Skip to main content

A combinatorial bound for linear programming and related problems

  • Conference paper
  • First Online:
STACS 92 (STACS 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 577))

Included in the following conference series:

Abstract

We present a simple randomized algorithm which solves linear programs with n constraints and d variables in expected O(d 32d n) time. The expectation is over the internal randomizations performed by the algorithm, and holds for any input.

The algorithm is presented in an abstract framework, which facilitates its application to a large class of problems, including computing smallest enclosing balls (or ellipsoids) of finite point sets in d-space, computing largest balls (ellipsoids) in convex polytopes, convex programming in general, etc.

Work by both authors has been supported by the German-Israeli Foundation for Scientific Research and Development (G.I.F.). Work by the first author has been supported by Office of Naval Research Grant N00014-90-J-1284, by National Science Foundation Grant CCR-89-01484, and by grants from the U.S.-Israeli Binational Science Foundation, and the Fund for Basic Research administered by the Israeli Academy of Sciences. Work by the second author has been supported by the ESPRIT II Basic Research Action Program of the EC under contract no. 3075 (project ALCOM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Behrend, über die kleinste umbeschriebene und die größte einbeschriebene Ellipse eines konvexen Bereiches, Math. Ann. 115 (1938), 379–411.

    Google Scholar 

  2. K. L. Clarkson, Linear Programming in \(O(n3^{d^2 } )\) time, Inform. Process. Lett. 22 (1986), 21–24.

    Google Scholar 

  3. K. L. Clarkson, Las Vegas algorithms for linear and integer programming when the dimension is small, manuscript, 1989.

    Google Scholar 

  4. L. Danzer, D. Laugwitz and H. Lenz, über das Löwnersche Ellipsoid und sein Analogom unter den einem Eikörper eingeschriebenen Ellipsoiden, Arch. Math. 8 (1957), 214–219.

    Google Scholar 

  5. M. E. Dyer, On a multidimensional search technique and its application to the Euclidean one-center problem, SIAM J. Comput 15 (1986), 725–738.

    Google Scholar 

  6. M. E. Dyer, A class of convex programs with applications to computational geometry, manuscript (1991).

    Google Scholar 

  7. M. E. Dyer and A. M. Frieze, A randomized algorithm for fixed-dimensional linear programming, manuscript, 1987.

    Google Scholar 

  8. F. Juhnke, Löwner ellipsoids via semiinfinite optimization and (quasi-) convexity theory, Technische Universität Magdeburg, Sektion Mathematik, Report 4/90 (1990).

    Google Scholar 

  9. H. Jung, über die kleinste Kugel, die eine räumliche Figur einschließt, J. Reine Angew. Math. 123 (1901), 241–257.

    Google Scholar 

  10. G. Kalai, A subexponential randomized simplex algorithm, manuscript (1991).

    Google Scholar 

  11. J. Matoušek, M. Sharir and E. Welzl, A subexponential bound for linear programming, in preparation (1991).

    Google Scholar 

  12. N. Megiddo, Linear-time algorithms for linear programming in ℝ3 and related problems, SIAM J. Comput 12 (1983) 759–776.

    Google Scholar 

  13. N. Megiddo, Linear programming in linear time when the dimension is fixed, J. Assoc. Comput. Mach. 31 (1984), 114–127.

    Google Scholar 

  14. M. J. Post, Minimum spanning ellipsoids, in “Proc. 16th Annual ACM Symposium on Theory of Computing” (1984), 108–116.

    Google Scholar 

  15. R. Seidel, Low dimensional Linear Programming and convex hulls made easy, Discrete Comput. Geom. 6 (1991), 423–434.

    Google Scholar 

  16. R. Seidel, Backwards analysis of randomized geometric algorithms, manuscript (1991).

    Google Scholar 

  17. J. J. Sylvester, A question in the geometry of situation, Quart. J. Math. 1 (1857) 79–79.

    Google Scholar 

  18. E. Welzl, Smallest enclosing disks (balls and ellipsoids), in “New Results and New Trends in Computer Science”, (H. Maurer, Ed.), Lecture Notes in Computer Science (1991) to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alain Finkel Matthias Jantzen

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sharir, M., Welzl, E. (1992). A combinatorial bound for linear programming and related problems. In: Finkel, A., Jantzen, M. (eds) STACS 92. STACS 1992. Lecture Notes in Computer Science, vol 577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55210-3_213

Download citation

  • DOI: https://doi.org/10.1007/3-540-55210-3_213

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55210-9

  • Online ISBN: 978-3-540-46775-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics