

Edinburgh Research Explorer

A Kernel Specification Formalism with Higher-Order
Parameterisation

Citation for published version:
Sannella, D & Tarlecki, A 1991, A Kernel Specification Formalism with Higher-Order Parameterisation. in
Recent Trends in Data Type Specification: 7th Workshop on Specification of Abstact Data Types
Wusterhausen/Dosse, Germany, April 17–20, 1990 Proceedings. Lecture Notes in Computer Science, vol.
534, Springer-Verlag GmbH, pp. 274-296. https://doi.org/10.1007/3-540-54496-8_15

Digital Object Identifier (DOI):
10.1007/3-540-54496-8_15

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Recent Trends in Data Type Specification

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1007/3-540-54496-8_15
https://doi.org/10.1007/3-540-54496-8_15
https://www.research.ed.ac.uk/en/publications/f7ded3a2-265f-4e25-9295-e6ad0d8d281b

A kernel speci�cation formalism with higher�order parameterisation
�

Donald Sannella
y

Andrzej Tarlecki
z

Abstract

A speci�cation formalism with parameterisation of an arbitrary order is presented� It is
given a denotational�style semantics� accompanied by an inference system for proving that
an object satis�es a speci�cation� The inference system incorporates� but is not limited
to� a clearly identi�ed type�checking component�
Special e�ort is made to carefully distinguish between parameterised speci�cations�

which denote functions yielding classes of objects� and speci�cations of parameterised
objects� which denote classes of functions yielding objects� To deal with both of these in
a uniform framework� it was convenient to view speci�cations� which specify objects� as
objects themselves� and to introduce a notion of a speci�cation of speci�cations�
The formalism includes the basic speci�cation�building operations of the ASL speci�c�

ation language� This choice� however� is orthogonal to the new ideas presented� The
formalism is also institution�independent� although this issue is not explicitly discussed at
any length here�

� Introduction

The most basic assumption of work on algebraic speci�cation is that software systems are modelled
as algebras� The signature of the algebra gives the names of data types and of operations� and the
algebra itself gives the semantics of the particular realisations of these data types and operations in
the system� Consequently� to specify a software system viewed in this way means to give a signature
and de�ne a class of algebras over this signature� that is� describe a class of admissible realisations of
the types and operations�
The standard way to give a speci�cation of a system in work on algebraic speci�cation is to present

a list of axioms over a given signature and describe in this way the properties that the operations of
the system are to satisfy� This view of algebraic speci�cation is perhaps the simplest possible� but
has a number of disadvantages� Most notably� any speci�cation of a real software system given in this
style would comprise a very long� unstructured� and hence unmanageable list of axioms�
An obvious solution to this problem is to devise a speci�cation language to build speci�cations in

a structured fashion� using some speci�cation�building operations to form complex speci�cations by
putting together smaller and presumably well�understood pieces� The need for structure in speci�c�
ations is universally recognized� and mechanisms for structuring speci�cations appear in all modern
algebraic speci�cation languages including CLEAR �BG �	
� CIP�L �Bau ��
� ASL �SW ��
� �Wir �

�
ACT ONE �EM ��
� PLUSS �BGM ��
 and the Larch Shared Language �GHW ��
�
An important structuring mechanism is parameterisation� A parameterised speci�cation P may

be applied to any non�parameterised speci�cation SParg �tting a certain signature �par �or parameter
speci�cation SPpar� to yield a speci�cation P �SParg �� Hence� parameterised speci�cations are trans�
formations mapping �argument� speci�cations to �result� speci�cations� A standard example is a spe�
ci�cation Stack�of�X which takes a speci�cation of stack elements and produces a speci�cation of stacks

�Much of the material presented here has been included in a very preliminary form in Section � of �SST ����
yLFCS� Department of Computer Science� University of Edinburgh� Edinburgh� Scotland�
zInstitute of Computer Science� Polish Academy of Sciences� Warsaw� Poland�

�

g p g g p p
tion mechanism� although the exact technicalities vary considerably�� In some algebraic speci�cation
frameworks� parameterisation is implicit in the sense that no distinction is made between paramet�
erised and non�parameterised speci�cations �see for example LOOK �ETLZ ��
� ASPIK �Vo� ��
 and
the uni�ed algebra framework �Mos ��a
� �Mos ��b
� but the idea is the same�
Quite similarly� adequate structuring mechanisms are needed to organise programs to facilitate

their development and understanding �and to enable separate compilation of program components��
Many modern programming languages� beginning with Simula �DMN �	
 and including Modula��
�Wirth ��
� CLU �Lis ��
� Ada �Ada �	
 and Standard ML �MTH �	
 provide some notion of a program
module to allow the programmer to structure the code being written� Again� an important structuring
mechanism here is parameterisation� A parameterised program module F �an ML functor �MacQ �

�
cf� �Gog ��
� may be applied to any non�parameterised program module Aarg matching a given import
interface Apar� The result is a non�parameterised program module F �Aarg�� a version of F in which the
types and functions in Apar have been instantiated to the matching types and functions in Aarg � An
example of a parameterised program module is a parser module which takes a lexical analyser module
as argument� Since we model programs as algebras� such parameterised program modules are naturally
modelled as functions mapping �argument� algebras to �result� algebras� i�e�� algebras parameterised
by other algebras� Somewhat informally� we will refer to such objects as parametric algebras �cf�
algebra modules in OBSCURE �LL ��
�� It is important to realise that such parametric algebras
model self�contained programming units� and hence may correspond to independent programming
tasks in the process of development of a software system�
A common drawback of the speci�cation languages mentioned above is that they are predomin�

antly concerned with speci�cations of non�parametric algebras without any provision for the struc�
turing mechanisms used to construct complex programs �algebras� in a modular way� In particular�
they do not provide any explicit concept of a speci�cation of parametric algebras� In some speci�ca�
tion frameworks this comes in� but only implicitly as an alternative interpretation of the concept of
parameterised speci�cation used in the formalism� For example� the �parameterised speci�cations� of
ACT ONE �EM ��
 are interpreted both as means of transforming speci�cations� i�e�� parameterised
speci�cations in our sense� and as a description of a certain functor on algebras� i�e�� of a parametric
algebra in our sense� Unfortunately� this dual view of �parameterised speci�cations� imposes in e�ect
a requirement that the structure of a program implementing a speci�cation� composed of �possibly
parametric� algebras� must follow the structure of the speci�cation� composed of �possibly paramet�
erised� speci�cations� This not only violates the principle that a requirements speci�cation is to
describe the what without indicating the how of the system� but also is not acceptable from a practical
point of view �see �FJ �	
 for a realistic example of a speci�cation with a structure entirely di�erent
from the structure of a software system it describes�� We have discussed this issue in much detail in
�SST �	
� where our conclusion was summarised by the following slogan�

parameterised �program speci�cation� �� �parameterised program� speci�cation

In short� we want a speci�cation language where one can formulate both parameterised speci�cations
on one hand and speci�cations of parameterised programs on the other�
Another idea for which we have argued in �SST �	
 is an extensive use of higher�order paramet�

erisation� Higher�order parameterisation arises not only because higher�order parametric algebras
and their speci�cations are natural to consider from the semantic point of view� but more importantly
because they are desirable from the methodological point of view� the use of higher�order paramet�
erisation gives more �exibility in the process of systematic software development� In our opinion�
this issue again has not been given proper attention in the speci�cation languages mentioned above�

�In particular� the phrase 	parameterised speci
cation� has been reserved in some work on algebraic speci
cation
�see e�g� �Ehr
�� or �EKTWW
��� for a formal object �a pair of speci
cations� which determines a parameterised
speci
cation in our sense via so called 	parameter passing�� We could not think of a better phrase to name 	speci
cations
that are parameterised by other speci
cations�� hence the terminological clash�

�

p y g y g �
example� such a possibility exists in COLD�K �FJKR ��
 and has been considered for ASL �SW ��
�
�ST ��
�� We believe that all the bene�ts of higher�order parameterisation come to light only in the
context of a careful distinction between parameterised speci�cations and speci�cations of parametric
algebras�
In this paper we present our �rst attempt to incorporate the two methodological ideas sketched

above into a speci�cation language� We propose here a speci�cation formalism which builds on
the simple yet powerful speci�cation�building operations of ASL �this choice is not essential for the
development presented in this paper� and incorporates a parameterisation mechanism capable of
describing parametric algebras of an arbitrary order and their speci�cations� as well as parameterised
speci�cations of an arbitrary order� It was possible to use a single parameterisation mechanism
in all these situations because our formalism gives arbitrary speci�cations the status of �rst�level
objects� Thus� speci�cations which are primarily used to specify �simpler� objects of the language�
are themselves treated also as objects� which in turn may be speci�ed� passed as arguments to functions
and arise as results of function application�
The parameterisation mechanism added is inspired by the ��abstraction mechanism of typed ��

calculi �thus� it generalises the original parameterisation mechanism of ASL �SW ��
� �ST ��
�� It
is important to realise that although the objects of the formalism we propose look like typed ��
expressions� the underlying intuition is slightly di�erent� We like the phrase speci�ed ��calculus as a
possible indication of the di�erence� In typed ��calculi� the admissible arguments of a function de�ned
by a ��expression are described just by stating their required type� it is intuitively expected that it
will be easy to determine statically whether or not application of such a function to an argument is
well�formed� This is in contrast with the situation in speci�ed ��calculi such as the formalism we
propose� the admissible arguments are speci�ed here rather than just being characterised by a type�
and so a full�blown veri�cation process is required to determine well�formedness of application�
The paper is organised as follows� Section � lists the usual algebraic prerequisites we assume the

reader to be familiar with and recalls� for the sake of completeness of the de�nitions given later� the
speci�cation�building operations of ASL� A brief informal description of the language we propose�
including its syntax� is given in Section �� A denotational�style semantics of the language is in
Section �� Section � studies the well�formedness and veri�cation of the objects of the language� We
point out that the two are necessarily intertwined� and present a formal system to derive judgements of
the form Obj � SP stating that an object Obj satis�es a speci�cation SP � Some basic properties of the
system are then proved in the second part of the section� Although it is impossible to determine well�
formedness of objects of the language using purely �static� type�checking technology� the veri�cation
process as presented in Section � contains an intuitively clear type�checking component� We introduce
a notion of type appropriate for our language in Section
� and then use it to separate this �type�
checking� component from the veri�cation process� Finally� a summary of the topics presented in the
paper and some discussion of directions for further work is given in Section ��

� Preliminaries

Throughout the paper we assume that the reader is familiar with the basic concepts of logic and uni�
versal algebra� In particular we will freely use the notions of� algebraic many�sorted signature� usually
denoted by �� ��� ��� etc�� algebraic signature morphism � � �� ��� ��algebra� ��homomorphism� ��
isomorphism� ��equation� �rst�order ��sentence �the set of all ��sentences will be denoted by Sen�����
and satisfaction relation between ��algebras and ��sentences� These all have the usual de�nitions �see
e�g� �ST ��
� and a standard� hopefully self�explanatory notation is used to write them down� We will
also use the standard notation and concepts of ��calculus� in particular� free and bound occurrences
of variables� substitution� ��reduction etc�� cf� �Bar ��
�
For any signature �� the class of all ��algebras is denoted by Alg���� We will identify this with

the category of ��algebras and ��homomorphisms whenever convenient� If � � �� �� is a signature

�

p � g� � g� � y �

� is sometimes used when � is obvious��
The most essential feature of any speci�cation formalism is that every speci�cation SP over a given

signature � �we will say that SP is a ��speci�cation� unambiguously determines a class of ��algebras
�sometimes referred to as models of the speci�cation� ��SP

 � Pow �Alg������ See �ST ��
 for a more
extensive discussion of the semantics of speci�cations�
As a starting point for the presentation of speci�cations in this paper� we recall here the simple yet

powerful speci�cation�building operations de�ned in �ST ��
 �with the slight di�erence that signatures
are regarded as speci�cations in their own right here with impose � on � in place of h���i�� These
were in turn based on the ASL speci�cation language �SW ��
� �Wir �

� Even though the particular
choice of speci�cation�building operations is not important for the purposes of this paper� we give
here their full formal de�nitions to make the paper self�contained� We refer the reader to �ST ��
 for
a full explanation of the motivation� intuitive understanding and technical machinery behind these
de�nitions�

� If � is a signature� then � is a ��speci�cation with the semantics�

���

 � Alg ���

� If SP is a ��speci�cation and � is a set of ��sentences� then impose � on SP is a ��
speci�cation with the semantics�

��impose � on SP

 � fA � ��SP

 j A j� �g

� If SP is a ��speci�cation and � � �� � � is a signature morphism� then derive from SP by �
is a ���speci�cation with the semantics�

��derive from SP by �

 � fA � j A � ��SP

g

� If SP is a ��speci�cation and � � � � �� is a signature morphism� then translate SP by �
is a ���speci�cation with the semantics�

��translate SP by �

 � fA
�
� Alg��

�
� j A

�

� � ��SP

g

� If SP and SP � are ��speci�cations� then SP � SP � is a ��speci�cation with the semantics�

��SP � SP �

 � ��SP

� ��SP
�

� If SP is a ��speci�cation and � � �� � � is a signature morphism� then minimal SP wrt �
is a ��speci�cation with the semantics�

��minimal SP wrt �

 � fA � ��SP

 j A is minimal in Alg��� w�r�t� �g�

where a ��algebra A is minimal w�r�t� � if it has no non�trivial subalgebra with an isomorphic
��reduct �cf� �ST ��
��

� If SP is a ��speci�cation� then iso�close SP is a ��speci�cation with the semantics�

��iso�close SP

 � fA � Alg��� j A is isomorphic to B for some B � ��SP

g

�
Pow�X�� for any class X� denotes the 	class of all subclasses� of X� This raises obvious foundational di�culties�

We disregard these here� as they may be resolved in a number of standard ways� For example� for the purposes of
this paper we could assume that algebras are built within an appropriate universal set� and deal with sets� rather than
classes� of algebras�

�

p � g p �
then abstract SP wrt �� via � is a ��speci�cation with the semantics�

��abstract SP wrt �� via �

 � fA � Alg��� j A ��

��
B for some B � ��SP

g

where A ��

��
B means that A is observationally equivalent to B w�r�t� �� via �� The concept of

observational equivalence used here covers as special cases the di�erent notions of behavioural
equivalence with respect to a set of observable sorts which appear in the literature� The set ��

contains formulae over � �with �free variables� introduced by �� intended to characterise the
relevant aspects of the �behaviour� of ��algebras� If no free variables are involved �� is the
identity morphism on �� then A ��

��
B holds i� A and B satisfy exactly the same sentences

from ��� �See �ST ��
� �ST ��
 for details��

The above de�nitions were given in �ST ��
 in the framework of an arbitrary institution �GB ��
�
This means that the speci�cation�building operations de�ned above are actually independent of the
underlying logical system� that is� of the particular de�nitions of the basic notions of signature� algebra�
sentence and satisfaction relation� This is an important advantage� we can use the operations in an
arbitrary logical system �formalised as an institution� without having to rede�ne them each time we
decide to modify the underlying notions� see �GB ��
 and �ST ��
 for a discussion of this issue�

� Introducing the language

The speci�cation formalism we develop in this paper extends in an essential way the kernel speci�c�
ation language presented in �ST ��
 by adding a simple yet powerful parameterisation mechanism
which allows us to de�ne and specify parametric algebras of arbitrary order� as well as extending the
mechanism in �ST ��
 for de�ning �rst�order parameterised speci�cations to the higher�order case�
This is achieved by viewing speci�cations on one hand as speci�cations of objects such as algebras or
parametric algebras� and on the other hand as objects themselves to which functions �i�e� paramet�
erised speci�cations� may be applied� Consequently� the language allows speci�cations to be speci�ed
by other speci�cations� much as in CLEAR �BG �	
 or ACT ONE �EM ��
 parameterisation where
the parameter speci�cation speci�es the permissible argument speci�cations�
The view of speci�cations as objects enables the use of a uniform parameterisation mechanism�

functions de�ned bymeans of ��abstraction� to express both parameterised speci�cations and paramet�
ric algebras� There is also a uniform speci�cation mechanism to specify such functions� ��abstraction
�Cartesian�product speci�cation� closely related to the dependent function type constructor in e�g�
NuPRL �Con �

�� This may be used to specify �higher�order� parametric algebras as well as �higher�
order� parameterised speci�cations� There is no strict separation between levels� which means that it
is possible to intermix parameterisation of objects and parameterisation of speci�cations� obtaining
�for example� algebras which are parametric on parameterised speci�cations or speci�cations which
are parameterised by parametric algebras� We have not yet explored the practical implications of this
technically natural generalisation�
The language does not include notation for describing algebras� signatures� signature morphisms�

or sets of sentences� Such notation must be provided separately� for example as done for ASL in
�Wir �

� The de�nition of the language is independent of this notation� moreover� it is essentially
institution independent� with all the advantages indicated in �GB ��
� �ST ��
�
The language has just one syntactic category of interest� which includes both speci�cations and

�This is slightly di�erent from the de
nition in �ST

��

�

j p � y

Object �

Signature

j impose Sentences on Object

j derive from Object by Signature�morphism

j translate Object by Signature�morphism

j Object �Object

j minimal Object wrt Signature�morphism

j iso�close Object

j abstract Object wrt Sentences via Signature�morphism

���������������
��������������

Simple speci�cations

j �Variable�Object�Object
j fObjectg
j Spec�Object�

���
�� Other speci�cations

j Variable

j Algebra�expression

j �Variable�Object�Object
j Object�Object�

�����
����

Other objects

As usual� we have omitted the �syntax� of variables� The other syntactic categories of the language
above are algebra expressions� signatures� sets of sentences and signature morphisms as mentioned
above� the details of these are not essential to the main ideas of this paper and we assume that they
are provided externally� Algebra expressions may contain occurrences of object variables� We will
assume� however� that variables do not occur in signatures� signature morphisms and sentences� which
seems necessary to keep the formalism institution�independent� This requirement may seem overly
restrictive� as it seems to disallow the components of a particular algebra to be used in axioms� one
would expect to be able to write something like �X��� �� � �X�op � � ��� Fortunately� using the power of
the speci�cation�building operations included in the language� it is possible to de�ne a more convenient
notation which circumvents this restriction �see Appendix A in �SST �	
��
We have used the standard notation for �� and ��objects to suggest the usual notions of a free

and of a bound occurrence of a variable in a term of the language� as well as of a closed term�
As usual� we identify terms which di�er only in their choice of bound variable names� We de�ne
substitution of objects for variables in the usual way� Obj�Obj��X
 stands for the result of substitut�
ing Obj� for all free occurrences of X in Obj in such a way that no unintended clashes of variable
names take place� This also de�nes the usual notion of ��reduction between objects of the language�
�� � � ��X�SP� Obj��Obj�� � � ���� �� � �Obj�Obj

��X
 � � ��� Then���

�
is the re�exive and transitive closure

of ���
The �rst eight kinds of speci�cations listed above �simple speci�cations� are taken directly from

�ST ��
 �see Section ��� The particular choice of these eight operations is orthogonal to the rest of
the language and will not interfere with the further development in this paper� The other three kinds
of speci�cations are new� ��abstraction is used to specify parametric objects� To make this work� it
must be possible to use objects in speci�cations� The f g operation provides this possibility by allow�
ing objects to be turned into �very tight� speci�cations� The next clause allows a speci�cation which
de�nes a class C of objects to be turned into a speci�cation which de�nes the class of speci�cations
de�ning subclasses of C� This is compatible with the use of parameter speci�cations in parameterised
speci�cations as in CLEAR and ACT ONE� For example� the declaration proc P �X � SP � � � � � in
CLEAR introduces a parameterised speci�cation P � where the parameter �or requirement� speci�ca�
tion SP describes the admissible arguments of P � Namely� if SP de�nes a class of objects C � ��SP

then P may be applied to argument speci�cations SParg de�ning a subclass of C� i�e� such that
��SParg

 � ��SP

 �we disregard the parameter �tting mechanism�� In our formalism this would be
written as P � �X�Spec�SP �� � � ��
The syntax of other objects is self�explanatory�
The richness of the language may lead to some di!culty in recognizing familiar concepts which

appear here in a generalised form� The following comments might help to clarify matters�

p � j � j j
algebras� then this speci�cation is a speci�cation in the usual sense�

� �X� � � � � � � � denotes a class of mappings from objects to objects� If these objects are algebras�
then this is a class of parametric algebras� i�e� a speci�cation of a parameterised program�

� �X� � � � � � � � denotes a mapping from objects to objects� If these objects are speci�cations in
the usual sense� then this is a parameterised speci�cation�

The semantics of the language� presented in the next section� gives more substance to the informal
comments above concerning the intended denotations of certain phrases�
As pointed out above� we assume that the sublanguage of expressions de�ning algebras is to be

supplied externally �with a corresponding semantics see Section ��� Even under this assumption�
it would be possible to include institution�independent mechanisms for building algebras from other
algebras �amalgamation� reduct� free extension� etc�� in the language� which could lead to a powerful
and uniform calculus of speci�ed modular programs� This is an interesting possibility for future work
but it is outside the scope of this paper�

� Semantics

We have chosen the syntax for objects in the language so that their semantics should be intuitively
clear� We formalise it by de�ning for any environment �� which assigns meanings to variables� a
partial function ��

� mapping an object Obj to its meaning ��Obj

�� It is de�ned below by structural
induction on the syntax of objects� The use of the meta�variable SP instead of Obj in some places
below is intended to be suggestive �of objects denoting object classes� used as speci�cations� but has
no formal meaning� This convention will be used throughout the rest of the paper�

Simple speci�cations�

���

� � Alg���
��impose � on SP

� � fA � ��SP

� j A j� �g

if ��SP

� � Alg ��� and � � Sen��� for some signature �
��derive from SP by �

� � fA � j A � ��SP

�g

if ��SP

� � Alg ��� and � � �� � � is a signature morphism for some signatures � and ��

� � � similarly for the other forms� based on the semantics given in Section � � � �

Other speci�cations�

��fObjg

� � f��Obj

�g
if ��Obj

� is de�ned

���X�SP� SP �

� � �v���SP �����SP
�

��v�X
��	

if ��SP

� is a class of values and for each v � ��SP

�� ��SP �

��v�X
 is a class of values
��Spec�SP �

� � Pow ���SP

��

if ��SP

� is a class of values

�

��X

� � ��X�
��A

� � � � �assumed to be given externally � � �

���X�SP� Obj

� � fhv 	� ��Obj

��v�X
	i j v � ��SP

�g
if ��SP

� is a class of values and for each v � ��SP

�� ��Obj

��v�X
 is de�ned

��Obj�Obj��

� � ��Obj

����Obj �

��
if ��Obj

� is a function and ��Obj�

� is a value in the domain of this function

In the above de�nition� it is understood that a condition like ���SP

� � Alg ���� implicitly requires
that ��SP

� is de�ned� An object"s meaning is unde�ned unless the side�condition of the appropriate
de�nitional clause holds�
It is easy to see that the semantics of an object of the language depends only on the part of the

environment which assigns meanings to variables which occur free in the object� In particular� the
meaning of a closed object is independent from the environment� That is� for any closed object Obj
and environments � and ��� ��Obj

� is de�ned if and only if ��Obj

�� is de�ned and if they are de�ned
then ��Obj

� � ��Obj

��� This allows us to omit the environment when dealing with the semantics of
closed objects and write simply ��Obj

 to stand for ��Obj

� for any environment � whenever Obj is
closed�
Of course� the above remark is true only provided that the sublanguage of algebra expressions and

its semantics assumed to be given externally have this property� In the following� we will take this for
granted� We will also assume that the sublanguage satis�es the following substitutivity property� for
any algebra expression A� variable X and object Obj� for any environment � such that v � ��Obj

�
is de�ned� ��A�Obj�X

� is de�ned if and only if ��A

��v�X
 is de�ned� and if they are de�ned then
they are the same� This ensures that the following expected fact holds for our language �the standard
proof by induction on the structure of objects is omitted��

Fact ��� For any objects Obj� Obj � and variable X� for any environment � such that v� � ��Obj�

� is
de�ned� ��Obj�Obj ��X

� is de�ned if and only if ��Obj

��v��X
 is de�ned� and if they are de�ned then

��Obj�Obj
�
�X

� � ��Obj

��v

�
�X

�

Corollary ��� ��reduction preserves the meaning of objects� That is� for any objects Obj and Obj�

such that Obj��

�
Obj�� for any environment �� if ��Obj

� is de�ned then so is ��Obj�

� and ��Obj

� �

��Obj �

�� �

The above semantics is overly permissive in comparison with the semantics given to simple speci�c�
ations in Section � and �ST ��
 in the sense that it assigns meanings to some speci�cations which would
be considered ill�formed according to the de�nitions given there� This is caused by the �polymorphic�
character of the empty class of algebras� For example� if SP is an inconsistent ��speci�cation �i�e��
assuming SP is closed� ��SP

 �
� then impose � on SP has a well�de�ned meaning �the empty
class of algebras� even if � is a set of sentences over a signature which is completely unrelated to ��
Generalising the treatment in Section � in the present context is possible via the notion of type to be
introduced in Section
� However� the use of speci�cations �rather than signatures and types� to con�
strain formal parameters makes such a type system insu!ciently descriptive to ensure well�formedness
of speci�cations� For this� full�blown veri�cation� rather than just type�checking� is required� We will
discuss this issue in more detail in the following sections�

� � on the right�hand side of this de
nition denotes the usual Cartesian product of an indexed family of sets� That
is� �x�SCx is the set of all functions with domain S mapping any x � S to an element of Cx�

� As usual� ��v�X� is the environment which results from � by assigning v to the variable X �and leaving the values
of other variables unchanged��

�

g y y y
of values� the elements of which are assigned to objects of the language as their meanings� A naive
attempt might have been as follows�

V alues � Algebras j Pow �V alues� j V alues e� V alues

Clearly� this leads to serious foundational problems� as the recursive domain de�nition involves �heavy
recursion� �cf� �BT ��
� and hence cannot have a set�theoretic solution �even assuming that we consider
here a set Algebras of algebras built within a �xed universe�� However� since the formalismwe introduce
is not intended to cater for any form of self application of functions or non�well�foundedness of sets�
the equation above attempts to de�ne a domain of values of objects which is undesirably rich� The
well�formed
 objects of the language can easily be seen to form a hierarchy indexed by �types� �see
Section
�� Thus� we can de�ne a corresponding cumulative hierarchy of sets of values� and then
de�ne the domain of the meanings of objects as the union of sets in the hierarchy� much in the style
of �BKS ��
 �see �BT ��
 where the idea of using hierarchies of domains in denotational semantics is
discussed in more detail�� Another� less �constructive�� possibility is to work within a �xed universal
set of values of objects containing the �set� of all algebras �Coh ��
�

� Proving satisfaction

We are interested in determining whether or not given objects satisfy given speci�cations� We use the
formal judgement Obj � SP to express the assertion that a closed object Obj satis�es a closed spe�
ci�cation SP � i�e� that ��Obj

 � ��SP

� and generalise it to X� � SP�� � � � �Xn � SPn � Obj � SP stating
the assertion that an object Obj satis�es a speci�cation SP in the context X� � SP�� � � � �Xn � SPn� i�e�
under the assumption that objects X�� � � � �Xn satisfy speci�cations SP�� � � � � SPn� respectively� The
inference rules listed below allow us to derive judgements of this general form� For the sake of clarity�
though� we have decided to make contexts implicit in the rules and rely on the natural deduction
mechanism of introducing and discharging assumptions �all of the form X � SP here� to describe the
appropriate context manipulation� For example� in �R�� below� �X � SP
 is an assumption which
may be used to derive SP � � Spec�SP ���� but is discharged when we apply the rule to derive its
conclusion� Whenever necessary� we will use the phrase �the current context� to refer to the sequence
of currently undischarged assumptions� We say that an environment � is consistent with a context
X� � SP�� � � � �Xn � SPn if for i � �� � � � � n� ��Xi� � ��SPi

��

Simple speci�cations�

� signature

� � Spec���

SP � Spec��� � � Sen���

impose � on SP � Spec���

SP � Spec���� � � �� �
�

derive from SP by � � Spec���

SP � Spec��� � � �� �
�

translate SP by � � Spec����

SP � Spec��� SP
�
� Spec���

SP � SP � � Spec���

SP � Spec��� � � �
�
� �

minimal SP wrt � � Spec���

SP � Spec���

iso�close SP � Spec���

SP � Spec��� �
�
� Sen��

�
� � � �� �

�

abstract SP wrt �� via � � Spec���

�An intuitive understanding of the notion of well�formedness involved is su�cient here �we hope� � we introduce it
formally in Section ��

�

Obj � SP

fObjg � Spec�SP �
�R��

SP � Spec�SPany�
�X � SP

SP � � Spec�SP ���

�X�SP� SP � � Spec��X�SP� SP ���
�R��

SP � Spec�SP ��

Spec�SP � � Spec�Spec�SP ���
�R��

��expressions�

SP � Spec�SPany�
�X � SP

Obj � SP �

�X�SP� Obj � �X�SP� SP � �R��

Obj � �X�SP� SP � Obj
�
� SP

Obj�Obj
�
� � SP

�
�Obj

�
�X

�R��

Obj � SP SP �
�

�
SP

�

Obj � SP
� �R
�

Obj � SP SP
�
� Spec�SPany� SP

�
�

�

�
SP

Obj � SP
� �R��

Trivial inference�

Obj � SPany

Obj � fObjg
�R��

�Cut	

Obj � SP SP � Spec�SP ��

Obj � SP
� �R��

�	

SP � Spec��� ��A

� � ��SP

� for all � consistent with the current context

A � SP
�R�	�

SP� SP
�
� Spec��� ��SP

� � ��SP

�

� for all � consistent with the current context

SP � Spec�SP ��
�R���

Some of these rules involve judgements �� signature� � � Sen���� � � �� ��� which are external
to the above formal system� This is a natural consequence of the fact that the language does not
include any syntax for signatures� sentences� etc� More signi�cantly� there are two rules which involve
model�theoretic judgements� referring to the semantics of objects given above�
Following the usual practice� in the sequel we will simply write �Obj � SP� meaning �Obj � SP is

derivable��
The rules labelled Simple speci�cations characterise the well�formedness of ��speci�cations built

using the underlying speci�cation�building operations included in the language� They directly incor�
porate the �syntactic� requirements of Section � on the use of these operations� Rules �R��� �R��
and �R�� play a similar role for the other speci�cation�forming operations� singleton speci�cation�
Cartesian�product speci�cation and Spec� �� respectively� Notice� however� that their speci�cations
are given here in a form which is as tight as possible� For example� for any SP � Spec��� and
Obj � SP � rule �R�� allows us to deduce fObjg � Spec�SP � rather than just fObjg � Spec����
The rules related to ��expressions and their applications to arguments are quite straightforward�

Rules �R�� and �R�� are the usual rules for ��expression introduction and application� respectively�
The assumption SP � Spec�SPany� in rule �R�� asserts the well�formedness of the speci�cation SP
�see also �R��� �R��� �R���� Whenever the meta�variable SPany is used below� it will play the same
role as part of a well�formedness constraint� Notice that in order to prove �X�SP� Obj � �X�SP� SP ��
we have to prove Obj � SP � �schematically� for an arbitrary unknown X � SP � rather than for all
values in the class ��SP

� �for the appropriate environments ���
Rules �R
� and �R�� embody a part of the observation that ��reduction preserves the semantics of

objects �Corollary ����� Rule �R
� allows for ��reduction and rule �R�� for well�formed ��expansion
of speci�cations� A particular instance of the latter is

Obj
�
� SP

�
�Obj�X
 ��X�SP� SP ���Obj� � Spec�SPany �

Obj
�
� ��X�SP� SP ���Obj�

That is� in order to prove that an object satis�es a speci�cation formed by applying a parameterised
speci�cation to an argument� it is su!cient to prove that the object satis�es the corresponding ��
reduct�
However� we have not incorporated full ��equality into our system� rules �R
� and �R�� introduce

it only for speci�cations� In particular� we have not included the following rule� which would allow
well�formed ��expansion of objects�

Obj � SP Obj
�
� SPany Obj

�
�

�

�
Obj

Obj
�
� SP

An instance of this would be�

Obj��Obj��X
 � SP ��X�SP�� Obj���Obj�� � SPany

��X�SP�� Obj���Obj�� � SP

Hence� in order to prove that a structured object ��X�SP�� Obj���Obj�� satis�es a speci�cation SP �
it would su!ce to show that the object is well�formed and to prove that its ��reduct Obj��Obj��X

��

p g y p
of a program should follow the structure of the program� without any possibility of �attening it out� So�
to prove ��X�SP�� Obj���Obj�� � SP we have to �nd an appropriate speci�cation for the parameterised
program �X�SP�� Obj�� say �X�SP�� Obj� � �X�SP�� SP� such that SP��Obj��X
 � SP �actually�
SP��Obj��X
 � Spec�SP � is su!cient��
The other part of ��equality for objects� ��reduction� although not derivable in the system� is

admissible in it��

Lemma ��� The following rule is an admissible rule of the system

Obj � SP Obj�
�

�
Obj

�

Obj
�
� SP

Proof �sketch	 It is su!cient to consider the case Obj�� Obj
� �then the more general case follows

by easy induction on the length of the reduction sequence�� We will need an additional lemma�

Lemma ��� The following rule is an admissible rule of the system

Obj � SP
�X � SP

Obj� � SP �

Obj
�
�Obj�X
 � SP

�
�Obj�X

Proof �idea	 By obvious induction on the derivation of Obj� � SP �� by inspection of the rules
of the system� �

The proof now is by induction on the derivation of Obj � SP � The only essential case is that of rule
�R�� where a ��reduct may be introduced� So� in �R�� let Obj be �X�SP�� Obj�� and suppose that
�X�SP�� Obj� � �X�SP� SP

� and Obj� � SP � We can assume that �X�SP�� Obj� � �X�SP� SP
� has

been derived using �R��� we can show that no generality is lost since �R�� is the only rule introducing
��expressions� Hence� we have that Obj� � SP

� under the assumption X � SP � Thus� by Lemma ����
Obj��Obj

��X
 � SP ��Obj��X
� which is what we need to show� All the other cases of the inductive
proof are easy� for example�

�R��
 What we have to show is that whenever Obj � SP and fObjg��Obj
� then Obj � � Spec�SP ��

Since fObjg��Obj
� � Obj� has to be of the form fObj��g where Obj��Obj

��� By the inductive
assumption� Obj � SP and Obj��Obj

�� imply Obj�� � SP � and so using the same rule we derive
fObj��g � Spec�SP ��

�R
�
 One of the assumptions of the rule is Obj � SP � Hence� by the inductive assumption� Obj� � SP �
and so using the same rule we can conclude that indeed Obj� � SP ��

�

It might be interesting to enrich the system by the ��reduction rule for objects given in the above
lemma� or even more generally by some �operational semantics rules� for �the computable part of�
the object language� This� however� would be quite orthogonal to the issues of object speci�cation
considered in this paper� Therefore� to keep the system as small and as simple as possible� the rule is
not included in the system�
Rules �R�� and �R�� embody trivial deductions which should be intuitively straightforward� Notice

that SP � Spec�SP ��� as in the premise of �R��� asserts that speci�cation SP imposes at least the
same requirements as SP ��

�A rule is admissible in a deduction system if its conclusion is derivable in the system provided that all its premises
are derivable� This holds in particular if the rule is derivable in the system� that is� if it can be obtained by composition
of the rules in the system�

��

� � � � y j y y
veri�cation process which is a necessary component of inference in the above formal system� These
rules are deliberately restricted to the non�parametric case� since this is the point at which an external
formal system is required� parameterisation is handled by the other rules� We do not attempt here to
provide a formal system for proving the semantic judgements ��A

� � ��SP

� and ��SP

� � ��SP �

� for
all environments � consistent with the current context� This is an interesting and important research
topic� which is however separate from the main concerns of this paper� some preliminary considerations
and results on this may be found in e�g� �ST ��
 and �Far ��
� It is not possible to give a set of purely
�syntactic� inference rules which is sound and complete with respect to the semantics above because
of the power of the speci�cation mechanisms included in the language �this is already the case for the
subset of the language excluding parameterisation� presented in Section ���
As mentioned earlier� to make the rules as clear and readable as possible� the presentation of the

system omits a full formal treatment of contexts� In particular� we should add two rules to derive
judgements that a context is well�formed �here� hi is the empty context��

hi is a well�formed context

is a well�formed context X is not in
�#

SP � Spec�SPany�

#�X � SP is a well�formed context

and then axioms X� � SP�� � � � �Xn � SPn � Xk � SPk� for k � �� � � � � n� where X� � SP�� � � � �Xn � SPn

is a well�formed context� It is important to realise that contexts are sequences� rather than sets� and
so we allow the variables X�� � � � �Xk to occur in SPk���
We will continue omitting contexts throughout the rest of the paper� All the de�nitions and

facts given below �as well as above� are correctly stated for closed objects only� but are meant to be
naturally extended to objects in a well�formed context� This will be done explicitly only within proofs
where it is absolutely necessary� Similarly� we will omit in the following the environment argument to
the semantic function for objects� all the environments thus implicitly considered are assumed to be
consistent with the corresponding context� We hope that this slight informality will contribute to the
readability of the paper without obscuring the details too much�

The following theorem expresses the soundness of the formal system above with respect to the
semantics given earlier�

Theorem ��� For any object Obj and speci�cation SP � if Obj � SP is derivable then ��Obj

 � ��SP

�that is� ��SP

 is de�ned and is a class of values and ��Obj

 is de�ned and is a value in this class��
Proof �sketch	 By induction on the length of the derivation and by inspection of the rules� A
complete formal proof requires� of course� a careful treatment of free variables and their interpretation
�cf� the remark preceding the theorem�� Thus� for example� rule �R�� really stands for�

� SP � Spec�SPany� #�X � SP � Obj � SP
�

X is not in #

� �X�SP� Obj � �X�SP� SP �

where # is a context� In the corresponding case of the inductive step we can assume that

�� ��SP

� � ��Spec�SPany�

� for all environments � consistent with context #� and

�� ��Obj

� � ��SP �

� for all environments � consistent with context #�X � SP

and then we have to prove that ���X�SP� Obj

� � ���X�SP� SP �

� for all environments � consistent
with context #� That is� taking into account the semantics of �� and ��expressions as given in
Section �� we have to prove that for all environments � consistent with context #

��

��

� y p � � �
and then

� for all values v � ��SP

��

� ��Obj

��v�X
 is de�ned�

� ��SP �

��v�X
 is de�ned and is a class of values� and

� ��Obj

��v�X
 � ��SP �

��v�X
�

which in turn follow directly from assumption ��� above�

The cases corresponding to the other rules of the system require similar� straightforward but tedious
analysis� Notice that the proofs about the rules concerning application and ��reduction� �R��� �R
�
and �R��� crucially depend on Fact ��� and Corollary ���� �

It is natural to ask if the above formal system is also complete with respect to the semantics�
It turns out not to be complete� One reason for incompleteness is that the formal system does not
exploit the semantical consequences of inconsistency� For example� for any inconsistent speci�cation
SP we have that ��SP

 � ��Spec�SPany �

 for any SPany such that ��SPany

 is a class of values� The
corresponding formal judgement SP � Spec�SPany � is not derivable when �for example� SP and SPany

are simple speci�cations over di�erent signatures� If the formal parameter speci�cation in a �� or ��
expression is inconsistent then similar di!culties arise �cf� �MMMS ��
 for a discussion of the related
issue of �empty types� in typed ��calculi�� This topic deserves further study� it might be that the
system is complete when inconsistencies are excluded and perhaps some additional restrictions on the
objects and speci�cations involved are imposed �although the deliberate omission of a rule allowing
for well�formed ��expansion of objects makes this unlikely��

De
nition ��� An object Obj is well�formed if Obj � SP for some SP � �

This also de�nes the well�formed speci�cations since speci�cations are objects�
Checking whether an expression in the language is well�formed must in general involve �semantic�

veri�cation as embodied in rules �R�	� and �R���� In fact� checking the well�formedness of objects is
as hard as checking if they satisfy speci�cations� Obj � SP if and only if ��X�SP� �any constant���Obj�
is well�formed�
An easy corollary to the soundness theorem is the following�

Corollary ��� Any well�formed object Obj has a well�de�ned meaning ��Obj

� �

Since speci�cations do not form a separate syntactic category of the language� in the above discus�
sion we have used the term �speci�cation� and the meta�variable SP rather informally� relying on an
intuitive understanding of the role of the objects of the language� This intuitive understanding may
be made formal as follows�

De
nition ��� An object SP is called a speci�cation if for some SPany � SP � Spec�SPany �� �

Corollary ��� The meaning of a speci�cation is a class of values� if SP � Spec�SPany � then ��SP

 �
��SPany

� �

Note that this covers ordinary ��speci�cations� speci�cations of �higher�order� parametric algebras�
speci�cations of �higher�order� parameterised speci�cations� etc� The following theorem shows that
this is indeed consistent with our previous informal use of the term�

Theorem ��� If Obj � SP then SP is a speci�cation�
Proof We prove that SP � Spec�SPany� for some SPany by induction on the derivation of Obj � SP �
by inspection of the rules of the system�

��

p p � p p p y g �
Spec��� is indeed a speci�cation as we have Spec��� � Spec�Spec����� which may be derived
by using the rule introducing �� and then the rule of Spec� ��introduction �R���

�R��
 By the inductive assumption we have SP � Spec�SPany�� from which we can derive Spec�SP � �
Spec�Spec�SPany���

�R��
 We need the following lemma�

Lemma ��� If an object Spec�SP � is well�formed then SP is a speci�cation�

Proof We proceed by induction on a derivation of the well�formedness of Spec�SP �� by
inspection of the possible last rules in the derivation�

�R��
 Clearly� we have here SP � Spec�SP �� as the assumption for the use of this rule�

�R
�� �R��� �R��� �R��
 Let Obj be Spec�SP �� One of the premises of each of these rules
implies the well�formedness of Spec�SP � and so the inductive assumption implies that
SP is a speci�cation�

�R���
 As in the previous case� but take SP to be Spec�SP �� �In fact� this case is vacuous
since Spec�SP � � Spec��� is not derivable anyway��

Notice that only the �rst case of the above was essential� it is su!cient to analyse only the
rules that may be used to �build� objects of the form we consider �the Spec� ��introduction
rule �R�� in this case�� We have relied on a similar remark in the proof of Lemma ���� �

By the inductive assumption �of the proof of the theorem� we have that under the assump�
tion X � SP � Spec�SP ��� is well�formed� and so using the above lemma we conclude that
SP �� � Spec�SP �

any
�� Hence� we can derive �X�SP� SP �� � Spec��X�SP� SP �

any
�� and then

Spec��X�SP� SP ��� � Spec�Spec��X�SP� SP �

any
���

�R��
 By the inductive assumption� Spec�SP �� � Spec�SPany�� which entails Spec�Spec�SP
��� �

Spec�Spec�SPany���

�R��
 By the inductive assumption we have that under the assumption X � SP � SP � � Spec�SP �

any
��

and so we can derive �X�SP� SP � � Spec��X�SP� SP �

any
��

�R��
 The inductive assumption implies that �X�SP� SP � is well�formed� We prove that this implies
that SP � is a speci�cation under the assumption X � SP � The proof is by induction on the
derivation of the well�formedness of �X�SP� SP �� by inspection of the possible last rules used
in the derivation� As in the proof of Lemma ���� it is su!cient to analyse the ��introduction
rule �R��� Since what we need is one of the assumptions for the applicability of this rule� we can
indeed conclude that SP � � Spec�SP ��� under the assumption X � SP � Hence� by Lemma ���
we conclude that SP ��Obj��X
 � Spec�SP ���Obj��X
��

�R
�
 By the inductive assumption applied to one of the premises of this rule� SP is a speci�cation�
Thus� since SP ��

�
SP �� by Lemma ��� it follows that SP � is a speci�cation as well�

�R��
 Trivial�

�R��
 From the premise of the rule� we can directly derive fObjg � Spec�SPany��

�R��
 By the inductive assumption� from the premise of the rule it follows that Spec�SP �� is well�
formed� Thus� by Lemma ���� SP � is a speci�cation�

�R�	�
 Trivial�

�R���
 From the premise SP � � Spec���� we derive Spec�SP �� � Spec�Spec�����

��

p p

It is perhaps surprising how long and relatively complicated the proof of an intuitively rather obvious
fact has become here� Unfortunately� this seems to be typical of many proofs dealing with �syntactic�
properties of ��calculi�

� Type�checking

Inference in the system presented in the previous section has a purely �type�checking� component
on which the �veri�cation� component is in a sense superimposed� We try to separate this �type�
checking� process below� The concept of type we use must cover signatures �as �basic types� of
algebras� and �arrow types� �types of functions� which would be usual in any type theory� as well as
�speci�cation types� which are particular to the formalism presented here� as we have stressed before�
the type of a speci�cation is distinct from the type of objects the speci�cation speci�es�

De
nition ��� The class of types T is de�ned as the least class such that�

� for any signature �� � � T �

� for any types 	�� 	� � T � 	��	� � T � and

� for any type 	 � T � Spec�	 � � T �

�

Under the standard notational convention that arrow types of the form 	�	 � stand for ��types of
the form �X�	� 	 � where X does not actually occur in 	 �� types as de�ned above are well�formed
speci�cations�
We de�ne type Type�Obj� for an object Obj of our system by induction as follows�

Simple speci�cations�

� signature

Type��� � Spec���

Type�SP � � Spec��� � � Sen���

Type�impose � on SP � � Spec���

� � � and similarly for other simple speci�cations � � �

Other speci�cations�

Type�Obj� � 	

Type�fObjg� � Spec�	 �

Type�SP � � Spec�	 �

Type�Spec�SP �� � Spec�Spec�	 ��

Type�SP � � Spec�	 �
�Type�X� � 	

Type�SP �� � Spec�	 ��

Type��X�SP� SP �� � Spec�	�	 ��

��expressions�

Type�SP � � Spec�	 �
�Type�X� � 	

Type�Obj� � 	 �

Type��X�SP� Obj� � 	�	
�

Type�Obj� � 	�	
�

Type�Obj
�
� � 	

Type�Obj�Obj
�
�� � 	

�

Algebra expressions�

A is an algebra expression denoting a ��algebra

Type�A� � �

�

� �� � �� � �� � ��
and the ��reduction and ��expansion rules �R
� and �R��� which do not introduce new well�formed
objects� do not have counterparts in the above de�nition�
Clearly� the above de�nition depends on a judgement whether or not an algebra expression denotes

an algebra over a given signature� We will assume that such �type�checking� of algebra expressions
is de�ned externally in such a way that it is consistent with the semantics �i�e�� if A is a well�formed
algebra expression denoting a ��algebra then indeed ��A

 � Alg����� Moreover� we will assume that it
is substitutive� if A is an algebra expression denoting a ��algebra under an assumption Type�X� � 	
then for any object Obj with Type�Obj� � 	 � A�Obj�X
 is an algebra expression denoting a ��algebra
as well�
The above rules �deliberately� do not de�ne Type�Obj� for all object expressions of our language�

However� if a type is de�ned for an object� it is de�ned unambigously� An object Obj is roughly
well�formed if its type Type�Obj� is de�ned� There are� of course� roughly well�formed objects that
are not well�formed� The opposite implication holds� though�

Theorem ��� Type�Obj� is well�de�ned for any well�formed object Obj� In particular�

�� If Obj � SP then Type�SP � � Spec�Type�Obj���

�� If SP is a speci�cation then Type�SP � � Spec�	 � for some type 	 �

�� If Obj � �X�SP� SP � then Type�Obj� � 	�	 �� where Type�SP � � Spec�	 �� for some types 	
and 	 ��

Proof The �rst part of the theorem follows by induction on the length of the derivation �we sketch
this proof below�� The other two parts follow directly from this�
Let us �rst rephrase the �rst part of the theorem taking contexts describing free variables explicitly

into account� which is perhaps not entirely obvious here�

��� If Obj � SP is derivable under assumptions X� � SP�� � � � �Xn � SPn where Type�SP�� �
Spec�	��� � � � � Type�SPn� � Spec�	n�� then Type�SP � � Spec�Type�Obj�� under the assump�
tions Type�X�� � 	�� � � � � Type�Xn� � 	n�

Now� we prove this part of the theorem by induction on the derivation of Obj � SP � by inspection of
the rules�

Simple speci�cations
 The rules for simple speci�cations cause no problem� since using the inductive
assumption we conclude that each well�formed speci�cation SP in the conclusion of these rules
has type Type�SP � � Spec���� and Type�Spec���� � Spec�Spec�����

�R��
 By the inductive assumption we have Type�SP � � Spec�Type�Obj��� hence Type�Spec�SP �� �
Spec�Type�SP �� � Spec�Spec�Type�Obj��� � Spec�Type�fObjg���

�R��
 We need the following lemma�

Lemma ��� If Spec�SP � has a type then SP has a type of the form Spec�	 ��

Proof Obvious� since the only way to derive a type for Spec�SP � is using the rule

Type�SP � � Spec�	 �

Type�Spec�SP �� � Spec�Spec�	 ��

which requires that indeed Type�SP � � Spec�	 � for some type 	 � �

��

y p � p � p yp � �
where Type�SP � � Spec�	 �� Spec�SP ��� has a type� and so using the above lemma we conclude
that Type�SP ��� � Spec�	 ��� for some type 	 ��� Hence� we can derive Type��X�SP� SP ��� �
Spec�	�	 ���� and then Type�Spec��X�SP� SP ���� � Spec�Spec�	�	 �����

On the other hand� by the inductive assumption again� under the assumption Type�X� � 	 �
Type�Spec�SP ���� � Spec�Type�SP ���� Hence� Spec�Spec�	 ���� � Spec�Type�SP ���� and so
Type�SP �� � Spec�	 ���� Thus� Type��X�SP� SP �� � Spec�	�	 ���� which completes the proof
in this case�

�R��
 By the inductive assumption� Spec�Type�SP �� � Type�Spec�SP ���� which easily implies
Spec�Type�Spec�SP ��� � Type�Spec�Spec�SP �����

�R��
 By the inductive assumption� using Lemma
��� we have that Type�SP � � Spec�	 � for some
type 	 � and then under the assumption Type�X� � 	 � Type�SP �� � Spec�	 �� where 	 � �
Type�Obj�� Thus� we can derive both Type��X�SP� Obj� � 	�	 � and Type��X�SP� SP �� �
Spec�	�	 ��

�R��
 The inductive assumption implies that Type�SP � � Spec�	 � where 	 � Type�Obj��� and
that Type��X�SP� SP �� � Spec�Type�Obj��� Since there is only one rule which allows us
to derive a type for the ��expression� by a direct analysis of this rule we can conclude that
under the assumption Type�X� � 	 � Type�SP �� � Spec�	 �� for some type 	 �� Moreover�
Type��X�SP� SP �� � Spec�	�	 ��� which implies Type�Obj� � 	�	 �� Hence� we can derive
Type�Obj�Obj ��� � 	 ��

Lemma ��� For any object Obj�� variable X and type 	 � if Type�Obj�� � 	 � under the
assumption Type�X� � 	 � then for any object Obj such that Type�Obj� � 	 � we have
Type�Obj��Obj�X
� � 	 ��

Proof By obvious induction on the derivation of Type�Obj�� � 	 �� by inspection of the
clauses in the de�nition of Type� �� �

Hence� by the above lemma we conclude that Type�SP ��Obj��X
� � Spec�	 ��� which completes
the proof in this case�

�R
�
 We need the following lemma�

Lemma ��� ��reduction preserves types of objects� That is� for any object Obj such that
Type�Obj� � 	 � if Obj��

�
Obj� then Type�Obj�� � 	 �

Proof �sketch	 It is su!cient to show the lemma for Obj�� Obj
�� The proof pro�

ceeds by induction on the derivation of the type of Obj� The only non�trivial case is
that of application� where a ��reduct may be introduced� So� assume that Obj is a
roughly well�formed object of the form ��X�SP� Obj���Obj��� Then� for some types 	
and 	 �� Type���X�SP� Obj���Obj��� � 	 �� Type��X�SP� Obj�� � 	�	 �� Type�Obj�� � 	 �
Type�SP � � Spec�	 � and under the assumption Type�X� � 	 � Type�Obj�� � 	 �� Hence�
by Lemma
��� Type�Obj��Obj��X
� � 	 �� which is what is needed in this case� �

Now� by the inductive assumption applied to one of the premises of the rule we have that
Spec�Type�Obj�� � Type�SP �� Then� since SP ��

�
SP �� by the above lemma we have indeed

Spec�Type�Obj�� � Type�SP ���

�R��
 Similarly as in the previous case�

�R��� �R��� �R�	�� �R���
 Easy use of the inductive assumption�

�

��

y j y p
both are roughly well�formed and the type of the object is consistent with the type of the speci�cation�
Of course� nothing like the opposite implications holds� As pointed out earlier� proving that an object
satis�es a speci�cation must involve a veri�cation process as embodied in the two rules of semantic
inference�
One might now expect that any well�formed object Obj �is of its type�� i�e� Obj � Type�Obj��

This is not the case� though� The problem is that both �� and ��expressions include parameter
speci�cations rather than just parameter types� and so functions denoted by ��expressions and speci�ed
by ��expressions have domains de�ned by speci�cations� not just by types� This is necessary for
methodological reasons� we have to be able to specify permissible arguments in a more re�ned way
than just by giving their types� However� as a consequence� objects denoted by �� and ��expressions
in general do not belong to the domain de�ned by their types� and so we cannot expect that such
expressions would �typecheck� to their types�
To identify the purely �type�checking� component in our system we have to deal with objects

where parameter speci�cations are replaced by their types� Formally� for any roughly well�formed
object Obj� its version Erase�Obj� with parameter speci�cations erased is de�ned by induction as
follows�

Speci�cations�

Erase��� �def �
Erase�impose � on SP � �def impose � on Erase�SP �

� � � and similarly for other simple speci�cations � � �

Erase�fObjg� �def fErase�Obj�g
Erase��X�SP� SP �� �def �X�	� Erase�SP

��
where Type�SP � � Spec�	 �

Erase�Spec�SP �� �def Spec�Erase�SP ��

Other objects�

Erase�A� �def A
Erase��X�SP� Obj� �def �X�	� Erase�Obj�

where Type�SP � � Spec�	 �
Erase�Obj�Obj��� �def Erase�Obj��Erase�Obj���

We have chosen here to de�ne Erase�A� � A for all algebra expressions A� Alternatively� we could
leave this case out again� and require a de�nition to be provided externally� For example� one might
want that Erase�A�Obj�X
� � Erase�A�Erase�Obj��X
� �which would not necessarily hold under the
above de�nition�� The only property we need is that if A is an algebra expression denoting a ��algebra
then so is Erase�A��

Theorem ��� For any roughly well�formed object Obj� Erase�Obj� � Type�Obj� �hence� Erase�Obj�
is well�formed��
Proof �idea	 Again� the extension to objects with free variables is not entirely clear� What we mean
is� if Type�Obj� � 	 under the assumptions Type�X�� � 	�� � � � � Type�Xn� � 	n then Erase�Obj� �
Type�Obj� under the assumptions X� � 	�� � � � �Xn � 	n� This may be proved by straightforward
induction on the derivation of the type of Obj� �

Joining this with Theorem
��� we conclude that a necessary condition for an object to satisfy a
speci�cation is that the version of the object where parameter speci�cations have been �rounded
up� to parameter types has a type which is consistent with the type of the speci�cation� This
necessary condition embodies the purely type�checking component of any proof that an object satis�es
a speci�cation�

��

y y g y j j� yp � � j�� yp � j�
Proof This follows directly from Theorems
�
 and
�� since for any type 	 � Type�	 � � Spec�	 ��
which may easily be established by an obvious induction on the structure of types� �

The above corollary� when the equality is read from right to left� may be viewed as an alternative
de�nition of the type of a roughly well�formed object� The type�checking of Erase�Obj� may be
performed within the original system separately from the semantic veri�cation part� without any
reference to the meanings of objects and speci�cations� We present below the corresponding proper
fragment of the original system�

Simple speci�cations�

� signature

� � Spec���

SP � Spec��� � � Sen���

impose � on SP � Spec���

� � � and just as before for other simple speci�cations � � �

Other speci�cations�

Obj � 	

fObjg � Spec�	 �

�X � 	

SP � � Spec�	 ��

�X�	� SP � � Spec�	�	 ��

SP � Spec�	 �

Spec�SP � � Spec�Spec�	 ��

��expressions�

�X � 	

Obj � 	 �

�X�	� Obj � 	�	
�

Obj � 	�	
�

Obj
�
� 	

Obj�Obj
�
� � 	

�

Algebra expressions�

A is an algebra expression denoting a ��algebra

A � �

We hope that a comparison of the above with the system presented in Section � should clearly illustrate
the intuitive di�erence between typed ��calculi� like the one above� and �speci�ed� ��calculi� like the
one in Section ��

� Concluding remarks

Spurred by the methodological considerations in �SST �	
� we have presented an institution�independent
speci�cation formalism which provides a notation for parameterised speci�cations and speci�cations
of parametric objects of an arbitrary order� as well as any mixture of these concepts� The formalism
incorporates the kernel speci�cation�building operations described in �ST ��
 based on those in the
ASL speci�cation language �SW ��
� �Wir �

� The basic idea was to treat speci�cations� which specify
objects� as objects themselves� This collapsing together of the two levels� that of objects and that of
their speci�cations� led �perhaps surprisingly� to a well�behaved inference system for proving that an
object satis�es a speci�cation with a clearly identi�ed formal type�checking component �cf� �SdST �	

where the formal type�checking component of Extended ML is given��
The formalism presented deals explicitly with two levels of objects involved in the process of

software development� programs �viewed as algebras� and their speci�cations �viewed as classes of
algebras� both� of course� arbitrarily parameterised� Aiming at the development of an institution�
independent framework� we decided to omit from our considerations yet another level of objects

�	

� y g p � p �
particular institutions� however� it may be interesting to explicitly consider this level as well� and to
intermix constructs for dealing with this level with those for the other two levels mentioned above�
This would lead to entities such as algebras parametric on data values� speci�cations parameterised
by functions on data� functions from algebras and speci�cations to data values� etc�
Just as the kernel ASL�like speci�cation formalism it builds on� the presented system is too low�

level to be directly useful in practice� We view it primarily as a kernel to be used as a semantic
foundation for the development of more user�friendly speci�cation languages� An example of such
a more user�oriented framework is the Extended ML speci�cation language �ST ��
 which comes
together with a program development methodology as presented in �ST ��
� The formalism described
in this paper provides adequate foundations for Extended ML� Indeed� one of the main stimuli for its
development was our inability to express the semantics of the current version of Extended ML directly
in terms of the kernel speci�cation�building operations in ASL� Extended ML functor speci�cations
are speci�cations of parametric objects� and these were not present in ASL� The task of writing out a
complete institution�independent semantics of Extended ML in terms of the speci�cation formalism
presented here remains to be done� We expect that some technicalities� like those which arise in
connection with ML type inheritance� will cause the same problems as in �ST ��
� Some others�
like the use of behavioural equivalence and the concept of functor stability in the Extended ML
methodology� although directly related to the abstract operation in the formalism presented here�
require further study in this more general framework� Finally� properties of ML functors such as
persistency� which cause di!culties in other speci�cation formalisms� will be easy to express here�
Of course� the formal properties of the system need much further study� For example� it seems

that the �cut� rule should be admissible �although not derivable� in the remainder of the system�
The standard properties of ��reduction� such as the Church�Rosser property and termination �on
well�formed objects� should be carefully proven� probably by reference to the analogous properties of
the usual typed ��calculus� For example� the termination property of ��reduction on the well�formed
objects of the language should follow easily from the observation that the Erase function as de�ned in
Section
 preserves ��reduction� which allows us to lift the corresponding property of the usual typed
��calculus to our formalism� The system is incomplete� as pointed out earlier� It would be useful to
identify all the sources of this incompleteness� for example by characterising an interesting subset of
the language for which the system is complete� One line of research which we have not followed �as
yet� is to try to encode the formalism we present here in one of the known type theories �for example�
Martin�L$of"s system �NPS �	
� the calculus of constructions �CH ��
 or LF �HHP ��
�� It would be
interesting to see both which of the features of the formalism we propose would be di!cult to handle�
as well as which of the tedious proofs of some formal properties of our formalism �cf� the proofs
sketched for Theorems ��� and
��� would turn out to be available for free under such an encoding�

Acknowledgements
 We are grateful to Stefan Soko%lowski for his collaboration on �SST �	
 leading
to the development of an early version of the formalism presented here� Thanks to Jordi Farr&es�
Cli� Jones and Stefan Kahrs for helpful comments on a draft of �SST �	
� and to Jan Bergstra for
a question on ��reduction which led to the current version of the system� Thanks to an anonymous
referee for comments on a draft of this paper which helped to improve the presentation�
This research was supported by the University of Edinburgh� the University of Bremen� the Tech�

nical University of Denmark� the University of Manchester� and by grants from the Polish Academy
of Sciences� the �U�K�� Science and Engineering Research Council� ESPRIT� and the Wolfson Found�
ation�

	 References

� Note� LNCS n � Springer Lecture Notes in Computer Science� Volume n

�Ada �	
 The Programming Language Ada� Reference Manual� LNCS �	
 ����	��

��

�
 g y � �
Holland �������

�Bau ��
 F�L� Bauer et al �the CIP language group�� The Wide Spectrum Language CIP�L� LNCS ���
�������

�BGM ��
 M� Bidoit� M��C� Gaudel and A� Mauboussin� How to make algebraic speci�cations more
understandable' An experiment with the PLUSS speci�cation language� Science of Computer

Programming ��� ���� �������

�BT ��
 A� Blikle and A� Tarlecki� Naive denotational semantics� Information Processing
�� Proc�

IFIP Congress �
� �ed� R� Mason�� Paris� North�Holland� ������� �������

�BKS ��
 A�M� Borzyszkowski� R� Kubiak and S� Soko%lowski� A set�theoretic model for a typed poly�
morphic ��calculus� Proc� VDM�Europe Symp� VDM
 The Way Ahead� Dublin� LNCS ����
�
����� �������

�BG �	
 R�M� Burstall and J�A� Goguen� The semantics of CLEAR� a speci�cation language� Proc�
of Advanced Course on Abstract Software Speci�cation� Copenhagen� LNCS �
� ������� ����	��

�Coh ��
 P�M� Cohn� Universal Algebra� Reidel �������

�Con �

 R�L� Constable et al� Implementing Mathematics with the Nuprl Proof Development System�
Prentice�Hall ����
��

�CH ��
 T� Coquand and G� Huet� The calculus of constructions� Information and Computation �

�������

�DMN �	
 O��J� Dahl� B� Myrhaug and K� Nygaard� Simula
� common base language� Report S����
Norwegian Computing Center� Oslo ����	��

�Ehr ��
 H��D� Ehrich� On the theory of speci�cation� implementation� and parametrization of ab�
stract data types� Journal of the Assoc� for Computing Machinery ��� �	
���� �������

�EKTWW ��
 H� Ehrig� H��J� Kreowski� J� Thatcher� E� Wagner and J� Wright� Parameter passing
in algebraic speci�cation languages� Theoretical Computer Science ��� ����� �������

�EM ��
 H� Ehrig and B� Mahr� Fundamentals of Algebraic Speci�cation I� Equations and Initial

Semantics� Springer �������

�ETLZ ��
 H� Ehrig� J�W� Thatcher� P� Lucas and S�N� Zilles� Denotational and initial algebra se�
mantics of the algebraic speci�cation language LOOK� Report ������ Technische Universit$at
Berlin �������

�Far ��
 J� Farr&es�Casals� Proving correctness of constructor implementations� Proc� ��th Symp�

on Mathematical Foundations of Computer Science� Por(abka�Kozubnik� LNCS ���� �������
�������

�FJKR ��
 L�M�G� Feijs� H�B�M� Jonkers� C�P�J� Koymans and G�R� Renardel de Lavalette� Formal
de�nition of the design language COLD�K� METEOR Report t�)PRLE)�� Philips Research
Laboratories �������

�FJ �	
 J�S� Fitzgerald and C�B� Jones� Modularizing the formal description of a database system�
Proc� VDM��� Symp� VDM and Z
 Formal Methods in Software Development� Kiel� LNCS ����
������	 ����	��

�Gog ��
 J�A� Goguen� Parameterized programming� IEEE Trans� Software Engineering SE���� ����
��� �������

�GB ��
 J�A� Goguen and R�M� Burstall� Introducing institutions� Proc� Logics of Programming

Workshop� Carnegie�Mellon� LNCS �
�� ������
 �������

�GHW ��
 J�V� Guttag� J�J� Horning and J� Wing� Larch in �ve easy pieces� Report �� DEC Systems
Research Center� Palo Alto� CA �������

��

�
 p � g g
Symp� on Logic in Computer Science� Cornell� �����	� �������

�LL ��
 T� Lehmann and J� Loeckx� The speci�cation language of OBSCURE� Recent Trends in Data

Type Speci�cation� Selected Papers from the �th Workshop on Speci�cation of Abstract Data

Types� Gullane� Scotland� LNCS ���� ������� �������

�Lis ��
 B�H� Liskov et al� CLU Reference Manual� LNCS ��� �������

�MacQ �

 D�B� MacQueen� Modules for Standard ML� In� R� Harper� D�B� MacQueen and R� Milner�
Standard ML� Report ECS�LFCS��
��� Univ� of Edinburgh ����
��

�MMMS ��
 A�R� Meyer� J�C� Mitchell� E� Moggi and R� Statman� Empty types in polymorphic
lambda calculus� Proc� ��th ACM Symp� on Principles of Programming Languages� �����
�� re�
vised version in Logical Foundations of Functional Programming �ed� G� Huet�� Addison�Wesley�
������� ����	��

�MTH �	
 R� Milner� M� Tofte and R� Harper� The De�nition of Standard ML� MIT Press ����	��

�Mos ��a
 P� Mosses� Uni�ed algebras and modules� Proc� ��th ACM Symp� on Principles of Pro�

gramming Languages� Austin� ������� �������

�Mos ��b
 P� Mosses� Uni�ed algebras and institutions� Proc� �th IEEE Symp� on Logic in Computer

Science� Asilomar� �	����� �������

�NPS �	
 B� Nordstr$om� K� Petersson and J�M� Smith� Programming in Martin�L�of�s Type Theory�

An Introduction� Oxford Univ� Press ����	��

�SdST �	
 D� Sannella� F� da Silva and A� Tarlecki� Syntax� typechecking and dynamic semantics
for Extended ML �version ��� Draft report� Univ� of Edinburgh ����	�� Version � appeared as
Report ECS�LFCS�����	�� Univ� of Edinburgh �������

�SST �	
 D� Sannella� S� Soko%lowski and A� Tarlecki� Toward formal development of programs from al�
gebraic speci�cations� parameterisation revisited� Report
)�	� Informatik� Universit$at Bremen
����	��

�ST ��
 D� Sannella and A� Tarlecki� Program speci�cation and development in Standard ML� Proc�
��th ACM Symp� on Principles of Programming Languages� New Orleans�
���� �������

�ST ��
 D� Sannella and A� Tarlecki� On observational equivalence and algebraic speci�cation� J�

Comp� and Sys� Sciences ��� ��	���� �������

�ST ��
 D� Sannella and A� Tarlecki� Speci�cations in an arbitrary institution� Information and

Computation ��� �
����	 �������

�ST ��
 D� Sannella and A� Tarlecki� Toward formal development of ML programs� foundations and
methodology� Report ECS�LFCS������� Univ� of Edinburgh ������� extended abstract in Proc�
Colloq� on Current Issues in Programming Languages� Joint Conf� on Theory and Practice of
Software Development �TAPSOFT�� Barcelona� LNCS ���� ������� �������

�SW ��
 D� Sannella and M� Wirsing� A kernel language for algebraic speci�cation and implementa�
tion� Proc� Intl� Conf� on Foundations of Computation Theory� Borgholm� Sweden� LNCS ����
������� �������

�Sch �

 O� Schoett� Data abstraction and the correctness of modular programming� Ph�D� thesis�
Univ� of Edinburgh ����
��

�Vo� ��
 A� Vo�� Algebraic speci�cations in an integrated software development and veri�cation
system� Ph�D� thesis� Universit$at Kaiserslautern �������

�Wir �

 M� Wirsing� Structured algebraic speci�cations� a kernel language� Theoretical Computer

Science ��� ������� ����
��

�Wirth ��
 N� Wirth� Programming in Modula�� �third edition�� Springer �������

��

