Contributions
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1991 (MFCS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 520))

  • 131 Accesses

Abstract

We present a simple construction of linear size test sets for regular languages and of single exponential test sets for context free languages. In the case of regular sets the size of our test set is exactly the number of transitions of the automaton. This improves the best known upper bounds: exponential for regular and doubly exponential for context-free languages. We give also an O(n log n) time algorithm for the morphism equivalence and an O(n3log n) time algorithm to test the gsm equivalence on a regular language. An O(n2log n) time algorithm is given to test the equivalence of two deterministic gsm's as well as that of two deterministic finite transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, J.,Culik II, K. and Karhumaki J., Test sets for context free languages and algebraic systems of equations, Inform. Control 52 (1982) 172–186.

    Google Scholar 

  2. Albert, M.H. and Lawrence J., A proof of Ehrenfeucht conjecture, Theoret. Comp. Science 41 (1985) 121–123

    Google Scholar 

  3. Aho A., Ullman J., The theory of parsing translation and compiling, vol.I, Prentice-Hall (1972)

    Google Scholar 

  4. Blattner M., Head T., The decidability of equivalence for deterministic finite transducers, Journal of Comp. and System Sciences 19 (1979) 45–49.

    Google Scholar 

  5. Crochemore M., Rytter W., Parallel computations on strings and arrays, STACS (1990)

    Google Scholar 

  6. Culik II, K., Homomorphisms: Decidability, Equality and Test Sets, in R. Book (ed.), Formal Language Theory, Perspectives and Open Problems (Academic Press, New York, 1980).

    Google Scholar 

  7. Culik II, K. and Salomaa, A., On the decidability of homomorphism equivalence for languages. J. Comput. System Sci. 17 (1978)163–175.

    Google Scholar 

  8. Culik II, K. and Salomaa, A., Test sets and checking words for homomorphism equivalence, J. Comput. System Sci. 20 (1980) 375–395.

    Google Scholar 

  9. Gurari, E M., Ibarra, O H., A note on finite valued and finitely ambiguous transducers, Mathematical Systems Theory 16 (1983) 61–66

    Google Scholar 

  10. Karhumaki, J., The Ehrenfeucht conjecture: a compactness claim for finitely generated free monoids, Theoret.Comp.Science 29 (1984) 285–308

    Google Scholar 

  11. Karhumaki, J., On recent trends in formal language theory, Lect. Notes in Comp. Science 267 (1987) 136–162

    Google Scholar 

  12. Ehrenfeucht, A., Karhumaki, J. and Rozenberg, G., On binary equality sets and a solution to the test set conjecture in the binary case, J. Alg. 85 (1983) 76–85

    Google Scholar 

  13. Hopcroft J., Ullman J., Introduction to the theory of automata, languages and computation, Addison Wesley (1979)

    Google Scholar 

  14. Karp R., Miller R., Rosenberg A., Rapid identification of repeated patterns in strings, arrays and trees, 4th STOC (1972) 125–136

    Google Scholar 

  15. Kosaraju R., Eficient tree pattern matching, 30th FOCS (1989) 178–183

    Google Scholar 

  16. Salomaa, A., Jewels of formal language theory, Russian edition Mir (1986), page 150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karhumaki, J., Rytter, W., Jarominek, S. (1991). Efficient constructions of test sets for regular and context-free languages. In: Tarlecki, A. (eds) Mathematical Foundations of Computer Science 1991. MFCS 1991. Lecture Notes in Computer Science, vol 520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54345-7_68

Download citation

  • DOI: https://doi.org/10.1007/3-540-54345-7_68

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54345-9

  • Online ISBN: 978-3-540-47579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics