
A Provably Correct Compiler Generator

J e n s P a l s b e r g

palsberg@daimi, aau. dk

Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract

We have designed, implemented, and proved the
correctness of a compiler generator that accepts
action semantic descriptions of imperative pro-
gramming languages. The generated compilers
emit absolute code for an abstract RISC machine
language that currently is assembled into code for
the SPAKC and the HP Precision Architecture.
Our marline language needs no run-time type-
checking and is thus more realistic than those
considered in previous compiler proofs. We use
solely algebraic specifications; proofs are given in
the initial model.

1 I n t r o d u c t i o n

The previous approaches to proving correctness
of compilers for non-trivial languages all use tar-
get code with run-time type-checking. The fol-
lowing semantic rule is typical for these target
languages:

(FIRST : C, (Vl, v2) : S) ~ (C, vl : S)

The rule describes the semantics of an instruc-
tion that extracts the first component of the
top-element of the stack, provided that the top-
element is a pair. If not, then it is implicit that
the executor of the target language halts the ex-
ecution. Hence, the executor has to do run-time
type-checking.

Run-time type-checking imposes an unwelcome
penalty on execution time because more work has
to be done by the executor of the target language.
It may be argued, though, that the executor can
rely on the source language being statically type-
checked, and thus avoid the run-time type-checks.
This implies an unwelcome coupling of the source
and target languages, however, which prevents

the target language from being an independent
product, for general use.

This paper addresses the use of independent,
realistic target languages without type informa-
tion in the semantics. The paper also concerns
the possibility of proving correctness of a com-
piler generator, thus making correctness proof a
once-and-for-all effort.

We have overcome these problems. We have
designed, implemented, and proved the correct-
ness of a compiler generator, called Cantor, that
accepts action semantic descriptions of program-
ming languages. The generated compilers emit
absolute code for an abstract KISC [57] ma-
chine language without run-time type-checking.
The considered subset of action notation, see ap-
pendix A, is suitable for describing imperative
programming languages featuring:

�9 Complicated control flow;

�9 Block structure;

�9 Non-recursive abstractions, such as proce-
dures and functions; and

�9 Static typing.

For an example of a language description that has
been processed by Cantor, see appendix B. The
abstract RISC machine language can easily be
expanded into code for existing RISC processors.
Currently, implementations exist for the SPARC
[25] and the HP Precision Architecture [42].

The technique needed 'for managing without
run-time type-checking in the target language is
the following:

�9 Define the relationships between semantic
values in the source and target languages
with respect to both a type and a machine
state.

419

Thus, we define an operation which given a tar-
get value V, a machine state M, and a type T
will yield the s o r t of source values which have
type T and are represented by V and M. Here,
"sort" can be thought of as "set". For example,
an integer can represent a value of type truth-
value-list by pointing to a heap where the list
components are represented. In this case, our op-
eration will yield a sort containing precisely that
truth-value-list, when given the integer, the type
"truth-value-list", and the heap.

In contrast, for example Nielson and Nielson
[40] does n o t involve the machine state when re-
lating semantic values. Instead, they require tar-
get values to be "self-contained". Hence, they
need to have several types of target values and a
target machine that does run-time type checking.

With our approach we can make do with just
o n e type of target values, namely integer, thus
avoiding run-time type-checking and getting close
to the 32-bit words used in the SPARC. Note that
we do not insert type tags in the run-time repre-
sentations of source values; no type information
is present at run-time.

The relationship between semantic values al-
lows the proof of a lemma expressing "code well-
behavedness" which is essential when reasoning
about executions of compiled code. The required
type information is useful during compilation,
too; it is collected by the compiler in a separate
pass before the code generation. This pass also
collects the information needed for generating ab-
solute, rather than relative, code.

The development of Cantor was guided by the
following principles:

�9 Correctness is more important than effi-
ciency; and

�9 Specification and proof must be completed
before implementation begins.

As a result, on the positive side, the Cantor im-
plementation was quickly produced, and only a
handful of minor errors (that had been overlooked
in the proof!) had to be corrected before the sys-
tem worked. On the negative side, the generated
compilers emit code that run at least two orders
of magnitude slower than corresponding target
programs produced by handwritten compilers.

The specification and proof of correctness of
the Cantor system is an experiment in using
the framework of unified algebras, developed by

Mosses [35, 33, 34]. Unified algebras allows
the algebraic specification of both abstract data
types and operational semantics in a way such
that initial models are guaranteed to exist, except
when axioms contradict constraints, in which
case n o models of the specification exist. We have
demonstrated that also a non-trivial compiler can
be elegantly specified using unified algebras. In
comparison with structural operational seman-
tics and natural semantics, we replace inference
rules by Horn clauses. The notational difference
is minor, and only superficial differences appear
in the proofs of theorems about unified specifica~
tions. Where Despeyroux [10] could prove lem-
mas by induction in the length of inference, we in-
stead adopt an axiomatization of Horn logic and
prove lemmas by induction in the number of oc-
currences of "modus ponens" in the proof in the
initial model.

This paper gives an overview of the author's
forthcoming PhD thesis [44]. Most definitions
and proofs are omitted. For an overview of our
experiments with generating a compiler for a sub-
set of Ads, see [43].

In the following section we examine the major
previous approaches to compiler generation and
compiler correctness proofs. In section 3 we out-
line the structure of the Cantor system, includ-
ing the abstract RISC machine language and the
action compiler, and we give some performance
measures. In section 4 we state the correctness
theorem, and finally in section 5 we survey our
approach to proving correctness in the absence
of run-time type-checking in the target language.
We also discuss why we do not treat recursion.

The reader is assumed to be familiar with al-
gebraic specification [12], compilation of block
structured languages [64], and the notion of a
RISC architecture [57].

2 P r e v i o u s W o r k

2 . 1 C o m p i l e r G e n e r a t i o n

The problem of compiler generation is usually ap-
proached by choosing a particular definition of a
specific target language [46]. The task is then to
write and prove the correctness of a compiler for
a notation for defining source languages. Such a
compiler can then be composed with a language
definition to yield a correct compiler for the lan-
guage, see figure 1. Compiler generators that

420

Language
Source definition

P

language
Intermediate
notation

Compiler

Target
language

Figure 1: Semantics-directed compiler genera-
tion.

operate in this way are often called semantics-
directed compiler generators. The Cantor sys-
tem described in this paper is an example of a
semantics-directed compiler generator. It accepts
language definitions written in action notation,
and it outputs compilers that emit code in an
abstract RISC machine language.

The traditional approach to compiler genera-
tion is based on denotational semantics [53]. Ex-
amples of existing compiler generators based on
this idea include Mosses' Semantics Implementa-
tion System (SIS) [29], Paulson's Semantics Pro-
cessor (PSP) [45, 46], and Wand's Semantic Pro-
totyping System (SPS) [62]. In SIS, the lambda
expressions are executed by a direct implemen-
tation of beta-reduction; in PSP and SPS they
are compiled into SECD and Scheme code, re-
spectively. There are no considerations of the
possible correctness of either the implementation
of beta-reduction, the translations to SECD or
Scheme code, or the implementation of SECD or
Scheme. The target programs produced by these
systems have been reported to run at least three
orders of magnitude slower than corresponding
target programs produced by handwritten com-
pilers [22].

After these systems were built, several trans-
lations of lambda notation into other abstract
machines have been proved correct. Notable
instances are the categorical abstract machine
[8] and the abstract machines that can he de-
rived systematically from an operational seman-
tics of lambda notation, using Hannan's method
[16, 14, 15]. It remains to be demonstrated, how-
ever, if a compiler which incorporates one of them
will be more efficient than the classical systems.
Also, the correctness of implementations of these
abstract machines has not been considered.

It appears that the poor performance charac-
teristics of the classical compiler generators do
not simply stem from inefficient implementations
of lambda notation. Mosses observed that deno-
rational semantics intertwine model details with
the semantic description, thus blurring the under-
lying conceptual analysis [31]. Pleban and Lee
further observed that not only a human reader
but also an automatic compiler generator will
have difficulty in recovering the underlying anal-
ysis [48]. Attempts to recover useful information
from lambda expressions include Schmidt's work
on detecting so-called single-threaded store ar-
guments and stack single-threaded environment
arguments [52, 54], and the binding-time analy-
sis of Nielson and Nielson [41]. Despite that, it
seems unlikely that the performance characteris-
tics of compiler generators based on denotational
semantics soon will be improved beyond that of
existing such systems.

A number of compiler generators have been
built that produce compilers of a quality that
compare well with commercially available com-
pilers. Major examples are the CAT system of
Schmidt and VSller [55, 56], the compiler gen-
erator of Kelsey and Hudak [21], and the Mess
system of Pleban and Lee [47, 23, 49, 22]. These
approaches are based on rather ad hoc notations
for defining languages, and they lack correctness
proofs, like the classical systems. They indicate,
however, that better performance of the produced
compiler is obtained when:

�9 Some model details are omitted from a lan-
guage definition; and

�9 The notation for defining languages is bi-
ased towards %ompilable languages".

A radically different approach to compiler gen-
eration is taken by Dam and Jensen [9]. They
consider the use of natural semantics [20] (which
they call "relational semantics") as the basis of a
compiler generator. They devise an algorithm for
transforming a natural semantic definition into a
compiling specification. The algorithm requires
a language definition to satisfy some conditions;
it is sufficiently general to apply to a language of
while-programs, but has not been implemented.
The generated compilers emit code for a stack
machine; the correctness of these compilers has
been sketched, whereas the implementation of the
stack machine is not considered.

421

Finally, compiler generation can be obtained
by self-application of a partial evaluator. The
Ceres system of Tofte [60] is an early example of
this, demonstrating that even compiler genera-
tors can be automatically generated. Ceres uses
a language of flowcharts with an implicit state as
the notation for defining source languages. An-
other notable partial evaluator is the Similix of
Bondorf and Danvy [5, 6] which treats a subset
of Scheme. Gomard and Jones implemented a
self-applicable partial evaluator, called mix, for
an untyped lambda notation [13]. It has been
used to generate a compiler for a language of
while-programs. The generated compiler emits
programs in lambda notation. The correctness
of this compiler generator has been proved; it re-
mains to be seen, however, if the partial evalua-
tion approach will lead to the generation of com-
pilers for conventional machine architectures.

The lack of correctness proofs for the realistic
compiler generators limits the confidence we can
have in a generated compiler. Let us therefore ex-
amine the major previous approaches to compiler
correctness proofs.

2 . 2 C o m p i l e r C o r r e c t n e s s P r o o f s

The traditional approach to proving compiler
correctness is based on denotational semantics
[24, 26, 58, 51, 39] or algebraic variations hereof
[7, 28, 59, 3, 30]. The correctness statement can
be pictured as a commuting diagram, see figure 2.

SOU; 'ce I
syn ;ax

source
semantics

source [
meanings [

compiler [target
" syntax

encode

target
semantics

J target [

I meanings [

Figure 2: Compiler correctness.

It has been demonstrated that complete proofs
of compiler correctness can be automatically
checked. Two significant instances are Young's

[65] work, using the Boyer-Moore theorem prover,
and Joyce's [19, 18] work using the HOL system.
In both cases, the target code of the translation is
a non-idealized machine-level architecture whose
implementation has been verified with respect
to a low level of the computer, see for example
[17, 27]. The verification of both architectures
has even been automatically checked. These ex-
amples of systems verification [4] are important:
they minimize the amount of distrust one need
have to such a verified system. Of course, one
can still suspect errors in the implementation of
the gate-level of the computer, or in the imple-
mentation of the theorem prover, but many other
sources of errors have been eliminated.

The use of denotational semantics renders dif-
ficult the specification of languages with non-
determinism and parallelism. Such features can
be specified easily, however, by adopting the
framework of structural operational semantics
[50]. For a survey of recent work on proving
the correctness of compilers for such languages,
see the paper by Gammelga~rd and Nielsen [11],
which also contains a detailed account of the ap-
proach taken in the ProCoS project, where the
source language considered is Occam2.

In a special form of structural operational se-
mantics, called natural semantics [20], one con-
siders only steps from configurations to final
states. When both the source and target lan-
guages have a natural semantics, then there is
hope for proving the correctness of a compiler
using the proof technique of Despeyroux [10]. As
with the proof techniques used when dealing with
denotational semantics, Despeyroux's technique
amounts to giving a proof by induction on the
length of a computation. The correctness state-
ment is different, though. Instead of proving that
a diagram commutes, she proves the validity of
two properties, which informally can be stated as
follows:

s C o m p l e t e n e s s : if the source program ter-
minates, then so does the target program,
and with the same result; and

�9 Soundness : if the target program termi-
nates, then so does the source program, and
with the same result.

Despeyroux proves the correctness statement by
induction in the length of the proofs of the as-
sumptions of these properties. A central lemma

422

states that the code for an expression behaves in
a disciplined way. We call this property "code
well-behavedness". We will use a variation of
Despeyroux's technique, adapted to the frame-
work of unified algebras, see later.

A major deficiency of all the previous ap-
proaches to compiler correctness, except that
of Joyce [19, 18], is their using a target lan-
guage that performs run-time type-checking, as
explained above. Joyce considers only a language
of while-programs, and it is not clear how to gen-
eralize his approach.

Our concern can be sloganized as follows:

�9 If "well-typed programs don't go wrong",
then it should be possible to generate cor-
rect code for an independent, realistic ma-
chine language that does not perform run-
time type-checking.

The Cantor system is based on the use of such a
machine language.

3 The Cantor S y s t e m

Our compiler generator accepts action semantic
descriptions. Action semantics is a framework for
formal semantics of programming languages, de-
veloped by Mosses [31, 32, 33, 37, 36] and Watt
[38, 63]. It is intended to allow useful semantic
descriptions of realistic programming languages,
and it is compositional, like denotational seman-
tics. It differs from denotational semantics, how-
ever, in using semantic entities called actions,
rather than higher-order functions.

We have designed a subset of action notation
which is amenable to compilation and which we
have given a natural semantics, by a systematic
transformation of its structural operational se-
mantics [36]. The syntax of this subset is given in
appendix A together with a brief overview of the
principles behind action semantics. Appendix B
presents a complete description of a toy program-
ming language. (Readers who are unfamiliar with
action semantics are not expected to understand
the details in appendix B, despite the suggestive-
ness of the symbols used. See [36] for a full pre-
sentation of action semantics.)

The central part of the Cantor system is a com-
piler from action notation to an abstract RISC
machine language. This section presents both the
machine language and the compiler, and it states

some performance measurements of the Cantor
system.

All specifications in this paper, including those
of syntax, are given in Mosses' meta-notation for
unified algebras [36].

3 . 1 A n A b s t r a c t R I S C M a c h i n e

L a n g u a g e

The machine language is patterned after the
SPARC architecture; it is called Pseudo SPAR.C.
It contains 14 instructions that operate on the
following machine state:

spare-state =
(program, program-counter, was-zero,
was-negative, globals, windows, memory) .

'program' is a mapping from linenumbers to in-
structions. 'program-counter' is a linenumber,
and 'was-zero' and 'was-negative' are status-bits
(truth-values). 'globals' models the global reg-
isters, and 'windows' models a non-overlapping
version of the SPARC register-windows. Finally,
'memory' models six separate "pages" of the main
memory, as a mapping from page-identifications
to pages. A page is a mapping from addresses
(natural numbers) to integers. For example, one
of the pages is used as a stack, another as a heap.

The only data manipulated by this language
are integers. This means that it is impossible to
see from a given data value if it should be thought
of as a pointer to an instruction in the program,
as an address in the memory, or as modeling a
truth-value, an integer, etc.

The uniformity of the data values makes the
Pseudo SPARC language more realistic than
those considered in previous compiler proofs. It
contains two major idealizations, however, as fol-
lows:

�9 U n b o u n d e d word and m e m o r y size:
The data values are unbounded integers and
this requires unbounded word size. We also
assume that the program and memory sizes,
the number of of registers in a register win-
dow, and the number of register windows
are unbounded.

�9 R e a d - o n l y code: The program is placed
separately, not in 'memory'. This implies
that code will not be overwritten, and that
data will not be "executed".

423

These idealizations simplify the correctness proof
considerably, without removing any of the diffi-
culties that we address.

Pseudo SPARC Real SPARC

skip sub gg0, Zg0, Zg0
jump Z jmpl Z, Zg0
branchequal Z be Z
branchlessthan Z bneg Z
call jmp]. g lobal , Zr8
return jmp]. Zr8+8, ~gO
store R1 in t/2 Z P st R1, R2+Z'~P
load R1 Z P into R2 ld RI+Z+P, R2
stor eregisters save
I o a d r e g i s t e r s res to re
m o v e R I t o R or Zg0, RI , R
move sum R RI to R' add R, R I , R I
move difference R RI to R I sub R, RI , R'
compare R with RI subcc R, R I , 7,gO

Figure 3: The Pseudo SPARC machine language.

Figure 3 shows the 14 Pseudo SPARC instruc-
tions and how they (approximately) can be ex-
panded to real SPARC instructions. In prac-
tice, the expansion has to take care of fitting in-
structions using large integers into several real
SPARC instructions. It also has to insert ad-
ditional "nop" instructions into so-called "delay
slots". Pseudo SPARC instructions can also be
expanded to instructions for the HP Precision Ar-
chitecture, though with a little more difficulty.

The function that models one step of compu-
tation is defined as follows:

step _ :: sparc-state --~ spare-state (total) .

step m = next
((program of m) at
(program-counter of m) default skip) m .

'step _' models the loading of the current instruc-
tion, followed by its execution. The operation
'next _ _ ' is defined in the following style (we
give only a single example):

next _ _ ::
instruction, sparc-state --~ spare-state (total) .

next call (p, pc, cz, cn, g, w, q) =
(p, g at global default 0, cz, cn, 9,
update to (map of return-address to pc), q) .

Here, 'global' is one of the global registers, and
'return-address' is a user-inaccessible register in
the register-window. The use of 'default' mod-
els that all registers and memory addresses are
initialized to 0 before execution starts. Likewise,
the program area contains 'skip' instructions ev-
erywhere before the program is loaded.

Note that 'step _' and 'next _ _' axe total func-
tions. This emphasizes that computation con-
tinues infinitely, once started. For exaxnple, the
'call' instruction will be executed even though the
global register contained a value that we thought
of as a truth-value! It also means that we have
avoided alignment problems, etc., so that a typ-
ical run-time error such as "bus error" will not
occur. This is accomplished by having a word-
rather than byte-oriented definition of the Pseudo
SPARC machine.

3 . 2 C o m p i l i n g A c t i o n N o t a t i o n

The compiler from action notation to Pseudo
SPARC machine code proceeds in two passes:

1. Type analysis and calculation of code size;
and

2. Code generation.

For each pass there is a function defined for ev-
ery syntactic category. Those defined for 'Act'
have the following signatures (we cheat a little
bit here, compared to [44], to improve the read-
ability):

a-count _ _ _ :: Act, data-type, symbol-table -4
(natural, truth-value, data-type,
truth-value, data-type, block) .

perform ::
Act. data-type, general-register,
frozen, symbol-table,
cleanup, cleanup, cleanup,
linenumber, linenumber-complete,
linenumber-escape, linenumber-fail --~
(program, general-register, general-register) .

Since action notation contains unusual con-
structs, e.g., 'complete', 'escape', 'fail', the def-
inition of the type analysis and code genera-
tion employ unusual techniques, though not very
difficult. For example, the definition of 'per-
form' requires as argument both the desired start-
address ('[inenumber') of the code to be gener-
ated, but also addresses of where to jump to,

424

syntax semantics

11
cantor

program

1
b compiler

input

I
code output

Figure 4: The

should the performance complete ('linenumber-
complete'), escape ('linenumber-escape'), or fail
('linenumber-fail'). These addresses are calculated
using 'a-count' which, in addition to type analy-
sis, calculates the size of the code to be generated.

The function 'a-count' is defined as a forwards
abstract interpretation, computing with types of
tuples of data ('data-type'), types of bindings
('symbol-table'), and code sizes ('natural'). The
first 'truth-value' component tells if the action
being analyzed has a chance of completing. If
it does, then the following 'data-type' component
tells the type of the tuple of data that will pro-
duced. The next two components give similar
information about escaping.

The function 'perform' takes as arguments the
'data-type' and 'symbol-table' that are also sup-
plied to 'a-count'. In addition, it takes a 'general-
register' which at run-time will contain a pointer
to a representation of the tuples of data that
will be received when executing then code. The
set 'frozen' contains those registers that the code
to be produced must not modify, and the three
'cleanup' values are natural numbers that indi-
cate how much to pop from the stack, should the
performance complete, escape, or fail.

The calculation of whether an action can com-
plete or not, and whether it can escape or not,
are examples of the compile time analyses that
axe built into the compiler. They are used to gen-
erate better code, and they are fully integrated in
the proof of correctness, see later.

3.3 P e r f o r m a n c e E v a l u a t i o n

The Cantor system hem the structure shown in
figure 4. In practice, a session with Cantor looks
as follows on the screen:

cantor syntax semantics compiler
compiler program code
code input output

Cantor system.

The compiler generator can to r is written in
Perl [61], and the generated compilers are writ-
ten in Scheme [1]. Examples of a syntax and
a semantics are given in appendix B; it is the
I~TEX source of the appendix that is processed
by cantor . The generated compiler contains a
syntax checker, a program-to-action transformer,
the action compiler described above, and finally
a Pseudo SPAKC assembler that currently can
emit code for the SPARC and the HP Precision
Architecture. The input file is a sequence of in-
tegers, as is the output file.

The HypoPL language, defined in appendix B,
is taken from Lee's book on realistic compiler
generation [22], with the difference that we treat
nesting of procedures in its full generality but do
not allow recursion. (For a discussion of why re-
cursion is problematic, see later.)

�9 Generating a compiler for HypoPL takes 3
seconds.

We have used this compiler to translate Lee's
bubblesort program (50 lines).

�9 Compile time: 486 seconds;

�9 Object code size: 114688 bytes; and

�9 Object code execution time (for sorting 10
integers): 0.1 seconds.

These figures indicate that the system is rather
tedious to work with in practice. Additional ex-
periments, see [43], have shown that the code
runs at least two orders of magnitude slower
tha~ a corresponding target program produced
by the C compiler (without optimization). This is
somewhat disappointing but still an improvement
compared to the classical systems of Mosses,
Paulson, and Wand where a slow-down of three
orders of magnitude has been reported [22]. In-
spection of the code emitted by Cantor-generated
compilers reveals that the inefficiency mainly
stems from three sources:

425

�9 Lack of compile time constant propagation;

�9 Poor register allocation; and

�9 Naive representation of bindings, closures,
and lists.

Improving the action compiler to avoid this in-
efficiency would significantly complicate the cor-
rectness theorem, which we consider next.

4 T h e C o r r e c t n e s s
T h e o r e m

To give an overview of the correctness theorem,
we will introduce a bit of notation, as follows (we
cheat a little bit again, compared to [44], to im-
prove the readability):

run _ _ :: Act, [integer] list --* s ta te .

sparc-run _ _ ::
program, natural, page --+ sparc-state.

compile _ :: Act --~
(program, truth-value, data-type,
truth-value, data-type,
general-register, general-register) .

abstract ::
sparc-state, truth-value, data-type,
truth-value, data-type,
general-register, general-register --+ s t a t e .

i-abs _ . :: natural, page --~ [integer] list .

(1) a-count A 0 (list of empty-l ist) =
(n , ~ , / ~ , z~, he, empty-l ist) ;

(2) perform A () (reg 0) empty-set
(list of empty-l ist) 0 0 0 0 n n n =
(p, ~, a.)

=:~ compile A = (p, z, , , /~, z., he, ~ , a .) .

We have only given the definition of 'com pile _', in
terms of 'a-count' and 'perform'. The operations
have the following informal meaning:

1. The operation 'run A i l ' specifies the per-
formance of an action A which is given
the empty tuple of data, no bindings, an
empty-storage, an empty output-file, and
the input-file il (an integer-list). If the per-
formance terminates, then that will result
in a final state ('state') which can be either
completed, escaped, or failed.

2. The operation 'sparc-run p n Be' specifies
loading the program p into the program
area, and then taking n steps starting in
line 0. It also records if the execution at
any point "jumps outside the code". The
memory, registers, status bits, and output
file are initialized appropriately, the input
file is initialized to Be. 'sparc-run' is defined
in terms of 'step', described above.

3. The operation 'compile A' translates the ac-
tion A into a machine language program
p and it also gives type information about
what will be produced when performing A.
The program p will start in line 0.

4. The operation 'abstract rnp zn hn ze he an
ae' will give a sort of all those states (from
the action-level) that are represented by the
spare-state rap, and that have the type ex-
pressed by the following four arguments.
The last two arguments are those registers
which will contain pointers to the represen-
tations of the data produced, should the ac-
tion complete or escape.

5. The operation 'i-abs n Be' will give the
input-file ('[integer] list') which is repre-
sented by the natural number n and the
page Be.

The use of both type information and a machine-
state in the definition of 'abstract' makes it pos-
sible to make do without type information in the
semv, ntics of Pseudo SPARC.

None of the above five operations are total.
The performance of an action may diverge; the
execution of a machine program may "jump out-
side the code"; the compilation of an action may
find a type error; the machine state may repre-
sent no state at all from the action-level; and the
page for input-files may contain something with-
out the right format.

The le ts-notat ion for unified algebras makes
it particularly easy to specify such partial op-
erations. This is because it supports a unified
treatment of sorts and individuals: an individ-
ual is treated as a special case of a sort. Thus
operations can be applied to sorts as well as in-
dividuals. A vacuous sort represents the lack of
an individual, in particular the 'undefined' result
of a partial operation. For example, if the per-
formance of the action A with input-file il ter-
minates, then 'run A i l ' will be an individual,

426

otherwise it will be a vacuous sort. We need not
specify that such sorts axe vacuous; if it does not
follow from the specification that they contain an
individual, then they will automatically be vacu-
ous.

The operations 'run', 'sparc-run', 'compile', and
'i-abs' will all yield either an individual or a vac-
uous sort. In contrast, 'abstract' may yield a sort
containing several individuals, and it may also
yield a vacuous sort. The possibility of yielding a
sort containing several individuals is needed when
abstracting with respect to a closure type. This is
because if two actions differs only in the naming
of tokens (they axe equal with respect to "alpha-
conversion"), then the compiled code for them
will be identical.

We can now state the correctness theorem.
Note that ' t :- s ' is another syntax f o r ' s : t ' .
The meaning is that s is an individual contained
in t.

T h e o r e m :

(z) compile A:Act =
(p:program ~ : t r u t h - v a l u e / ~ : d a t a - t y p e
ze:truth-value he:data-type
~:general-register a~:general-register) ;

(2) i-abs (se at 0) se = / / : [in teger] list

=P (z) run A i l = m~:state =~
(:1 mv:sparc-state :l n:natural ,
sparc-run p n se ~- ~ , ;
abstract m v zn /~ ze he an o~ :- me) ;

(2) sparc-run p n se = mv:sparc-state =~
(:[ms:state.

run A i f = mr,;
abstract rr~ z~ /~ zc he an ae :- ms) �9

The structure of the theorem resembles the cor-
rectness statement of Despeyroux. Informally:

If the action A is compiled into a machine lan-
guage program p (and some additional type in-
formation, etc., is produced), and the input-file
il is represented properly in the machine as se,
then two properties hold:

1. Comple t enes s : If the performance of the
action A (with input-file il) terminates in
state ms, then there exists a spaxc-state m r
and a number n such that an n-step execu-
tion of p will reach mr, and m r represents
ms (and the program-counter points to the
last line of p).

2. Soundness : If an n-step execution of
p (with input se) reaches m n (and the
program-counter points to the last line of
p), then there exists a state m, , represented
by rnp, such that a performance of A (with
input il) will terminate in ms.

Notice that it is built into the definition of 'spare-
run', and hence the correctness theorem, that the
execution of the machine language program never
"jumps outside the code".

5 The P r o o f Technique

A number of lemmas axe needed to prove the the-
orem; here is an overview:

* C o m p i l e r cons is tency: These lemmas
state that the calculation of code size is cor-
rect. They also state that the code is placed
consecutively, starting in the desired line.

�9 C o r r e c t n e s s of ana lys i s : These lemmas
state that the type analysis asserts correct
typings, relative to the semantics of actions.

�9 C o d e we l l -behavedness : These lemmas
state that if the execution of some compiled
code at some point reaches "the end of the
code", then it used the memory and reg-
isters in a disciplined fashion, and, in ad-
dition, the machine state will represent an
abstract state (with the type given by the
compiler).

It is also necessary to prove strengthened versions
of completeness and soundness.

Let us now consider how to adopt Despeyroux's
proof technique to the framework of unified alge-
bras.

Despeyroux expresses natural semantics in the
Oentzen's system style, with axioms and infer-
ence rules. In such a system one can make natu-
ral deduction, and can then prove lemmas about
the system by induction in the length of such de-
ductions. In contrast, the framework of unified
algebras provide Horn clauses, and there are no
build-in deduction rules. We have replaced infer-
ence rules by Horn clauses, so to be able to do
deduction, we adopt a standard axiomatization
of Horn logic, as follows.

All specifications in the meta-notation for uni-
fied algebras can be transformed into a core no-
tation which is outlined in the following. Let ~2

427

(ft, r) ~- t = t

(ft, r) ~- ~ = t (ft, r) t- t = ,~
(ft, r) ~ s = u

{(ft, r) ~ al = ti}in_-i if f E E
(ft, F) I- f (s l s ,) -.= f (t l , . . . , t,,)

t 9. {(ft, F) I- s / = i}i=, (ft, F) I- p(s, , sg.) if p E {- < : -}
(ft, r) ~- p (t , , tg.) - ' -

{(ft, F) I- Fi},~l if (Fx ; . . . ;F , =~ F) e F
(ft, r) F- f

(Reflexivity)

(Transitivity)

(Functional Congruence)

(Predicative Congruence)

(Modus Ponens)

Figure 5: Axiomatization of Horn clause logic.

be a so-called homogeneous first-order signature,
that is, a pair (E, H) where E is a set of operation
symbols and II is a set of predicate symbols. In
the setting of unified algebras, it is required that

_.D {nothing, _] _, _&_}

and

H = { _ = _ , _ < _ , _ : _ }

The value of the constant 'nothing' is a vacuous
sort, included in all other sorts. The operation
'- I -' is sort union, and '_&_' is sort intersection.
The predicate '_ = _' asserts equality, '_ < _' as-
serfs sort inclusion, and 'T1 : I"2' asserts that the
value of the term T1 is an individual included in
the (sort) value of the term Tg..

Further, let F be a set of Horn clauses built up
from ft. Any specification F of such Horn clauses
will be augmented with some basic Horn clauses,
stating for example the reflexivity of '_ < _', see
[34]. Finally, let F be a formula built up from ft.
We will then write

(ft, r) t-- F

(read F is (ft, F)-deducible) if (ft, F) I-- F can
be obtained by finitely many applications of the
deduction rules shown in figure 5. A deduction
rule consists of a conclusion (given beneath the
line), none, one, or several premises (given above
the line), and possibly a condition (given at the
right-hand side of the line). A deduction rule
stands for the statement:

�9 If all premises are deducible, the condition
is satisfied, and F is a formula built up from
ft, then the conclusion (ll, F) I- F is de-
ducible.

With these deduction rules, we can do proof by
induction in the number of occurrences of "modus
ponens" in deductions. Note that a single ap-
plication of modus ponens corresponds closely
to a natural deduction step. This makes our
proof strategy close to Despeyroux's. All lemmas
proved by induction in the length of deduction are
satisfied by the initial model of the specification.
The key property of an initial model needed here
is that it only contain entities that are values of
ground terms (it contains "no junk").

We will end this section by explaining why we
do not treat recursion, in contrast to Despeyroux.
The reason for this is rather subtle; it hinges on
the expre~iveness of the unified meta-notation.

Full action notation offers self-referential bind-
ings as the means for describing for example re-
cursive procedures. A self-referential binding is a
cyclic structure; the run-time representation will
obviously also be cyclic. In Despeyroux's paper,
such cyclic structures are represented as graphs
with self-loops--both in the source and target
languages. This allows her to uniquely determine
the run-time representation of a self-referential
environment.

Compared to Despeyroux, we use a much more
low-level target language where values can be
placed in more than one plas in the memory.
This means that not only can one target value
represent more than one source value, as in De-
speyroux's paper, it is also possible for one source
value to be represented by different parts of the
memory. In other words, there is no functional
connection between source and target values;
there is only a relation stating which source val-
ues are represented by a given part of the mere-

428

ory.
In the case of cyclic structures, the relation be-

tween semantic values seems to be impossible to
define in the unified meta-notation. This is be-
cause the meta-notation only allows the expres-
sion of Horn clauses. Evidence for this is found
in Amadio and Cardelli's paper on subtyping re-
cursive types [2]. They axiomatize several rela-
tionships between cyclic structures, and it seems
that a rule of the following non-Horn kind cannot
be avoided:

(z R y =P a R #) =~ g z . a R py .#

Since we want to apply the unified recta-notation
exclusively in all specifications, we avoid self-
referential bindings. Thus we cannot treat re-
cursion.

6 Conc lus ion

A p p e n d i x A:
A c t i o n N o t a t i o n

grammar:

Act = "complete" I "escape" I "fail" I
"commit" I "diverge" I "regive" I
~" "give" Dep ~ I ["check" Dep ~ I
J "bind" token "to" Dep] I
| "store" Dep "in" Dep] I
| "allocate" "truth-value" "cell"] I
["allocate" "integer" "cell" ~ I
| "batch-send" Dep] I
| "batch-receive" "an" "integer"] I
["enact" "application" Dep
"to" Tuple] [
["indivisibly" Act] I
| "unfolding" Unf] I
| Act Infix Act] I
[| "furthermore" Act] "hence" Act] I
| | "furthermore" Act J "thence" Act] .

Our compiler generator is specified and proved
correct solely in an algebraic framework. To our
knowledge, it is the first time that this has been
accomplished.

The generated compilers emit realistic, albeit
poor, machine code. Future work includes build-
ing in more analyses, for the benefit of the code Dep =
generator.

The use of action semantics makes the process-
able specifications easy to read and pleasant to
work with. We believe that the Cantor system is
a promising first step towards user-friendly and
automatic generation of realistic and correct com-
pilers.

Acknowledgements. This work has been sup-
ported in part by the Danish Research Council
under the DART Project (5.21.08.03). The au-
thor thanks Peter Mosses, Michael Schwartzbach,
and the referees for heipful comments on a draft
of the paper. The author also thanks Peter Or- Infix =
b~ek for implementing the Cantor system.

Unf = | Act Infix Unf] I [Unf "or" Act] I
"unfold" .

Tuple = " 0 " I Dep I [Tupte "," Tuple] I
"them" .

Unary =

"true" J "false"] natural J
["empty-llst ~: [" Type "]" "list"] I
| "closure" "abstraction" "of" Act " ~ "
"[" "perhaps" "using" Data "]" "act" | I

Unary Dep] l
[Binary "(" Dep "," Dep ")" ~ I
[Dep "is" Dep] l
~" Dep | "is" "less" "than"] Dep] I
~" "component#" Dep "items" Dep] I
"it" I
["the" "given" Datum "#" natural ~ I
["the" Datum "bound" "to" token] I
["the" Datum "stored" "in" Dep] I
| "(" Dep ")"] .

["and" "then"] I "then" I "before" I
"trap"] "or" .

"not" I "negation" I ["llst" "o f"] I
"head" I " la i r ' .

Binary =

Datum =

Data =

"both" I "either" I "sum" I
"difference" I "concatenation".

"datum" I "cell" I "abstraction" I
"list" I [Datum " I " Datum] I Type.

"0" I Type I [Data "," Data | .

429

Type = "truth-value" I "integer" I
["truth-value" "cell"]l I
["integer" "cell" J I
["[" Type "]" "list"] .

A . 1 A c t i o n P r i n c i p l e s

Action notation is designed to allow comprehen-
sible and accessible descriptions of programming
languages. Action semantic descriptions scale up
smoothly from small example languages to real-
istic languages, and they can make widespread
reuse of action semantic descriptions of related
languages.

Actions reflect the gradual, stepwise nature of
computation. A performance of an action, which
may be part of an enclosing action, either

�9 completes, corresponding to normal termi-
nation (the performance of the enclosing ac-
tion proceeds normally); or

�9 escapes, corresponding to exceptional ter-
mination (the enclosing action is skipped
until the escape is trapped); or

�9 fails, corresponding to abandoning the per-
formance of an action (the enclosing action
performs an alternative action, if there is
one, otherwise it fails too); or

�9 diverges, corresponding to nontermination
(the enclosing action also diverges).

The information processed by action performance
may be classified according to how far it tends to
be propagated, as follows:

�9 transient: tuples of data, corresponding to
intermediate results;

�9 scoped: bindings of tokens to data, corre-
sponding to symbol tables;

�9 8table: data stored in cells, corresponding
to the values assigned to variables;

�9 permanent: data communicated between
distributed actions.

Transient information is made available to an ac-
tion for immediate use. Scoped information, in
contrast, may generally be referred to throughout
an entire action, although it may also be hidden
temporarily. Stable information can be changed,

but not hidden, in the action, and it persists un-
til explicitly destroyed. Permanent information
cannot even be changed, merely augmented.

When an action is performed, transient infor-
mation is given only on completion or escape,
and scoped information is produced only on com-
pletion. In contrast, changes to stable informs.
tion and extensions to permanent information are
made during action performance., and are unaf;
fected by subsequent divergence or failure.

Our subset of action notation omits all no-
tation for communication. Instead, the ad hoc
constructs 'batch-send' and 'batch-recelve' allow
a primitive form of communication with batch-
files, as in standard Pascal.

The information processed by actions consist
of items of data, organized in structures that give
access to the individual items. Data can include
various farniliar mathematical entities, such as
truth-values, integers, and lists. Actions them-
selves are not data, but they can be incorpo-
rated in so-called abstractions, which axe data,
and subsequently 'enacted' back into actions.

Dependent data are entities that can be eval-
uated to yield data during action performance.
The data yielded may depend on the current in-
formation, i.e., the given transients, the received
bindings, and the current state of the storage and
batch-files. Evaluation cannot affect the current
information. Data is a special case of dependent
data, and it always yields itself when evaluated.

430

A p p e n d i x B:
H y p o P L Ac t ion Seman t i c s

B.1 Abstract Syntax

coercively A:act =
IA
then
I give the given item #1 or

give the item stored in the given cell #1 .

g r a m m a r :

Program = iT "program" Identifier Block] .

Declaration = ["int" Identifier] I
R" "bool" Identifier] I
~" "const" identifier "=" Integer] J

"array" Identifier "[" Integer "]"] I
"procedure" Identifier

"(" Identifier ")" Block] I
Declaration ";" Declaration] .

Block = [Declaration
"begin" Statement "end"] I
IT "begin" Statement "end"] .

Statement = ~" Expression " :=" Expression] I
R" "write" Expression]] I
~" "read" Expression] I

" i f" Expression "then" Statement
"else" Statement "endif"] I
~" "while" Expression "do"
Statement "endwhile"] I
IT Identifier "(" Expression ")"] I
[

B.3 Semantic Functions

in t roduces :
run _, establish _, ac t i va te . , execute _,
evaluate _, operatlon-result _,
in teger -va lue _ , id _.

B.3 .1 P r o g r a m s

�9 run _ :: Program --* act .

run ["program" /:Identif ier B:block] = activate B .

B . 3 . 2 D e c l a r a t i o n s

�9 e s t a b l i s h _ :: Declaration -+ act .

establish IT "int" /: identif ier] =
allocate integer cell then bind id I to it .

Statement ";" Statement] ["skip" . establish IT "boor' /:Identifier] =
allocate truth-value cell then bind id I to i t .

Expression = "true" I "false" I Integer I
Identifier I
IT Identifier "[" Expression "]"] J

Expression Operation Expression]]
H "not" Expression] .

Operation = "+" I " - " I " < " I "=" I "and" .

Integer = natural I ~" " - " natural] .

Identifier = token.

B.2 Semantic Entities
B.2.1 I t e m s

in t roduces : item.

item = truth-value [integer.

B .2 .2 C o e r c i o n

in t roduces : coercively _.

�9 coercively _ :: act ~ act .

establish ~" "const" /:Identifier "=" j: integer] =
bind id I to integer-value j .

establish IT "array" /:identifier "[" j: integer "]"] =
I give empty-list & [integer cell] list and then

give sum(integer-value j , 1)
then

unfolding
I check the given integer #2 is 0 and then

give the given list #1
or

I regive and then allocate integer cell
then

give concatenation(
list of the given integer cell #3,
the given list #1)

and then
give difference(

the given integer #2, 1)
then
I unfold

then
I bind id I to the given list # 1 .

431

establish] "procedure" ll:ldentifier
"(" Is:Identifier ")" B:Block] =
bind id 11 to
closure abstraction of

furthermore
I give the given integer #1 and then

allocate integer cell
then
I I store the given integer #1

in the given cell #2
and then
J bind id I2 to the given cell #2

thence activate B
& [perhaps using integer] act .

establish ~ Dl:Declaration ";" ~:Declaration] =
establish D1 before establish D2 .

B.3.3 Blocks

�9 activate _ :: Block --~ act .

activate ~D:Declaration
"begin" S:Statement "end"~ =
I furthermore establish D
hence execute S .

activate ~ "begin" S:Statement "end"] = execute S .

B.3.4 Statements

�9 execute _ :: Statement --* act.

execute ~F_,l:Expression " :=" F_~:Expression] =
l evaluateEland then

coercively evaluate/~
then
I store the given item #2

in the given c e l l # l .

execute] "write" E:Expression] =
coercively evaluate E then batch-send i t .

execute ~ "read" E:Expression] =
I batch-receive an integer and then evaluate E
then
I store the given in teger# l

in the given integer cell # 2 .

execute I" "if" E:Expression "then" Sl:Statement
"else" S2:Statement "endif"] =
I coercively evaluate E
then

I check it then execute $1
or
I check not it then execute $2 �9

execute ["while" E:Expression "do" S:Statement
"endwhile"] =
unfolding

I coercively evaluate E
then
I I check it then execute S then unfold

or check not i t .

execute [/:Identif ier "(" E:Expression ")"] =
I give the abstraction bound to id I and then

coercively evaluate E
then
I enact application the given abstraction #1

to the given integer # 2 .

execute ~ Sl:Statement ";" 82:Statement] =
execute $1 and then execute $2 �9

execute "skip" = complete.

B.3.5 Expressions

�9 evaluate _ :: Expression --~ act .

evaluate "true" = give true.

evaluate "false" = give false.

evaluate i:lnteger = give integer-value i .

evaluate/:Identifier = give the datum bound to id I .

evaluate [/:Identifier "[" E: Expression "]"] =
I give the list bound to id I and then

I coercively evaluate E then give sum(it, 1)
then
I give component# (the given integer #2)

items (the given list #1) .

evaluate
El:Expression O:0peration F__~:Expression] =

I coercively evaluate El and then
coercively evaluate F_~

then give operation-result O .

evaluate ~ "not" E:Expression] =
coercively evaluate E then
give not i t .

B.3.6 Operations

�9 operation-result _ : :

Operation --~ dependent datum .

operation-result "-I-" =
sum(the given integer #1,

the given integer # 2) .

432

operation-result " - " =

difference(the given integer #1,
the given integer ~2) .

operation-result "<" =
(the given integer ~ 1) is less than
(the given integer # 2) .

operation-result "--" --
(the given item I cell ~ 1) is
(the given i tem I cell # 2) .

operation-result "and" =
both(the given truth-value #1,

the given truth-value ~2) .

B.3.7 I n t e g e r s

�9 integer-value _ :: Integer --, i n t e g e r .

integer-value n:natura[= n .

integer-value ["-" n:natural] = negation n .

B.3.8 Iden t i f i e r s

* i d . :: Identifier ~ token.

id k:token = k .

References

[1] Harald Abdson, Gerald Jay Sussman, and Julie
Sussman. Structure and Interpretation of Com-
puter Programs. MIT Press, 1985.

[2] Roberto M. Amadio and Luca Cardelli. Subtyp-
ing recursive types. In Eightteenth Symposium
on Principles of Programming Languages. ACM
Press, January 1991.

[3] Rudolf Berghammer, Herbert Ehler, and Hans
Zierer. Towards an algebraic specification of
code generation. Science of Computer Program-
ming, 11:45-63, 1988.

[4] William R. Bevier, Warren A. Hunt, J. Strother
Moore, and William D. Young. An approach
to systems verification. Journal of Automated
Reasoning, 5:411--428, 1989.

[5] Anders Bondorf. Automatic autoprojection
of higher order recursive equations. In Proc.
ESOP'gO, European Symposium on Program-
ming. Springer-Verlag (LNCS 432), 1990.

[6]

[7]

[81

t9]

[10]

[11]

[12]

[13]

[14]

[15]

[161

Anders Bondorf and Olivler Danvy. Auto-
matic autopr0jection of recursive equations with
global variables and abstract data types. Sci.
ence of Computer Programming, 16:151-195,
1991.

Rod M. Burstall and Peter J. Landin. Programs
and their proofs: an algebraic approach. In
B. Meltzer and D. Mitchie, editors, Machine In.
telligence, Vol. ~, pages 17-43. Edinburgh Uni-
versity Press, 1969.

G. Cousinean, P.-L. Curien, and M. Mauny.
The categorical abstract machine. Science of
Computer Programming, 8:173-202, 1987.

Mads Darn and Frank Jensen. Compiler gen-
eration from relational semantics. In Proc.
ESOP'86, European Symposium on Program.
ruing. Springer-Verlag (LNCS 213), 1986.

Jo~lle Despeyrotuc. Proof of translation in nat-
ural semantics. In LICS'86, First Symposium
on Logic in Computer Science, June 1986.

Anders Gammelgaard and Flemmlng Nielson.
Verification of the level O compiling specifica-
tion. Technical report, Department of Com-
puter Science, Aarhus University, July 1990.

Joseph A. Goguen, James W. Thatcher, and
Eric G. Wagner. An initial algebra approach to
the specification, correctness, and implementa-
tion of abstract data types. In Raymond T. Yeh,
editor, Current Trends in Programming Method-
ology, Volume IV. Prentice-Hail, 1978.

Carsten K. Gomard and Neil D. Jones. A par-
tiai evaluator for the untyped lambda-calculus.
Journal of Functional Programming, 1(1):21-
69, 1991.

John Hannan. Making abstract machines less
abstract. In Proc. Conference on E~nctional
Programming Languages and Computer Archi-
tecture. Springer-Verlag LNCS, 1991.

John Hannah. Staging transformations for ab-
stract machines. In Proc. ACMSIGPLANSym-
posium on Partial Evaluation and Semantics
Based Program Manipulation. Sigplan Notices,
1991.

John Hannah and Dale Miller. From opera-
tlonal semantics to ahtract machines. Journal
of Mathmatical Structures in Computer Science,
To appear, 1991.

433

[17] Warren A. Hunt. Microprocessor design verifi-
cation. Journal of Automated Reasoning, 5:429-
460, 1989.

[18] Jeffrey J. Joyce. Totally verified systems: Link-
ing verified software to verified hardware. In
Proc. Hardware Specification, Verification and
Synthesis: Mathmatical Aspects, July 1989.

[19] Jeffrey J. Joyce. A verified compiler for a ver-
ified microprocessor. Technical report, Univer-
sity of Cambridge, Computer Laboratory, Eng-
land, March 1989.

[20] Gilles Kahn. Natural semantics. In Proc.
STACS'SZ Springer-Verlag (LNCS 247), 1987.

[21] Richard Kelsey and Paul Hudak. Realistic com-
pilation by program transformation. In S/x-
tecnth Symposium on Principles of Program-
ming Languages. ACM Press, January 1989.

[22] Peter Lee. Realistic Compiler Generation. MIT
Press, 1989.

[23] Peter Lee and Uwe F. Pleban. A realistic
compiler generator based on high-level seman-
tics. In Fourteenth Symposium on Principles of
Programming Languages, pages 284-295. ACM
Press, January 1987.

[24] John McCarthy and James Painter. Correct-
ness of a compiler for arithmetic expressions. In
Proc. Symposium in Applied Mathematics of the
American Mathmatical Society, April 1966.

[25] Sun Microsystems. A RISC tutorial. Technical
Report 800-1795-10, revision A, May 1988.

[26] Robert E. Milne and Christopher Strachey. A
Theory of Programming Language Semantics.
Chapman and Hall, 1976.

[27] J. Strother Moore. A mechanically verified lan-
guage implementation. Journal of Automated
Reasoning, 5:461-492, 1989.

[28] Francis Lockwood Morris. Advice en structur.
ing compilers and proving them correct. In
Symposium on Principles of Programming Lan-
guages, pages 144-152. ACM Press, October
1973.

[29] Peter D. Mosses. SIS--semantics implementa-
tion system. Technical Report Daimi MD-30,
Computer Science Department, Aarhus Univer-
sity, 1979.

[30] Peter D. Mosses. A constructive approach to
compiler correctness. In Proc. Seventh Collo-
quium of Automata, Languages, and Program.
ruing, July 1980.

[31] Peter D. Mosses. Abstract semantic alge-
bras! In Proc. IFIP TC2 Working Confer-
ence on Formal Description of Programming
Concepts II (Garmisch-Partenkirehen, 1982).
North-Holland, 1983.

[32] Peter D. Mosses. A basic abstract semantic
algebra. In Proc. Int. Syrup. on Semantics of
Data Types (Sophia-Antipolis). Springer-Verlag
(LNCS 173), 1984.

[33] Peter D. Mosses. Unified algebras and action
semantics. In Proc. STACS'89. Springer-Verlag,
1989.

[34] Peter D. Mosses. Unified algebras and institu-
tions. In LICS'89, Fourth Annual Symposium
on Logic in Computer Science, 1989.

[35] Peter D. Mosses. Unified algebras and mod-
ules. In Sizteenth Symposium on Principles of
Programming Languages. ACM Press, January
1989.

[36] Peter D. Mosses. Action semantics. Lecture
Notes, Version 9 (a revised version is to be pub-
fished by Cambridge University Press in the Se-
ries Tracts in Theoretical Computer Science),
1991.

[37] Peter D. Mosses. An introduction to action
semantics. Technical Report DAIMI IR-102,
Computer Science Department, Aaxhus Univer-
sity, July 1991. Lecture Notes for the Markto-
berdoff'91 Summer School.

[38] Peter D. Messes and David A. Watt. The use of
action semantics. In Pros. IFIP TCf Working
Conference on Formal Description of Program-
ming Concepts III (Gl. Avernces, 1986). North-
Holland, 1987.

[39] Flemming Nielson and Hanne Riis Nielson.
Two-level semantics and code generation. The-
oretical Computer Science, 56, 1988.

[40] Flemming Nielson and Hanne Itiis Nielson.
Two-level functional languages. Draft book. To
be published by Cambridge University Press,
1991.

[41] Hanne It. Nielson and Flemming Nielson. Au-
tomatic binding time analysis for a typed ~-
calculus. Science of Computer Programming,
10:139--176, 1988.

434

[42] Hewlett Packard. Precision architecture and in-
struction. Technical Report 09740-90014, June
1987.

[43] Jens Palsberg. An automatically generated and
provably correct compiler for a subset of Ads.
In Proc. ICCL'92, Fourth IEEE International
Conference on Computer Languages, 1992.

[44] Jens Palsberg. Provably Correct Compiler Gen-
eration. PhD thesis, Computer Science Depart-
ment, Aarhus University, 1992. Forthcoming.

[45] Lawrence Paulson. A semantics-directed com-
piler generator. In Ninth Symposium on Princi-
ples of Programming Languages, pages 224-233.
ACM Press, January 1982.

[46] Uwe F. Pleban. Compiler prototyping using for-
real semantics. In Proc. ACM SIGPLAN'8$
Symposium on Compiler Construction, pages
94-105. Sigplan Notices, 1984.

[47] Uwe F. Pleban and Peter Lee. On the use of
LISP in implementing denotational semantics.
In Proc. ACM Conference on LISP and Func-
tional Programming, August 1986.

[48] Uwe F. Pleban and Peter Lee. High-level se-
mantics, an integrated approach to program-
ming language semantics and the specifica-
tion of implementations. In Proc. Mathmatical
Foundations of Programming Language Seman-
tics, April 1987.

[49] Uwe F. Pleban and Peter Lee. An automatically
generated, realistic compiler for an imperative
programming language. In Proc. SIGPLAN'88
Conference on Programming Language Design
and Implementation, June 1988.

[50] Gordon D. Plotldn. A structural approach
to operational semantics. Technical Report
DAIMI FN-19, Computer Science Department,
Aarhus University, September 1981.

[51] Wolfgang Polak. Compiler Specification and
Verification. Springer-Verlag (LNCS 213),
1981.

[52] David A. Schmidt. Detecting global variables
in denotational specifications. ACM Transac-
tions on Programming Languages and Systems,
7(2):299-310, 1985.

[53] David A. Schmidt. Denotational Semantics. A1-
lyn and Bacon, 1986.

[54] David A. Schmidt. Detecting stack-based envi-
ronments in denotational semantics. Science of
Computer Programming, 11:107-131, 1988.

[55] Uwe Schmidt and Relnhard V~ller. A multi-
language compiler system with automatically
generated codegenerators. In Proc. A CM SIG-
PLAN'84 Symposium on Compiler Construc-
tion. Sigplan Notices, 1984.

[56] Uwe Schmidt and Keinhard VSller. Experi-
ence with VDM in Norsk Data. In VDM'87.
VDM--A Formal Method at Work. Springer-
Verlag (LNCS 252), March 1987.

[57] William StalUngs. Reduced Instruction Set
Computers. IEEE Computer Society Press,
1986.

[58] Joseph E. Stoy. Denotational Semantics: The
Scott-Strachey Approach to Programming Lan-
guage Theory. MIT Press, 1977.

[59] James W. Thatcher, Eric G. Wagner, and
Jesse B. Wright. More on advice on structuring
compilers and proving them correct. Theoretical
Computer Science, 15:223-249, 1981.

[60] Mads Torte. Compiler Generators. Springer-
Verlag, 1990.

[61] Larry Wall and Itandal L. Schwartz. Program-
ming Perl. O'Reilly, 1991.

[62] Mitchell Wand. A semantic prototyping sys-
tem. In Proc. ACM SIGPLAN'84 Symposium
on Compiler Construction, pages 213-221. Sig-
plan Notices, 1984.

[63] David Watt. Programming Language Syntax
and Semantics. Prentice-Hall, 1991.

[64] Nildans Wirth. Algorithms § Data Structures
= Programs. Prentice-Hall, 1976.

[65] William D. Young. A mechanically verified code
generator. Journal of Automated Reasoning,
5:493-518, 1989.

