
Automating Most Parts of Hardware Proofs in HOL

Klaus Schneider, Ramayya Kumar and Thomas Kropf
University of Karlsruhe, Institute of Computer Design and Fault Tolerance (Prof. D. Schmid)

P.O. Box 6980, 7500 Karlsruhe, Germany

1 INTRODUCTION

In safety critical applications it is mandatory to fabricate chips which are design error' free. With
the increasing complexity of designs this goal is hard to satisfy without methods specially dedi-
cated to this task. Hence formal verification methods are gaining more and more importance.

To verify a today's ASIC, containing some 100,000 transistors, methods are needed which
are capable of managing hierarchical and modular designs, as well as large and complex proof
tasks. Moreover, it turns out that the underlying formalism must be powerful enough to allow
natural descriptions which closely reflect the informal specification [1], [2].

Successful approaches in this regard are mostly based on higher-order logic [3], [4]. This
formalism is ideally suited to compactly describe circuits, where input and output signals are
represented as functions of time. In addition, it is easily possible to use parameterized modules,
which are recursively definable, e.g. n-bit regular structures like adders and registers [5], [1].
However, higher-order logic is undecidable and automated theorem proving tools are not avail-
able. Hence, most of these approaches are based on interactive proof assistants like HOL,
which grounds on natural deduction [1]. It provides a set of inference rules and theorems which
may be combined by user-definable tactics to automate small portions of the proving process.
Based on these approaches, parts of the processor VIPER and the complete TAMARACK have
been successfully verified [6], [7], [8].

Although extensive research has been performed on hardware verification, it is still far away
from being available to and accepted by normal designers as a standard tool like simulation.
This is due to the fact, that up to now full automation is only achieved in the context of finite
state verification and propositional temporal logic, both suited to verify only small and medium
sized circuits [9], [10] [11]. On the other hand, the interactive approach as described above re-
quires a fundamental knowledge of logic and theorem proving, so that any initial enthusiasm of
a typical circuit designer, on hearing about the capabilities of verification, is instantly throttled.
Hence the requirements for verification as an adequate design tool are automation (at least as
much as possible) and guidance for the remaining interactive verification, so that the designer's
creativity may be exercised without a sophisticated knowledge of formal logic.

This paper focuses on possibilities for automation which can be achieved in a twofold way.
Our experiences in interactive hardware verification with HOL and LAMBDA [12] have shown,
that most proofs follow a specific sequence of steps. This observation can be used to structure
the hardware verification process and to find automatic decomposition methods (similar to a
manually performed proof) to transform the original goal into smaller pieces. This kind of

366

automation is implemented in MEPHISTO (.M_anaging Exhaustive Proofs of Hardware for
Integrated circuit designers by Structuring Theorem proving Operations), elaborated in more
detail in the next section.

A large number of subgoals emerge from the decomposition process. The manual proof is
cumbersome and takes a lot of time, although most of these subgoals are quite simple to prove
since they are first-order-like with only few higher-order constructs. Automating the proof of
these subgoals is also possible by integrating an automated theorem proving tool in HOL. It is
based on ~SEO~ a modified form of the known sequent calculus SEO~ ~ggEQovercomes the
inefficiencies of the standard sequent calculus approach. In section 3 P~SEO~is described. The
implementation of the prover FAUST (_F.irst-order Automation using Unification in a Sequent
calculus Technique), which is based on RSEQis explained in chapter 4. Experimental results
are reported in section 5 and section 6 concludes the paper.

2 STRUCTURE OF HARDWARE PROOFS

In this section a brief overview of the structure of hardware proofs is given. A more elaborate
version of MEPHISTO - the hardware oriented proof tool - is found in [13].

A thorough study of various reports on hardware verification [6], [7], [8] as well as our own
investigations have shown, that it is possible to structure and classify the steps in interactive
hardware verification as follows:

Step 1: Describe the specification and implementation of the circuit to be verified, and set the
goal to be proved.

Step 2: Expand the definitions of the specification and the implementation, to obtain formulae
at the desired level of abstraction.

Step 3: Simplify the goal into subgoals by applying induction rules and/or domain specific
rules, e.g. theorems about n-bit values, natural numbers etc.

After this step several subgoals may be obtained, which are all proved using steps 4 and 5.

Step 4: Simplify each subgoal.
Step 5: Prove all the subgoals.

We illustrate the above-mentioned five steps by means of the parity example used in [14]. An
informal specification of the synchronous even parity circuit is as follows:

Initially the output (out) is set to "7 ~' (true). At every n+ l th clock, the output is T iff there

have been an even number of T' s on the input line (in).

A sample formal specification is stated below and figure 1 shows a possible implementation:

V in, out. PARITY_SPEC(in, out) := ~' t . ((out 0 ~ T) ^
(out (sue t) ~ EVEN (in,out))

where the predicate EVEN is defined as:

~' in, out. EVEN(in, out) := ~' t . (in (suc t) ~-~ ~ out t)

The predicate EVEN, encodes the informal specification - - at all time instants, EVEN is true,

iff "in t+ l " is equivalent to the complement of "out t".

367

Step 1:
The specification and implementation of the circuit are defined as predicates at the desired level
of abstraction. They correspond to the behavior and the structure of the circuit, respectively and
are described in the usual manner using higher-order logic [5]. The implementation can be
automatically derived as a conjunction of predicates, each of which corresponds to the specifi-
cation of some previously verified components. The formal implementation of the parity circuit
is given in figure 2.

!

in

i
I I _ ItJ I ~ v J I 1 7 . 1

L ~ 14L~J 15

Figure 1: Parity Implementation

12
I

out

V in, out . PARITY_IMP(in,out) :=

q ll, 12, 13, 14, 15. V t .
NOT_SPEC(12 t, 11 t) A
MUX_SPEC(in t, ll t, 12 t, 13 t) ^
REG_SPEC(out, 12) ^
ONE_SPEC(14 0 ^
REG_SPEC(14, 15) ^
MUX SPEC(15 t, 13 t, 14 t, out t)

Hgure 2: Formal Description

The goal to be verified can now be specified as:

'v' in, out. PARITY_IMP(in, out) <--) PARITY_SPEC(in, out)

It is evident from the description of the goal, specification and implementation that a hierarchical
verification is being performed. In the implementation specified above, a library containing the
behavioral and structural descriptions of the used gates and their corresponding correctness
theorems has been used (Table 1).

Table 1: Formal specifications of the library components

Component Definition

NOT_SPEC (in,ou0 V in,out. (out ~ ~ in)
ONE_SPEC (out) V out. (out ~ T)
MUX_SPEC (sel,inl,in2,out) '~ sel, inl, in2, out. (out ~ ((sel ~ inl) A (~sel ~ in2)))
REG_SPEC (in,out) V in, out. (V t. ((out 0 ~-~ F) A (OUt (SUC t) ~-~ in t)))

Step 2:
The specification and the implementation are now expanded using the definitions in Table 1.
The datatypes used, are also refined into their functional relationships at the next level of ab-
straction, e.g. natural numbers to bit-vectors. Applying this step on the parity example gener-
ates the formula:

368

V in, out.
311, 12, 13, 14, 15. V t . (11 t<-o ~12t) ^

(13 t ~ ((in t ---> 11 t) a (~ in t --r 120)) A
(V q . (12 0 ~--) F) A

(12 (SUC tl) r OUt tl)) A
(14t ~ T) ^
(Vt2. (150 <-->F) ̂

(15 (sue t2) o 14 t2)) ^
(out t <-o ((15 t ---> 13 0 ^ (4 ls t ~ 14 0))

<-.>
V t . ((out 0 <-> T) ^

(out (sue 0 <--> (in (sue t) <-> ~ out 0)

Step 3:
This is the creative step, where the user has to use his knowledge in breaking up the goal into
subgoais, apply induction and the lemmas needed. Many design specific heuristics can be built
in to aid the user here. However, due to the very nature of the problem, automating this step is
often impossible. In the simple parity example, this step can be skipped.

Step 4:
Having broken up the original goal into subgoals, the subgoais can then be automatically sim-
plified. This is performed by eliminating internal lines. This step, also called the unwind step,
is performed by first converting the formula into a prenex form [15]. Afterwards, different
rewrite rules are applied to eliminate internal lines, e.g. by replacing an output of a combina-
tional clement in terms of its inputs. Then further logical simplifications are performed.

Applying the unwind step to the parity example results in the following description -

V in, out .
V t . ((out 0 ~ T) ^

(out (suc 0 <--> ((in (suc 0 -'-> "-1 out 0 ^ (-~ in (suc t) --> out 0)))

V t . ((out 0 ~ T) ^
(out (sue t) <---> (in (suc t) <-o --1 out t)))

Step 5:
Our automated prover FAUST can now be used to prove automatically each of the subgoals
generated in step 4.

3 THE THEORY UNDERLYING FAUST

FAUST is based on a modified form of sequent calculus (SEO.} called "Restricted Sequent
Calculus" or ~$EOo which lends itself to efficient implementation. We shall first give a brief
description of SEO..and a few basic definitions before the reasons for its inefficiency are out-

lined.

3 .1 Sequent Calculus
Definition 3.1: A sequent is a pair (F, A) of finite (possibly empty) sets of formulae F := { r

.... em}, A := {V1 Vn}. The pair (F,A) will be henceforth written as "F }7 A". F
is called the antecedent and A is called the succedent.

369

Detailed semantics of sequents can be found in various textbooks on logic [16, 15] and are
omitted here. Intuitively, a sequent is valid, if the formula (~1 ^ ... ^ ~m) ---) (V1 v ... v Vn)
is valid.
The calculus based on such sequents contains several
rules which reflect the semantics of the various operators
(including quantiflers), and a single axiom or rather an
axiom scheme which is a sequent " r [-A", such that, r
and A contain some common proposition (r ('~ A # {}).
An informal semantic for the axiom scheme corresponds
to the sequent " ~ k- ~" . Proving the correctness of any
statement within SEQthen corresponds to iterative rule
applications which decompose the original sequent into
simpler sequents, so that finally axioms are obtained.
This process can be visualized as a proof tree P (Fig. 3)

A1 r k- h 2

f a x

AXl Ax2 Axn.1 Axn

Figure 3: A closed proof tree

and a closed proof tree is one which has an axiom at each leaf node.
The rules can be classified into four types -- (x, 13, 8 and T (of. section 3.3). The former

three rules are uncritical as they can be applied deterministically i.e. each application simplifies
the sequent by eliminating the operator or quantifier. This implies that these rules can be applied
only once on each operator (quantifier). The T-rule on the other hand can be applied indefinitely
(does not eliminate the quantifier) and the choice of the best term used for the quantifier substi-
tution is unknown at the time of rule application. This choice greatly influences the depth of the
proof tree. It is this rule which poses a major hurdle in the efficient implementation of S'EO~ The
problems with critical rule application also appears in the implementation of tableaux-based,
first-order provers like HARP [17] which overcome these problems by using good heuristics in
guessing the right term for substitution. We on the other hand, use an exact approach which
plugs in a place-holder called a metavariable (not a part of the universe of terms) during the T-
rule application, and thereby postpone the choice of the exact term to a later appropriate time.
When the proof tree construction process is ripened, we then use fast-order unification for
computing the terms that instantiate the introduced metavariable. This concept can be thought of
as being similar to lazy evaluation within functional language implementations. The introduction
of the metavariable and its consequences are the subject of the next sub-section.

3 .2 Modifications to SEQ.
The introduction of metavariables during the T-rule application introduces problems as far as
the 8-rules are concerned. An application of the &rule requires that the variable that is substi-
tuted for the quantified variable is new [15], i.e. it does not appear in the quantified formula.
Since the choice of terms for the metavariables appearing in the formula is unknown at this
point of time, we have to introduce restrictions on the terms that the metavariables can take, so
that the terms to be computed in future do not contain the currently introduced constant. The use
of such restrictions led us to christen our calculus as ~,.q~or"restricted sequent calculus".

370

In the definitions to follow, the following notations are used:
Notations :

9" set of all first-order formulae q" the set of all first-order terms
q/ the set of all variables '//M the set of all metavariables

t
[]x substitution of a variable x by the term t E 'T

Definition 3.2: A forbidden set fsm ~ '/'is defined for each metavariable m ~ q/M, such that fsm
contains all the variables introduced by 8-rule applications after the introduction of the

metavariable m.
Definition 3.3: A restricted sequent is a modified sequent which has the form F k- A II g where

F, A ~ 9"; R ~ ~ x 2 'V, i.e. (m,fsm) e ~,, and "11" binds the restriction to the sequent.
Definition 3.4: A substitution o applied on a restricted sequent is defined as

o (r A II e0 := o (F) F- o (A) II
Definition 3.5: An allowed substitution o of a restricted sequent is a substitution such that, for

each (m,fsm) e ~, the terms occurring in o do not contain the forbidden variables or in
other words: Vx e fsm. x does not occur in o(m) for each (m,fsm)

Definition 3.6: An allowed substitution is said to close a restricted sequent if

o(1") 0(/9 {}.

The substitution o (metaunifier) can be found by modifying the normal Robinson's first-order
unification algorithm [18] in such a manner that only metavariables are considered as substi-
tutable sub-terms. This leads to the concept of metaunification where metaunifiers are found.

Given F = {~1 q)n} and A = {V1 Vm}, metaunifiers oij can then be computed for
each pair (~i, xgj), if ~i and Vj are unifiable. The most general unifiers that are useful are al-
lowed substitutions which do not violate the restrictions. The remaining unifiers are removed
from the set of computed unifiers. Each of these substitutions are candidates for closing the re-
stricted sequent. It is additionally possible to refine these substitutions by composing them with
additional substitutions 11. The compound substitution Orl continues to unify the pair (q)i, ~tj)
since o is more general than rl. It is also possible that choosing an appropriate refinement re-
suits in the closure of further sequents in the overall proof tree. Such closed sequents are all
valid in ,.r they correspond to axioms by definition.

3 . 3 Rules of ~ E Q
In the rules given below, both the variable y and the metavariable m are new, i.e. they do not
appear in the sequent until this point of time. The function Py(~0 used for updating the restric-
tions of the existing metavariables is defined recursively as follows:

~{}, if~.-- {}
py(~e0:= [{ (m, {y } UfSm) } L)py(ah), if R = { (re,f sin) } U

371

Given that F, A are all sets of formulae, ~ and V are formulae, m is a metavariable and x and y

are variables, the following are the rules of RSEQ We use the notation O,F instead of {r

NOT_L~FT

I r b r

OR_LE~

C v ~ , r F AII_~

r FF all~ u FF AII~

EQUIV_LEFT

r r F aII~

NOTRIGHT

r F -~, ~

#, r F AI~

ORRIGHT

r F r u AII~

r F r v, a l ~

EQUIV_PdGHT
r F ~ ~V, aII~

r v,~I~v,rl- r

AND_LEFT

r AII~

r ~, r F AitP,

AND_RIGHT

F F r V, AIl~

r F r All~ r F ~, A ll~

IMP_LEFT

r AIl~

r F r AH~ ~, r F All~

IMP_RIGHT

r b r ~, AJt~(

r r F v, miP,

Vx.r r I- &II~

[r162 a tt~k~ {(m,{ })}

ALLRIGHT

r b Vx.r at]~

r[- [~blYx,AIIpy(~

EXISTS_LEFT

3x.r r V AHP,

[r Allpy(~)

EXISTS_RIGHT

r F ~x.r An~

r}- 3xAb,[~b]m,All~u {(m,{})}

These rules can be classified into four types as stated earlier.
ct-mle NOT_LEFT, NOT_RIGHT, A N D L E F T , OR_RIGHT, IMP_RIGHT

9-role AND_RIGHT, OR_LEFT, IMP_LEFT, EQUIV_LEFT, EQUIV_RIGHT

8-rule ALL_RIGHT, EXISTS_LEFT
T-rule ALL_LEFT, EXISTS_RIGHT

In constructing proof trees the rules themselves are not as important as the types. Applying the

different types of rules yields the following sequents:

COl 91 92 8(y) T(m)
Starting from the original sequent and rccursively applying the rules the proof trcc can be

derived. An example illustrating the application of the rules is given below. It is to be noted that

the formula appearing in the sequent obtained after the f~-st 8-rule application "3 y V z. P Cl z

-~ P Cl y ", is abbreviated as �9 :

[- V x 3y Vz.Pxz.--->Pxy If()
5 (ALLRIGHT)

[-- 3y Vz.Pclz--->PclY IIO
~" 7 (EXISTS_RIGHT)

I-- ~ , V z . P ClZ--->PClml II((ml,{})}
$ (5 (ALL_RIGHT)

[-- ~, P Cl C2---~P clmIll((m1,{c2})}
$ a (IMPRIGHT)

Pclc2[-- ~,Pclmlll((ml,{C2})}
$ UNIFY (in 1 (c2) possible, but forbidden

P c l c 2 F ~,P clmlU((ml,{C2})}

$7 (EXISTSRIGHT)
P Cl c2['- d~,p Cl ml, V z , P c l z -) P clm2

II (Cm I, {c2}), (m2, {})}
$ 8 (ALL_mGHT)

P Cl c2 [- ~,P Clml,P ClC3---~P elm2
II ((ml, {c2,c3}),(m2, {c3})}

~, a (IMP_RIGHT)
P cl c2,P Cl c3 [- ~ ,P cl ml,P Cl m2

II ((ml, {c2,c3}),(m2, {c3})}
$ UNIFY (m2, c2) possible

P Cl c2, P Cl c3 [" ~), P Cl m I, P Cl c2
[I ((ml, {c2,c3}),(m2, {c3})}

closed

The soundness and completeness proofs of ~EQarc given in [19] and [20].

372

4 . IMPLEMENTATION OF ~ E Q I N FAUST

An efficient implementation of ~SEQrequires the clarification of certain concepts which are
briefly given in this section.

4 .1 Fairness of the rule application
In the course of the proof tree construction, it is possible that many different types of rules can
be applied on the sequent, at any given time. A random application of the rules is dangerous as
it could lead to an infinite growth of the proof tree. A trivial example of this would be to apply
the T-rule over and over again. Avoiding such pitfalls without the use of heuristics is achieved
by giving an order of precedence for the rules -- a >> 8 >> 13 >> T.
Definition 4.1: An application of the rule is defined to be fair if no rule gets a continuing prece-

dence over the others.
The uncritical rules (~, 8, 13), can be applied only a finite number of times and hence they are
fair among themselves. The T-rules on the other hand, can be applied infinitely. Due to defini-
tion of the rule precedence, a T-rule can be applied only when the uncritical rules are not appli-
cable. Now it only remains to ascertain that the T-rules are fair among themselves. This is
achieved by introducing a queue local to each sequent containing the formulae belonging to the
sequent, on which T-rules have been applied. When a T-rule is applied, the formula on which
this rule has been applied is deleted from it and added to the end of the queue. This ensures the
fairness among the T-rules, as further T-rule applications are done on quantified variables
which have not been instantiated so far. If no further T-rules can be applied and the sequent
cannot be closed, then further T-rule applications are done on the formulae stored in the queue,
local to the sequent. A fair application of the rules on a valid first-order statement will always

terminate and the proof of this statement is given in [19].

4.2 Depth-first construct ion of the Proof Tree
The unification algorithm produces the most general metaunifier a of two formulae, i.e. a
satisfies the sufficiency conditions for being a unifier. Given that r I is any substitution, the
composition o71 (also written as rl �9 or) is still a unifier for the two original formulae, however
no more the most general. This observation indicates that the substitutions needed for closing
the proof-tree can be computed along with the construction of the proof-tree itself. A depth-fLrst

construction of the proof-tree incorporating the above-mentioned strategy is as follows:

1. The proof-tree P0 is initialized to F t- A II { } and the substitution set F.O to {id}, which is
the identity substitution.

2. Given the proof-tree Pn after n rule applications and the substitution set ,Y,n, we proceed
with the left most node S which is not yet closed, in the following manner:
(a) If an a rule is applicable, the path leading to S is extended by (Xl to generate Pn+l

and Zn+l := Zn.
(b) If a 8 rule is applicable and no a rule is applicable, the path leading to S is extended

by 8(y) to generate Pn§ and Zn+l := Zn. The variable y used is any new variable.
(c) If a 13 rule is applicable and neither an a rule or a 8 rule is applicable, the path leading

to S is extended by two child nodes - 131 and 132 to generate Pn§ and En+l := Zn.

373

(d) Given that none of the uncritical rules are applicable but a y rule is, the path leading

to 5 is extended by y(m), to generate Pn+l and ~n+l := F'n, where m is a new
metavariable. The queue local to the sequent 5 is updated as stated in 4.1.

(e) The steps a to d are repeated until they are not applicable any more directly on the se-
quent.

(f) 5 := F }- A II ~ now contains only atomic formulae and no more rules can be
applied. Given Zn = {al ak), we then try to unify the sequent ai(F) }- ai(A)
for all i, where 1 _< i < k. This is achieved by unifying each formula in ai(F) with
each formula in ~i(A) to obtain the set of unifiers for ai , represented as
17 i = { ~ (~) ~ ~i i) }. Now there are two possibilities, the first of which being that all
His are empty. In this case, the sequent 5 cannot be closed at this step and we
proceed to step 2(g). On the other hand, even if one of the His are not empty the
substitution set Y-~+l is calculated as follows:

Y-~n+l := {~i) , (~i: ~i) ~ Hi; Hi ~ {}; i = 1 k ; j = 1 li}
It is to be noted that each unifier belonging to Zn+l continues to unify the sequent `5.
Pn+l is now obtained by declaring the sequent ,5 as closed and step 2 of the proof
construction is continued with the next left most node ,5' which is not closed. If all
the sequents in Pn+l are closed, a proof of validity has been obtained.

(g) When no substitutions which close the leaf ,5 are found in step 2(f), then there are
two possibilities -

(i) The queue local to the sequent is empty. In this case the sequent is invalid and
construction of the proof-tree is stopped with the message "Invalid Sequent ".

(ii) If the queue is not empty, a 'y rule is applied to the head of the queue local to ,5.
and the proof-tree construction proceeds from step 2(d).

We have also implemented a breadth-first algorithm and algorithms which perform skolemiza-
tion within FAUST. Although the breadth-first algorithm is much slower than the depth-f'trst
algorithm, certain problems which are not solvable using a depth-first approach are provable
using the breadth-first prover.

It can be observed that the above-mentioned depth-first algorithm generates a closed proof-
tree in a fair manner. Furthermore due to the definition of the precedence rules and the proof of
the completeness theorem, all valid sequents can be theoretically proved by the breadth-frrst
prover after a finite number of rule applications, although this number may be very large. On
the other hand, if the sequent to be proved is invalid then the proof construction process may
diverge. Hence a definition of an upper bound on the number of rule applications is desirable,
after which the proof construction is terminated with a message - "Goal too complex or invalid
sequent".

Interaction with HOL has been achieved by introducing the proofs completed by FAUST as

theorems using the "mk thm" (make theorem) function in HOL. Since this can be dangerous,
FAUST also generates a single HOL tactic which can then be used to automatically validate the
automatic proofs within a normal HOL session [21].

374

5 EXPERIMENTAL RESULTS

The prover embedded in HOL was first tested for its correctness by using the propositional and
first-order formulae in [22] and [23]. The runtimes of the more difficult Pelletier examples are
found in Table 2. The ML-code has been incorporated in the public domain version of HOL,
which runs on top, of Common-Lisp on a SUN 4/65. The problem called Andrew's challenge
was solved by generating 86 subgoals as compared to 1600 subgoals generated by resolution
provers. Additionally, we have observed that specialized HOL tactics can be developed for
difficult problems such as Uruquart's problems, which was then solved in linear time.

Having gained confidence about the correctness of our prover we have looked at some com-
binational circuits which also required a matter of seconds. At present we have proved the cor-
rectness of only small sequential circuits such as parity, serial adder, flipflops, and minmax.
Thy did not require any interaction and were proved in a few seconds.

Table 2:Runtimes of Benchmark-Formulae (* indicates times taken by the breadth-first version)

Formula Tune Formula Tune Formula Time Formula Tune

P24 1.4 P36 1.8 P40 9.9 P44 1.2
P26 1.0 P37 1.8 P41 3.0 P45 6.2
P34 19.1 P38 14.4 P43 - / 147.5" P46 182.1/9.9"

6 CONCLUSIONS AND FUTURE WORK

In this paper it has been shown that most hardware proofs can be broken into easily solvable
subgoals by following the sequence of steps given in section 2. The creative steps involved in
proving the correctness are few in number and most of the other steps can be automated. This
part of the proof process has been implemented in MEPHISTO [13]. Furthermore we have
elucidated that, although one needs higher order for specifying hardware, it is a restricted form
which can be handled by first-order proving techniques. For this purpose, a modified form of
sequent calculus has been proposed. An efficient implementation of the prover FAUST has
been presented.We are also working on embedding our approach within the CADENCE
framework, so that verification proceeds hand in hand with design.

Even if full automation in the context of complex hardware proofs is not reached with our
approach, at least HOL-based verification is freed from a significant part of tedious interactive

proof drudgery.

REFERENCES

1 M . J . C . Gordon: Why High-Order Logic is a good Formalism for Specifying and
Verifying Hardware; Milne/Subrahmanyam (Eds.), Formal Aspects of VLSI Design, Proc.
Edinburgh Workshop on VLSI 1985, North-Holland 1986, pp. 153-178.

2 J. Joyce: More Reasons Why Higher-Order Logic is a Good Formalism for Specifiying and
Verifying Hardware; Proc. International Workshop on Formal Methods in VLSI Design,
Miami, January 1991.

3 A. Camilleri, M. J. C. Gordon, T. Melham: Hardware Verification using Higher-Order
Logic; Borrione (Ed.), Proc. IFIP Workshop on "From H.D.L. Descriptions to Guaranteed
Correct Circuit Design", Grenoble 1986, North-Holland, pp.43-67.

375

4 S. Finn, M. Fourman, M. Francis, B. Harris: Formal System Design - Interactive
Synthesis based on Computer Assisted Formal Reasoning; Proc. Intl. Workshop on
Applied Formal Methods for Correct VLSI Design, Leuven, Nov. 1989.

5 F.K. Hanna, N. Daeche: Specification and Verification of Digital Systems Using Higher-
Order Predicate Logic; lEE Proc. Pt. E, Vol. 133, No. 3, September 1986, pp. 242-254.

6 A. Cohn: Correctness Properties of the Viper Block Model: The Second Level; Current
Trends in Hardware Verification and Automated Theorem Proving, Springer Verlag, 1988.

7 W.J. Cullyer: Implementing Safety Critical Systems: The VIPER Microprocessor; VLSI
Specification, Verification and Synthesis, Eds. Birwistle G. and Subrahmanyam P.A.,
Kluwer, 1988.

8 J. Joyce: Formal Verification and Implementation of a Microprocessor, VLSI Specification,
Verification and Synthesis, Eds. Birwistle G. and Subrahmanyam P.A., Kluwer, 1988.

9 J.R. Bureh, E.M. Clarke, K.L. McMillan, D.L. Dill: Sequential Circuit Verification Using
Symbolic Model Checking; Proc. 27th Design Automation Conference (DAC 90), 1990,
pp. 46-51.

10 O. Coudert, C. Berthet, J.C. Madre: Verification of Synchronous Sequential Machines
Based on Symbolic Execution; Prec. Workshop on Automatic Verification Methods for
Finite State Systems, Grenoble, June 1989.

11 T. Kropf, H.-J. Wunderlich: A Common Approach to Hardware Verification and Test
Generation Based on Temporal Logic; Prec. International Test Conference (ITC 91),
Nashville, 1991.

12 Abstract Hardware Limited: LAMBDA - Logic and Mathematics behind Design Automation;
User and Reference Manuals, Version 3.1, 1990.

13 K. Schneider, R. Kumar, T. Kropf: Structuring Hardware Proofs: First Steps towards
Automation in a Higher-Order Environment; Prec. VLSI '91, Edinburgh, P.B. Denyer, A.
Halaas (Eds.), North-Holland, 1991.

14 M. Gordon: A Proof Generating System for Higher-Order Logic; VLSI Specification,
Verification and Synthesis, Eds. Birwistle G. and Subrahmanyam P.A., Kluwer, 1988.

15 M. Fitting: First-Order Logic and Automated Theorem Proving; Springer Verlag, 1990.
16 J.H. GaUier: Logic for Computer Science: Foundations of Automatic Theorem Proving;

Harper & Row Computer Science and Technology Series No. 5, Harper & Row
Publishers,New York, 1986.

17 Oppacher E., Such: HARP: A Tableaux-based Theorem Prover, Journal of Automated
Reasoning; Vol. 4, 1988, pp.69-100.

18 J.A. Robinson: A Machine-oriented logic based on the resolution principle; Journal of the
ACM, Vol.12, pp.23-41, 1965.

19 K. Schneider: Ein Sequenzenkalkiil fiir die Hardware-Verifikation in HOL; Diploma
Thesis, Institute of Computer Design and Fault-Tolerance, University of Karlsruhe, 1991.

20 Schneider K., Kumar R., Kropf T.: Technical Report, Dept. of Comp. So. Univ. of
Karlsruhe, 1991, (to appear).

21 R. Kumar, T. Kropf, K. Schneider: Integrating a First-Order Automatic Prover in the HOL
Environment; Prec. 1991 International Tutorial and Workshop on the HOL Theorem
Proving System and its Applications, Davis, California, Aug. 1991.

22 D. Kalish, R. Montague: Logic: Techniques of Formal Reasoning; World, Harcourt &
Brace, 1964.

23 F.J. Pelletier: Seventy-Five Problems for Testing Automatic Theorem Provers; Journal of
Automated Reasoning, Vol.2, pp. 191-216, 1986.

24 Proceedings of the Third HOL Users Meeting; Aarhus University, Oct. 1990.

