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P r e f a c e  

These notes are derived from an 18-hour lecture course on Symbolic and Algebraic Com- 
putation that  I have been giving to Honours computer  science students at the University 
of Sydney since 1983, and lectures to mathematics and computer  science students at the 
University of Bayreuth in 1990. Due to the very wide scope of the field, I concentrate on 
my area of speciality - -  algorithms for permutat ion groups. The (short) course at Sydney 
emphasises Chapters 2, 3, 4, 7, 10, and 11. 

The aim of the course is to develop each of the algorithms from scratch, showing how each 
new piece of group-theoretical information can be used to improve the algorithm. As such, 
it could be regarded as a course in algorithm development. I assume no background in 
group theory, so the piecewise introduction of information allows students to become 
familiar with one concept at a time. Another advantage of this approach is that  the 
correctness of the algorithm is justified as it is developed. 

The examples and the exercises assist students to learn the group theory and the working 
of the algorithms. Occasionally, they show how the algorithms could be further improved, 
or they develop an alternate algorithm. Access to the computer  algebra system Cayley 
would be beneficial. Students could then easily study other examples and implement the 
algorithms. 

The bibliographical remarks explain the history of the algorithms, and often place them 
in the broader context. 

The algorithms are presented using Pascal control structures with some exceptions. We 
use the for-loop of Pascal to run over sets, even sets that  increase during the loop's 
execution. The meaning of such a loop is that  each set member is to be considered 
precisely once, including those members added during the loop's execution. The order in 
which they are considered is generally unimportant ,  but for precision, assume it is the 
same as the order in which they were added to the set. We do not use b e g i n  ... e n d  
to form compound statements. Instead all the control statements have a corresponding 
closing bracket such as e n d  if, e n d  for,  and en d  whi le  to indicate the extent of the 
statement.  In addition, we occasionally use an exi t -s ta tement  to terminate an algorithm, 
a r e tu rn - s t a t emen t  to terminate a procedure, and a resu l t - s ta tement  to terminate  a 
function. The algorithms also use English and mathematical  statements and operators. 
( .  Comments in the algorithms are enclosed like this sentence. *) 

Some general assumptions are made during the analysis of algorithms. In Chapters 3-6, 
the analysis of the algorithms is in terms of element multiplications and searches of lists 
of dements .  To this point, the analyses are independent of the element representation. 
However, we sometimes obtain a single total cost based on multiplications that  assumes 
the elements are permutations. In this case a comparison of elements costs the same as 
a multiplication, and we assume a (hash) search requires at most two comparisons. In 
Chapters 7-14, the analyses are concerned with the accesses made to permutations,  sets, 
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and Schreier vectors. In essence, we assume that the simple variables of an algorithm 
will be stored in registers or very fast memory, and therefore the time to access them 
will be negligible. The cost of accessing one entry, or storing the value in one entry, of 
a permutation, set, or Schreier vector will be counted as one operation. We are viewing 
these as one read or write to memory. In any case, these accesses and stores will constitute 
the bulk of the cost of an algorithm. 

The first part of the book, comprising Chapters 2-6, is an introduction to computational 
group theory for those without a knowledge of group theory. Even so, some mathematical  
sophistication is a distinct advantage. For example, familiarity with geometry, manipula- 
tion of algebraic formulae, and straightforward analysis of algorithms is desirable. Those 
with a knowledge of group theory, or even a knowledge of computational group theory 
will find something of interest. We have at tempted to develop the algorithms from first 
principles showing where the particular pieces of group theoretical knowledge have influ- 
enced the algorithm, and how they can be improved by using this knowledge, until we 
reach the state of the art. We have at tempted to justify (prove?) the algorithms as we 
develop them, and to analyse their time and space usage. For many of the algorithms a 
complete analysis is not known, so we have fallen short on our last goal. 

This part is really a slow introduction to group theory and uses of the elementary concepts 
of group theory in algorithms that  handle small groups - -  that is, groups for which we can 
store a list of all their elements. It serves also as a first exposure to some techniques that  
are relevant to large permutation groups, and of course, as a source of information about 
algorithms for small groups. The problems tackled in this part are: determining a list 
of elements from a generating set; searching a group for elements with a given property; 
determining defining relations from a Cayley graph; and determining the lattice of all 
subgroups. 

The first two problems cover the essential fundamental algorithms. The third problem 
introduces the Cayley graph, which is a useful representation of a group, and provides a 
link with combinatorial group theory and its algorithms. The last problem, besides being 
historically significant, leads to a beautifully subtle algorithm that  effectively tackles what 
at first sight appears an impossibly large task. 

All our examples are groups of permutations. The analysis of the algorithms is in terms 
of element multiplications and searches of lists of elements. To this point, the analyses 
are independent of the element representation. However, we sometimes obtain a single 
total cost based on multiplications that  assumes the elements are permutations. In this 
case a comparison of elements costs the same as a multiplication, and we assume a (hash) 
search requires at most two comparisons. 

The second part of the book comprises Chapters 7-14 and considers algorithms specific 
to permutation groups. One benefit of restricting to permutation groups is that the 
algorithms can handle very large groups, say of order 102~ and of degree up to 10 000. 
For some problems there are specialist techniques to handle groups of degree up to 10 s, 
but we will not discuss those here. 

The power of these algorithms comes from intimate use of how the permutations act on 
the points. Think of it as an at tempt to make the complexity of the algorithms a function 
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of the degree rather than a function of the group order. The action on points can often be 
conveniently represented by orbits and Schreier vectors. We will discuss these first, and 
then present two elementary uses of the information contained in the orbits and Schreier 
vectors. The two uses are determining whether a group is regular ( that  is, whether any 
element of the group fixes a point), and whether a group is imprimitive ( that  is, whether 
the group leaves invariant a (non-trivial) parti t ion of the points). In the end, both these 
uses simply use the information provided by the generators of the group. 

A chain of subgroups, where each subgroup fixes at least one more point than the previous 
one, provides the inductive basis for the remaining algorithms. Such a chain is called a 
stabiliser chain. Associated with a stabiliser chain is a base and strong generating set 
stro~tg because it contains generators for each subgroup in the chain, and not just  for the 
whole group. We can represent all the elements of the group, and effectively compute 
with them, by a base, a strong generating set, and a Schreier vector for each subgroup in 
the stabiliser chain. 

After introducing the concepts of stabiliser chain, base, and strong generating set, we 
will discuss at length how elements can be represented, and how we could, if necessary, 
generate all the elements of the group. We delay discussing how one determines a base and 
strong generating set for a permutat ion group until the reader has had more experience 
with the concepts. 

A major aim of this part  is to discuss searching very large permutat ion groups. A back- 
track algorithm is used. The searching of permutat ion groups provides a good forum for 
discussing the various techniques for improving the heuristics of a backtrack algorithm. 
Several improvements are applicable to all backtrack searches of permutat ion groups, 
while others, even though the details rely on what we are searching for, demonstrate  the 
universality of choosing a base appropriate to the problem, and of preprocessing informa- 
tion that is repeatedly required during the search. The improvements applicable to all 
backtrack searches of permutat ion groups are just another form of discarding the elements 
in a coset. We have met this strategy already when searching small groups. 

After choosing an appropriate base for the search, we require a corresponding strong 
generating set. The base change algorithm will provide one from an existing base and 
strong generating set. This algorithm is presented. 

Now we can painlessly present an algorithm that determines a base and strong generating 
set of a permutat ion group from a set of generators. We present the Schreier-Sims algo- 
rithm. There are many variations of this algorithm. They are generally called Schreier 
methods or Schreier-Sims methods. We will mention a few variations in passing. 

The analyses of this part make some general assumptions. They are concerned with the 
accesses made to permutations, sets, and Schreier vectors. In essence, we assume that  
the simple variables of an algorithm will be stored in registers or very fast memory, and 
therefore the t ime to access them will be negligible. The cost of accessing one entry, or 
storing the value in one entry, of a permutation,  set, or Schreier vector will be counted as 
one operation. We are viewing these as one read or write to memory. In any case, these 
accesses and stores will constitute the bulk of the cost of an algorithm. 

The third part of the book comprising Chapters 15-18 looks at the role of homomorphisms 
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in algorithms for permutation groups. In particular, Chapter 16 discusses the computation 
of Sylow subgroups by using homomorphisms; and Chapter 18 discusses the conversion 
from a permutation representation to a power-commutator presentation when the group is 
a p-group or a soluble group, so that these special cases can utilise the efficient algorithms 
for soluble groups and p-groups. Chapter 17 introduces the notion of a power-commutator 
presentation and some elementary algorithms based on that representation. 

At this stage, the reader will have met the fundamental algorithms for handling permu- 
tation groups. 

The last chapter briefly discusses what has been omitted from this book and gives pointers 
to the relevant literature. 

I would like to thank all my students. They were the guinea pigs as I experimented 
with this approach, often pointing out errors and the need for further clarification. In 
particular, Jowmee Foo and Peter Merel carefully read the first draft, and Bernd Schmalz 
made detailed notes of the lectures at Bayreuth. Volkmar Felsch helped enormously 
in clarifying some historical aspects. John Cannon, Volkmar Felsch, Mike Newman, Jim 
Richardson, and Charles Sims have made numerous comments that have greatly improved 
the text. They have been conscientious, thorough, and detailed. I thank them all, and 
accept responsibility for any remaining errors or shortcomings. 

Montreal Greg Butler 

September 1991 
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