Skip to main content

Associative neural networks in analog VLSI: Advantages of decrementing algorithms

  • Conference paper
  • First Online:
Parallelism, Learning, Evolution (WOPPLOT 1989)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 565))

Included in the following conference series:

  • 154 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refernces

  1. Hopfield J. (1989) Neural networks: algorithms and microhardware. IJCNN International Joint Conference on Neural Networks, Washington D.C. June 18–22. Tutorial 7.

    Google Scholar 

  2. Dobson V.G. (1975) Pattern learning and the control of behaviour in all-inhibitory neural network hierarchies. Perception 4, 35–50.

    Google Scholar 

  3. Dobson V.G. (1989) Hetero-associative networks using link-enabling vs. link-disabling local modification rules. In I. Aleksander (Ed.) Neural Computing Architectures (MIT:Cambridge) 279–304.

    Google Scholar 

  4. Dobson V.G. (1987) Superior accuracy of Decrementing over Incrementing associative networks in initially random connectivities. Journal of Intelligent Systems 1, 43–78.

    Google Scholar 

  5. Dobson, V.G. (1989) Decrementing associative networks. In L. Personnaz & G. Dreyfus (Eds.) Neural Networks from Models to Applications. (IDSET: Paris) 316–325.

    Google Scholar 

  6. Dobson V.G. (In press) Visual search with Decrementing Network Competitive Windows. In D. Brogan (Ed.) First International Conference on Visual Search. (Taylor & Francis: London).

    Google Scholar 

  7. Willshaw D.J., Buneman O.P. & Longuet-Higgins H.C. (1969) Non-holographic associative memory. Nature (Lond.) 222, 960–962.

    Google Scholar 

  8. Marr D. (1969) A theory of cerebellar function. Journal of Physiology, 202, 437–470.

    Google Scholar 

  9. Palm G. (1982) Neural Assemblies. (Springer-Verlag: Berlin).

    Google Scholar 

  10. Gardner-Medwin A.R. (1976) The recall of events through learning associations through their parts. Proc. Roy. Soc. (Lond.), B 194, 375–402.

    Google Scholar 

  11. Lansner A. & Ekeberg O. (1985) Reliability and speed of recall in an associative network. IEEE PAMI-7, 4, 490–499.

    Google Scholar 

  12. Kohonen T. (1988) Self-organization and Associative Memory (Springer-Verlag: Berlin).

    Google Scholar 

  13. Amari S. (1988) Statistical neurodynamics of various versions of correlative associative memory. IEEE 2nd. International Conference on Neural Networks; San Diego, July 24–27 I, 607–613.

    Google Scholar 

  14. Hopfield J.J. (1982) Neural networks and physical systems with emergent computational abilities. Proceedings National Academy Science U.S.A., 79, 2554–2558.

    Google Scholar 

  15. Forshaw M.R.B. (1987) Pattern storage and associative memory in quasi-neural networks. WOPPLOT '86: Parallel Processing — Lecture Notes in Computer Science 253 (Springer-Verlag: Berlin) 184–197.

    Google Scholar 

  16. Amit D.J. (1987) Properties of models of simple neural networks, Heidelberg Colloquium on Glassy Dynamics. (Springer-Verlag: Berlin).

    Google Scholar 

  17. Buhmann J., Ritter H., and Schulten K. (1989) On sparsely-coded associative memories. In L. Personnaz & G. Dreyfus (Eds.) Neural Networks from Models to Applications. (IDSET: Paris) 360–371.

    Google Scholar 

  18. Tsodyks M. V. & Feigel'man M.V. (1988) The enhanced storage capacity in neural networks. Europhysics Letters, 6 (2), 101–105.

    Google Scholar 

  19. Gardner E. (1987) Maximum storage capacity in neural networks. Europhysics Letters, 4 (4) 481–485.

    Google Scholar 

  20. Gardner E., Stroud N. & Wallace D.J. (1989) Training with noise and the storage of correlated patterns in a neural network model. J.Phys. A:Math.Gen. 22, 2019.

    Google Scholar 

  21. Gardner E., Stroud N. & Wallace D.J. (1987) Training with noise: Applications to word and text storage. In R. Eckmiller & C. v.d.Malsberg, Neural Computers (Springer-Verlag: Berlin).

    Google Scholar 

  22. Lazzaro J., Ryckebusch M.A. & Mead C.A. (1989) Winner-take-all networks of O(N) complexity. In D. S. Touretsky, Neural Information Processing systems (Morgan Kaufman: Palo Alto Ca.) 703–711.

    Google Scholar 

  23. Minsky M.L. & Papert S.A. (1988) Perceptrons. (MIT: Cambridge).

    Google Scholar 

  24. Barlow H.B. (1972) Single units and perception: a neuron doctrine for perceptual psychology. Perception 1, 371–394.

    Google Scholar 

  25. Winston P.H. (1984) Artificial Intelligence (Addison-Wesley: Reading Ma.).

    Google Scholar 

  26. Hopfield J.J. & Tank D.W. (1985) Neural computation of decisions in optimisation problems. Biological Cybernetics 52, 141–152.

    Google Scholar 

  27. Kitler J. & Illingworth J. (1985) Relaxation labelling algorithms — a review. Image and Vision Computing 3:4 206–216.

    Google Scholar 

  28. Ekeberg O. & Lansner A. (1989) Automatic generation of representations in a probabilistic artificial neural network. In L. Personnaz & G. Dreyfus Neural Networks from Models to Applications. (IDSET: Paris) 178–186.

    Google Scholar 

  29. Venta O. & Kohonen T.A. (1988) Content-addressing software method for emulation of neural networks. IEEE 2nd. International Conference on Neural Networks, San Diego, July 24–27, I 191–198.

    Google Scholar 

  30. Graf H.P., Jackel L.D. & Hubbard W.E. (1988) VLSI implementation of a neural network model. Computer, 21, 3, 41–49.

    Google Scholar 

  31. Verleynsen M., Sirletti B. & Jespers P. (1989) A new CMOS architecture for neural networks. In J.G. Delgado-Frias & W.R. Moore (Eds.) VLSI for Artificial Intelligence (KAP: Norwell Ma.) 209–218.

    Google Scholar 

  32. Jackel L.D., Graf H.P., Hubbard W., Denker J.S., Henderson D. & Guyon I. (1988) An application of neural chips: handwritten digit recognition. IEEE 2nd. International Conference on Neural Networks, San Diego, July 24–27, II 107–115.

    Google Scholar 

  33. Ruckert U. & Goser K. (1989) VLSI design of associative networks. In J.G. Delgado-Frias & W.R. Moore (Eds.), VLSI for Artificial Intelligence (KAP: Norwell.Ma.) 227–235.

    Google Scholar 

  34. Baum E.B., Moody J. & Wilczek F. (1988) Internal representations for associative memory. Biol. Cybern. 59, 217–228.

    Google Scholar 

  35. Dechambost E. & Sonrier M. (1989) Implementing classifications on one bit connection analog programmable neural network. International Joint Conference on Neural Networks, Washington D.C. June 18–22 IJCNN II 579.

    Google Scholar 

  36. Mead C.A. (1989) Analog VLSI and Neural systems (Addison Wesley: Reading Ma.).

    Google Scholar 

  37. Tarrasenko L., Seifert B.G., Tombs J.N., Reynolds J.H. & Murray A.F. (1989) Neural network architectures for associative memory. First IEE International Conference on Artificial Neural Networks. London U.K. 16–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. D. Becker I. Eisele F. W. Mündemann

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobson, V.G. (1991). Associative neural networks in analog VLSI: Advantages of decrementing algorithms. In: Becker, J.D., Eisele, I., Mündemann, F.W. (eds) Parallelism, Learning, Evolution. WOPPLOT 1989. Lecture Notes in Computer Science, vol 565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55027-5_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-55027-5_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55027-3

  • Online ISBN: 978-3-540-46663-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics