Skip to main content

Exploiting extensible DBMS in integrated geographic information systems

  • GIS And Database Systems
  • Conference paper
  • First Online:
Advances in Spatial Databases (SSD 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 525))

Included in the following conference series:

Abstract

A major focus of recent database research has been extensible database management systems (EDBMS). These systems' goal is to accommodate the increasing amount of digitized data that is different in structure, in size and in processing needs from traditional transaction data. Geographic Information Systems (GIS), for example, have developed effective and specialized data representation and analysis techniques for spatial data that must be supported by any underlying DBMS. In this paper we show how EDBMS technology can support GIS applications through powerful data modeling and data management functions that are analogous to, and integrated with, those employed for managing traditional data.

After first examining the needs of GIS and the capabilities of EDBMS, we indicate through a series of related examples how a particular EDBMS (Starburst) can meet these needs. In particular, we will show how Starburst can be used to capture and model GIS data of different types (for example, map, sensor and attribute) from different sources and in different representations. We will show that Starburst can integrate this diversity of data within a single query, and can use its data abstraction capabilities to integrate existing analysis packages with the data. Throughout these examples we will focus on the benefits of integrating this data and processing under a common, optimized query language. We consider this role of the DBMS as integrator an important one, and believe that extensibility at all levels of the DBMS is the key to success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

6. Bibliography

  1. Agrawal, R., L. G. DeMichiel and B. G. Lindsay, Polyglot: An Object-Oriented Type System for Multi-Language Support, Internal working paper (1991).

    Google Scholar 

  2. Understanding GIS — The ARC/INFO Method, ESRI Inc. (1990).

    Google Scholar 

  3. Astrahan, M., et al., System R: Relational approach to database management, ACM Trans. on Database Systems 1:2 (Jun 1976).

    Google Scholar 

  4. Bancilhon, F., et al., The Design and Implementation of O2, an Object-Oriented Database System, OODBS2 Workshop Proceedings (Badmunster, 1988).

    Google Scholar 

  5. Batory, D., GENESIS: An Extensible Database Management System, IEEE Trans. on Software Eng. 10:4 (Nov 1988).

    Google Scholar 

  6. Batory, D., T. Leung and T. Wise, Implementation Concepts for an Extensible Data Model and Data Language, ACM Trans. on Database Systems 13:3 (Sept 1988).

    Google Scholar 

  7. Becker, L. and R. H. Guting, An Optimizer for an Extensible Geometric Database System, Universitaet Dortmund, Fachbereich Informatik, Manuscript (1989).

    Google Scholar 

  8. Berry, C., Hirsch, P., and W. Tuel, Data Base Model for Distribution Facilities, IEEE Trans. of Power Apparatus and Systems 101:2 (Feb 1982) pp. 363–370.

    Google Scholar 

  9. Bolt, B., Earthquakes: A Primer, W. H. Freeman and Co. (San Francisco, 1978).

    Google Scholar 

  10. Carey, M.J., D.J. DeWitt and S.L. Vandenberg, A Data Model and Query Language for EXODUS, Proc. ACM SIGMOD (Chicago, Jun 1988) pp. 413–423.

    Google Scholar 

  11. M. Carey, et al., The EXODUS Extensible DBMS Project: An Overview, In Readings in Object-Oriented Databases, S. Zdonik and D. Maier (Eds.), Morgan-Kaufman. (1989).

    Google Scholar 

  12. Carey, M. et al., An Incremental Join Attachment for Starburst, Proc. 16th VLDB (Brisbane, Aug 1990).

    Google Scholar 

  13. Carey, M. and L. Haas, Extensible Database Management Systems, ACM SIGMOD Record 19:4 (Dec 1990).

    Google Scholar 

  14. Ceri, S. and J. Widom, Deriving Production Rules for Incremental View Maintenance, Proc. 17th VLDB (Barcelona, Aug 1991).

    Google Scholar 

  15. Database Engineering, Special Issue on Extensible Database Systems, M. Carey, ed. 10:2 (Jun 1987).

    Google Scholar 

  16. Dadam, P., et al., A DBMS Prototype to Support Extended NF2 Relations: An Integrated View on Flat Tables and Hierarchies, Proc. ACM SIGMOD (Washington, May 1986) pp. 356–367.

    Google Scholar 

  17. C. Date, A Critique of the SQL Database, ACM SIGMOD Record (1984).

    Google Scholar 

  18. Date, D.J., Relational Databases: Selected Writings, Addison-Wesley (1986).

    Google Scholar 

  19. Dayal,U. and J. Smith, Probe: A Knowledge-Oriented Database Management System, In On Knowledge Base Management Systems: Integrating Artificial Intelligence and Database Technologies, Springer Verlag (Brodie & Mylopoulos (eds.), 1986).

    Google Scholar 

  20. C. Faloutsos, Multiattribute Hashing Using Gray Codes, Proc. ACM SIGMOD (Washington., May 1985) pp. 227–238.

    Google Scholar 

  21. C. Faloutsos and S. Roseman, Fractals for Secondary Key Retrieval, Proc. ACM PODS (Mar 1989) pp. 247–252.

    Google Scholar 

  22. Gardarin, G., et.al., Managing Complex Objects in an Extensible Relational DBMS, Proc. 15th VLDB (Amsterdam, Aug 1989).

    Google Scholar 

  23. Graefe, G. and D. DeWitt, The EXODUS Optimizer Generator, Proc. ACM SIGMOD (San Francisco, May 1987).

    Google Scholar 

  24. Guenther, O., Efficient Structures for Geometric Data Management, Lecture Notes in Computer Science, Springer-Verlag 337 (1988).

    Google Scholar 

  25. Guenther, O. and A. Buchmann, Research Issues in Spatial Databases, ACM SIGMOD Record 19:4 (Dec 1990).

    Google Scholar 

  26. Guting, R. H., GRAL: An Extensible Relational Database System for Geometric Applications, Proc. 15th VLDB (Brighton, 1989).

    Google Scholar 

  27. Guttman, A., R-Trees: A Dynamic Index Structure for Spatial Searching, Proc. ACM SIGMOD (Boston, Jun 1984).

    Google Scholar 

  28. Haas, L.M., et al., Extensible Query Processing in Starburst, Proc. ACM SIGMOD (Portland, May 1989) pp. 377–388.

    Google Scholar 

  29. Haas, L. M., et al., Starburst Mid-Flight: As the Dust Clears, IEEE Trans. on Knowledge and Data Engineering 2:1 (Mar 1990).

    Google Scholar 

  30. Hanson, E.N., An Initial Report on the Design of Ariel: A DBMS with an Integrated Production Rule System, ACM SIGMOD Record 18:3 (Sept 1989) pp. 12–19.

    Google Scholar 

  31. Hasan, W. and H. Pirahesh, A Rule System for Query Rewrite Optimization in Starburst, IBM Research Report RJ6367 (Aug 1988).

    Google Scholar 

  32. R. Kasturi, et.al., Map Data Processing in Geographic Information Systems, IEEE Computer Magazine 22:12 (Dec 1989) pp. 10–21.

    Google Scholar 

  33. Kim, W., et al., Architecture of the ORION Next-Generation Database System, IEEE Trans. on Knowledge and Data Engineering 2:1 (Mar 1990).

    Google Scholar 

  34. Lee, M., J.C. Freytag and G. Lohman, Implementing an Interpreter for Functional Rules in a Query Optimizer, Proc. 14th VLDB (Los Angeles, Aug 1988).

    Google Scholar 

  35. Lehman, T. and B. Lindsay, The Starburst Long Field Manager, Proc. 15th VLDB (Brighton, 1989).

    Google Scholar 

  36. Lindsay, B., J. McPherson and H. Pirahesh, A Data Management Extension Architecture, Proc. ACM SIGMOD (San Francisco, May 1987).

    Google Scholar 

  37. Lindsay, B. and L. Haas, Extensibility in the Starburst Experimental Database System, Database Systems of the 90s, Proc. of Int'l Symposium, Berlin, FRG, Springer-Verlag 466 (A. Blaser, ed., Nov 1990).

    Google Scholar 

  38. Lohman, G., et al., Remotely-Sensed Geophysical Databases: Experience and Implications for Generalized DBMS, Proc. ACM SIGMOD (San Jose, 1983) pp. 146–160.

    Google Scholar 

  39. Lohman, G., Grammar-like Functional Rules for Representing Query Optimization Alternatives, Proc. ACM SIGMOD (Chicago, Jun 1988).

    Google Scholar 

  40. Lorie, R. and W. Plouffe, Complex Objects and Their Use in Design Transactions, Proc. ACM SIGMOD, Engineering Design Applications (San Jose, May 1983) pp. 115–121.

    Google Scholar 

  41. Lorie, R. and H-J. Schek, On Dynamically Defined Complex Objects and SQL, Proc. Int'l Workshop on Object-Oriented Databases (W.Germany, 1988).

    Google Scholar 

  42. Lorie, R., The Use of a Complex Object Language in Geographic Data Management, Design and Implementation of Large Spatial Databases, Second Symposium SSD Proceedings, Springer-Verlag (Aug 1991).

    Google Scholar 

  43. Maier, D., J. Stein, A. Otis and A. Purdy, Development of an Object-Oriented DBMS, Proc. ACM OOPSLA (Portland, Sept 1986).

    Google Scholar 

  44. F. Manola and J. Orenstein, Toward a General Spatial Data Model for an Object-Oriented DBMS, Proc. 12th VLDB (Kyoto, Aug 1986) pp. 328–335.

    Google Scholar 

  45. McCarthy, D.R. and U. Dayal, The Architecture of an Active Database Management System, Proc. ACM SIGMOD (Portland, May 1989) pp. 215–224.

    Google Scholar 

  46. Mumick I.S., et al., Magic is Relevant, Proc. ACM SIGMOD (Atlantic City, Jun 1990) pp. 247–258.

    Google Scholar 

  47. Nievergelt, J., H. Hinterberger and K. Sevcik, The Grid-File: An Adaptable Symmetric Multikey File Structure, ACM Trans. on Database Systems 9:1 (Mar 1984).

    Google Scholar 

  48. J. Nievergelt, 7 +-2 Criteria for Assessing and Comparing Spatial Data Structures, Design and Implementation of Large Spatial Databases, First Symposium SSD Proceedings, Springer-Verlag (1989) pp. 3–28.

    Google Scholar 

  49. Ong, J, Fogg. D. and Stonebraker, M., Implementation of Data Abstraction in the Relational Database System INGRES, ACM SIGMOD Record 14:1 (Mar 1984).

    Google Scholar 

  50. Ono, K and G.M. Lohman, Measuring the Complexity of Join Enumeration in Query Optimization, Proc. 16th VLDB (Brisbane, Aug 1990).

    Google Scholar 

  51. van Oosterom, P. and J. van den Bos, An Object-Oriented Approach to the Design of Geographic Information Systems, Design and Implementation of Large Spatial Databases, First Symposium SSD Proceedings, Springer-Verlag (1989) pp. 255–269.

    Google Scholar 

  52. J. Orenstein, Spatial Query Processing in an Object-Oriented Database System, Proc. ACM SIGMOD (1986) pp. 326–336.

    Google Scholar 

  53. J. Orenstein and F. Manola, Probe Spatial Data Modeling and Query Processing in an Image Database Application, IEEE Trans. on Software Engineering 14:5 (1988) pp. 611–629.

    Google Scholar 

  54. Osborne, S and T. Heaven, The Design of a Relational Database Systems with Abstract Data Types for Domains, ACM Trans. on Database Systems 11:3 (Sept 1986) pp. 357–373.

    Google Scholar 

  55. Richardson, J., Carey, M. and Schuh, D., The Design of the E Programming Language, Tech. Rep. No. 824, Computer Sciences Dept., Univ. of Wisconsin (Feb 1989).

    Google Scholar 

  56. H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys 16:2 (Jun 1984) pp. 187–260.

    Google Scholar 

  57. H. Samet et.al., A Geographic Information System Using Quadtrees, Pattern Recognition 17:6 (1984) pp. 647–656.

    Google Scholar 

  58. Schek, H-J, et al., The DASDBS Project: Objectives, Experiences and Future Prospects, IEEE Trans. on Knowledge and Data Engineering 2:1 (Mar 1990).

    Google Scholar 

  59. T. Smith, et al., KBGIS-II — A Knowledge-based Geographical Information System, Int'l Geographic Information Systems 1:2 (1987) pp. 149–172.

    Google Scholar 

  60. Snodgrass, R., Temporal Databases: Status and Research Directions, ACM SIGMOD Record 19:4 (Dec 1990).

    Google Scholar 

  61. Stonebraker, M., Inclusion of New Types in Relational Database Systems, 2nd Int'l Conf. on Data Engineering (Los Angeles, Feb 1986) pp. 262–269.

    Google Scholar 

  62. Stonebraker, M., et al., On Rules, Procedures, Caching and Views in Data Base Systems, Proc. ACM SIGMOD (Atlantic City, May 1990) pp. 281–290.

    Google Scholar 

  63. Stonebraker, M., Rowe, L., and Hirohama, M., The Implementation of POSTGRES, IEEE Trans. on Knowledge and Data Engineering 2:1 (Mar 1990).

    Google Scholar 

  64. SPANS: SPatial ANalysis System, TYDAC Technologies: Corporate Overview (1990).

    Google Scholar 

  65. Widom, J. and S.J. Finkelstein, Set-Oriented Production Rules in Relational Database Systems, Proc. ACM SIGMOD (Atlantic City, May 1990) pp. 259–270.

    Google Scholar 

  66. Widom, J., B. Lindsay and R. Cochrane, Implementing Set-Oriented Production Rules as an Extension to Starburst, Proc. 17th VLDB (Barcelona, Aug 1991).

    Google Scholar 

  67. Wilms, P., et al., Incorporating Data Types in an Extensible Database Architecture, 3rd Int'l Conference on Data and Knowledge Bases (Jerusalem, June 1988).

    Google Scholar 

  68. Wolf, A., The DASDBS GEO-Kernel, Concepts, Experiences, and the Second Step, Design and Implementation of Large Spatial Databases, First Symposium SSD Proceedings, Springer-Verlag (1989) pp. 67–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oliver Günther Hans-Jörg Schek

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haas, L.M., Cody, W.F. (1991). Exploiting extensible DBMS in integrated geographic information systems. In: Günther, O., Schek, HJ. (eds) Advances in Spatial Databases. SSD 1991. Lecture Notes in Computer Science, vol 525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54414-3_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-54414-3_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54414-2

  • Online ISBN: 978-3-540-47615-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics