Preview
Unable to display preview. Download preview PDF.
References
Aho, A.V., Hopcroft, J.E. and Ullman, J.D., The design and analysis of computer algorithms, Addison-Wesley (1974).
Akl, S.G., The design and analysis of parallel algorithms, Prentice-Hall (1989).
Dekel, E., Nassimi, D. and Sahni, S., “Parallel matrix and graph algorithms,” SIAM Jour. on Computing, Vol. 10, No. 4, pp. 657–675 (1981).
Dekel, E. and Sahni, S., “Binary trees and parallel scheduling algorithms,” IEEE Trans. on Computers, Vol. C-32, No. 3, pp. 307–315 (1983)
Fredman, M.L., “New bounds on the complexity of the shortest path problem,” SIAM Jour. on Computing, Vol. 5, No. 1, pp. 83–85 (1976).
Moffat, A. and Takaoka, T., “An all pairs shortest path algorithm with expected running time O(n 2 log n),” SIAM Jour. on Computing, Vol. 16, No. 6, pp. 1023–1031 (1987).
Takaoka, T., “ An efficient parallel algorithm for the all pairs shortest path problem,” WG 88, Lecture Notes in Computer Science 344, Springer-Verlag, pp. 276–287 (1988).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Takaoka, T. (1992). A new upper bound on the complexity of the all pairs shortest path problem. In: Schmidt, G., Berghammer, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 1991. Lecture Notes in Computer Science, vol 570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55121-2_20
Download citation
DOI: https://doi.org/10.1007/3-540-55121-2_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55121-8
Online ISBN: 978-3-540-46735-9
eBook Packages: Springer Book Archive