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Abstract 

We have designed, implemented, and proved the 
correctness of a compiler generator that accepts 
action semantic descriptions of imperative pro- 
gramming languages. The generated compilers 
emit absolute code for an abstract RISC machine 
language that currently is assembled into code for 
the SPAKC and the HP Precision Architecture. 
Our marline language needs no run-time type- 
checking and is thus more realistic than those 
considered in previous compiler proofs. We use 
solely algebraic specifications; proofs are given in 
the initial model. 

1 I n t r o d u c t i o n  

The previous approaches to proving correctness 
of compilers for non-trivial languages all use tar- 
get code with run-time type-checking. The fol- 
lowing semantic rule is typical for these target 
languages: 

(FIRST : C, (Vl, v2) : S) ~ (C, vl : S) 

The rule describes the semantics of an instruc- 
tion that extracts the first component of the 
top-element of the stack, provided that the top- 
element is a pair. If not, then it is implicit that 
the executor of the target language halts the ex- 
ecution. Hence, the executor has to do run-time 
type-checking. 

Run-time type-checking imposes an unwelcome 
penalty on execution time because more work has 
to be done by the executor of the target language. 
It may be argued, though, that the executor can 
rely on the source language being statically type- 
checked, and thus avoid the run-time type-checks. 
This implies an unwelcome coupling of the source 
and target languages, however, which prevents 

the target language from being an independent 
product, for general use. 

This paper addresses the use of independent, 
realistic target languages without type informa- 
tion in the semantics. The paper also concerns 
the possibility of proving correctness of a com- 
piler generator, thus making correctness proof a 
once-and-for-all effort. 

We have overcome these problems. We have 
designed, implemented, and proved the correct- 
ness of a compiler generator, called Cantor, that 
accepts action semantic descriptions of program- 
ming languages. The generated compilers emit 
absolute code for an abstract KISC [57] ma- 
chine language without run-time type-checking. 
The considered subset of action notation, see ap- 
pendix A, is suitable for describing imperative 
programming languages featuring: 

�9 Complicated control flow; 

�9 Block structure; 

�9 Non-recursive abstractions, such as proce- 
dures and functions; and 

�9 Static typing. 

For an example of a language description that has 
been processed by Cantor, see appendix B. The 
abstract RISC machine language can easily be 
expanded into code for existing RISC processors. 
Currently, implementations exist for the SPARC 
[25] and the HP Precision Architecture [42]. 

The technique needed 'for managing without 
run-time type-checking in the target language is 
the following: 

�9 Define the relationships between semantic 
values in the source and target languages 
with respect to both a type and a machine 
state. 
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Thus, we define an operation which given a tar- 
get value V, a machine state M, and a type T 
will yield the s o r t  of source values which have 
type T and are represented by V and M. Here, 
"sort" can be thought of as "set". For example, 
an integer can represent a value of type truth- 
value-list by pointing to a heap where the list 
components are represented. In this case, our op- 
eration will yield a sort containing precisely that 
truth-value-list, when given the integer, the type 
"truth-value-list", and the heap. 

In contrast, for example Nielson and Nielson 
[40] does n o t  involve the machine state when re- 
lating semantic values. Instead, they require tar- 
get values to be "self-contained". Hence, they 
need to have several types of target values and a 
target machine that does run-time type checking. 

With our approach we can make do with just 
o n e  type of target values, namely integer, thus 
avoiding run-time type-checking and getting close 
to the 32-bit words used in the SPARC. Note that 
we do not insert type tags in the run-time repre- 
sentations of source values; no  type information 
is present at run-time. 

The relationship between semantic values al- 
lows the proof of a lemma expressing "code well- 
behavedness" which is essential when reasoning 
about executions of compiled code. The required 
type information is useful during compilation, 
too; it is collected by the compiler in a separate 
pass before the code generation. This pass also 
collects the information needed for generating ab- 
solute, rather than relative, code. 

The development of Cantor was guided by the 
following principles: 

�9 Correctness is more important than effi- 
ciency; and 

�9 Specification and proof must be completed 
before implementation begins. 

As a result, on the positive side, the Cantor im- 
plementation was quickly produced, and only a 
handful of minor errors (that had been overlooked 
in the proof!) had to be corrected before the sys- 
tem worked. On the negative side, the generated 
compilers emit code that run at least two orders 
of magnitude slower than corresponding target 
programs produced by handwritten compilers. 

The specification and proof of correctness of 
the Cantor system is an experiment in using 
the framework of unified algebras, developed by 

Mosses [35, 33, 34]. Unified algebras allows 
the algebraic specification of both abstract data 
types and operational semantics in a way such 
that initial models are guaranteed to exist, except 
when axioms contradict constraints, in which 
case n o  models of the specification exist. We have 
demonstrated that also a non-trivial compiler can 
be elegantly specified using unified algebras. In 
comparison with structural operational seman- 
tics and natural semantics, we replace inference 
rules by Horn clauses. The notational difference 
is minor, and only superficial differences appear 
in the proofs of theorems about unified specifica~ 
tions. Where Despeyroux [10] could prove lem- 
mas by induction in the length of inference, we in- 
stead adopt an axiomatization of Horn logic and 
prove lemmas by induction in the number of oc- 
currences of "modus ponens" in the proof in the 
initial model. 

This paper gives an overview of the author's 
forthcoming PhD thesis [44]. Most definitions 
and proofs are omitted. For an overview of our 
experiments with generating a compiler for a sub- 
set of Ads, see [43]. 

In the following section we examine the major 
previous approaches to compiler generation and 
compiler correctness proofs. In section 3 we out- 
line the structure of the Cantor system, includ- 
ing the abstract RISC machine language and the 
action compiler, and we give some performance 
measures. In section 4 we state the correctness 
theorem, and finally in section 5 we survey our 
approach to proving correctness in the absence 
of run-time type-checking in the target language. 
We also discuss why we do not treat recursion. 

The reader is assumed to be familiar with al- 
gebraic specification [12], compilation of block 
structured languages [64], and the notion of a 
RISC architecture [57]. 

2 P r e v i o u s  W o r k  

2 . 1  C o m p i l e r  G e n e r a t i o n  

The problem of compiler generation is usually ap- 
proached by choosing a particular definition of a 
specific target language [46]. The task is then to 
write and prove the correctness of a compiler for 
a notation for defining source languages. Such a 
compiler can then be composed with a language 
definition to yield a correct compiler for the lan- 
guage, see figure 1. Compiler generators that 
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Figure 1: Semantics-directed compiler genera- 
tion. 

operate in this way are often called semantics- 
directed compiler generators. The Cantor sys- 
tem described in this paper is an example of a 
semantics-directed compiler generator. It accepts 
language definitions written in action notation, 
and it outputs compilers that emit code in an 
abstract RISC machine language. 

The traditional approach to compiler genera- 
tion is based on denotational semantics [53]. Ex- 
amples of existing compiler generators based on 
this idea include Mosses' Semantics Implementa- 
tion System (SIS) [29], Paulson's Semantics Pro- 
cessor (PSP) [45, 46], and Wand's Semantic Pro- 
totyping System (SPS) [62]. In SIS, the lambda 
expressions are executed by a direct implemen- 
tation of beta-reduction; in PSP and SPS they 
are compiled into SECD and Scheme code, re- 
spectively. There are no considerations of the 
possible correctness of either the implementation 
of beta-reduction, the translations to SECD or 
Scheme code, or the implementation of SECD or 
Scheme. The target programs produced by these 
systems have been reported to run at least three 
orders of magnitude slower than corresponding 
target programs produced by handwritten com- 
pilers [22]. 

After these systems were built, several trans- 
lations of lambda notation into other abstract 
machines have been proved correct. Notable 
instances are the categorical abstract machine 
[8] and the abstract machines that can he de- 
rived systematically from an operational seman- 
tics of lambda notation, using Hannan's method 
[16, 14, 15]. It remains to be demonstrated, how- 
ever, if a compiler which incorporates one of them 
will be more efficient than the classical systems. 
Also, the correctness of implementations of these 
abstract machines has not been considered. 

It appears that the poor performance charac- 
teristics of the classical compiler generators do 
not simply stem from inefficient implementations 
of lambda notation. Mosses observed that deno- 
rational semantics intertwine model details with 
the semantic description, thus blurring the under- 
lying conceptual analysis [31]. Pleban and Lee 
further observed that not only a human reader 
but also an automatic compiler generator will 
have difficulty in recovering the underlying anal- 
ysis [48]. Attempts to recover useful information 
from lambda expressions include Schmidt's work 
on detecting so-called single-threaded store ar- 
guments and stack single-threaded environment 
arguments [52, 54], and the binding-time analy- 
sis of Nielson and Nielson [41]. Despite that, it 
seems unlikely that the performance characteris- 
tics of compiler generators based on denotational 
semantics soon will be improved beyond that of 
existing such systems. 

A number of compiler generators have been 
built that produce compilers of a quality that 
compare well with commercially available com- 
pilers. Major examples are the CAT system of 
Schmidt and VSller [55, 56], the compiler gen- 
erator of Kelsey and Hudak [21], and the Mess 
system of Pleban and Lee [47, 23, 49, 22]. These 
approaches are based on rather ad hoc notations 
for defining languages, and they lack correctness 
proofs, like the classical systems. They indicate, 
however, that better performance of the produced 
compiler is obtained when: 

�9 Some model details are omitted from a lan- 
guage definition; and 

�9 The notation for defining languages is bi- 
ased towards %ompilable languages". 

A radically different approach to compiler gen- 
eration is taken by Dam and Jensen [9]. They 
consider the use of natural semantics [20] (which 
they call "relational semantics") as the basis of a 
compiler generator. They devise an algorithm for 
transforming a natural semantic definition into a 
compiling specification. The algorithm requires 
a language definition to satisfy some conditions; 
it is sufficiently general to apply to a language of 
while-programs, but has not been implemented. 
The generated compilers emit code for a stack 
machine; the correctness of these compilers has 
been sketched, whereas the implementation of the 
stack machine is not considered. 
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Finally, compiler generation can be obtained 
by self-application of a partial evaluator. The 
Ceres system of Tofte [60] is an early example of 
this, demonstrating that even compiler genera- 
tors can be automatically generated. Ceres uses 
a language of flowcharts with an implicit state as 
the notation for defining source languages. An- 
other notable partial evaluator is the Similix of 
Bondorf and Danvy [5, 6] which treats a subset 
of Scheme. Gomard and Jones implemented a 
self-applicable partial evaluator, called mix, for 
an untyped lambda notation [13]. It has been 
used to generate a compiler for a language of 
while-programs. The generated compiler emits 
programs in  lambda notation. The correctness 
of this compiler generator has been proved; it re- 
mains to be seen, however, if the partial evalua- 
tion approach will lead to the generation of com- 
pilers for conventional machine architectures. 

The lack of correctness proofs for the realistic 
compiler generators limits the confidence we can 
have in a generated compiler. Let us therefore ex- 
amine the major previous approaches to compiler 
correctness proofs. 

2 . 2  C o m p i l e r  C o r r e c t n e s s  P r o o f s  

The traditional approach to proving compiler 
correctness is based on denotational semantics 
[24, 26, 58, 51, 39] or algebraic variations hereof 
[7, 28, 59, 3, 30]. The correctness statement can 
be pictured as a commuting diagram, see figure 2. 

SOU; 'ce I 
syn ;ax 

source 
semantics 

source [ 
meanings [ 

compiler [ target 
" syntax 

encode 

target 
semantics 

J target .... [ 

I meanings [ 

Figure 2: Compiler correctness. 

It has been demonstrated that complete proofs 
of compiler correctness can be automatically 
checked. Two significant instances are Young's 

[65] work, using the Boyer-Moore theorem prover, 
and Joyce's [19, 18] work using the HOL system. 
In both cases, the target code of the translation is 
a non-idealized machine-level architecture whose 
implementation has been verified with respect 
to a low level of the computer, see for example 
[17, 27]. The verification of both architectures 
has even been automatically checked. These ex- 
amples of systems verification [4] are important: 
they minimize the amount of distrust one need 
have to such a verified system. Of course, one 
can still suspect errors in the implementation of 
the gate-level of the computer, or in the imple- 
mentation of the theorem prover, but many other 
sources of errors have been eliminated. 

The use of denotational semantics renders dif- 
ficult the specification of languages with non- 
determinism and parallelism. Such features can 
be specified easily, however, by adopting the 
framework of structural operational semantics 
[50]. For a survey of recent work on proving 
the correctness of compilers for such languages, 
see the paper by Gammelga~rd and Nielsen [11], 
which also contains a detailed account of the ap- 
proach taken in the ProCoS project, where the 
source language considered is Occam2. 

In a special form of structural operational se- 
mantics, called natural semantics [20], one con- 
siders only steps from configurations to final 
states. When both the source and target lan- 
guages have a natural semantics, then there is 
hope for proving the correctness of a compiler 
using the proof technique of Despeyroux [10]. As 
with the proof techniques used when dealing with 
denotational semantics, Despeyroux's technique 
amounts to giving a proof by induction on the 
length of a computation. The correctness state- 
ment is different, though. Instead of proving that 
a diagram commutes, she proves the validity of 
two properties, which informally can be stated as 
follows: 

s C o m p l e t e n e s s :  if the source program ter- 
minates, then so does the target program, 
and with the same result; and 

�9 Soundness :  if the target program termi- 
nates, then so does the source program, and 
with the same result. 

Despeyroux proves the correctness statement by 
induction in the length of the proofs of the as- 
sumptions of these properties. A central lemma 
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states that the code for an expression behaves in 
a disciplined way. We call this property "code 
well-behavedness". We will use a variation of 
Despeyroux's technique, adapted to the frame- 
work of unified algebras, see later. 

A major deficiency of all the previous ap- 
proaches to compiler correctness, except that 
of Joyce [19, 18], is their using a target lan- 
guage that performs run-time type-checking, as 
explained above. Joyce considers only a language 
of while-programs, and it is not clear how to gen- 
eralize his approach. 

Our concern can be sloganized as follows: 

�9 If "well-typed programs don't go wrong", 
then it should be possible to generate cor- 
rect code for an independent, realistic ma- 
chine language that does not perform run- 
time type-checking. 

The Cantor system is based on the use of such a 
machine language. 

3 The Cantor S y s t e m  

Our compiler generator accepts action semantic 
descriptions. Action semantics is a framework for 
formal semantics of programming languages, de- 
veloped by Mosses [31, 32, 33, 37, 36] and Watt 
[38, 63]. It is intended to allow useful semantic 
descriptions of realistic programming languages, 
and it is compositional, like denotational seman- 
tics. It differs from denotational semantics, how- 
ever, in using semantic entities called actions, 
rather than higher-order functions. 

We have designed a subset of action notation 
which is amenable to compilation and which we 
have given a natural semantics, by a systematic 
transformation of its structural operational se- 
mantics [36]. The syntax of this subset is given in 
appendix A together with a brief overview of the 
principles behind action semantics. Appendix B 
presents a complete description of a toy program- 
ming language. (Readers who are unfamiliar with 
action semantics are not expected to understand 
the details in appendix B, despite the suggestive- 
ness of the symbols used. See [36] for a full pre- 
sentation of action semantics.) 

The central part of the Cantor system is a com- 
piler from action notation to an abstract RISC 
machine language. This section presents both the 
machine language and the compiler, and it states 

some performance measurements of the Cantor 
system. 

All specifications in this paper, including those 
of syntax, are given in Mosses' meta-notation for 
unified algebras [36]. 

3 . 1  A n  A b s t r a c t  R I S C  M a c h i n e  

L a n g u a g e  

The machine language is patterned after the 
SPARC architecture; it is called Pseudo SPAR.C. 
It contains 14 instructions that operate on the 
following machine state: 

spare-state = 
(program, program-counter, was-zero, 
was-negative, globals, windows, memory) . 

'program' is a mapping from linenumbers to in- 
structions. 'program-counter' is a linenumber, 
and 'was-zero' and 'was-negative' are status-bits 
(truth-values). 'globals' models the global reg- 
isters, and 'windows' models a non-overlapping 
version of the SPARC register-windows. Finally, 
'memory' models six separate "pages" of the main 
memory, as a mapping from page-identifications 
to pages. A page is a mapping from addresses 
(natural numbers) to integers. For example, one 
of the pages is used as a stack, another as a heap. 

The only data manipulated by this language 
are integers. This means that it is impossible to 
see from a given data value if it should be thought 
of as a pointer to an instruction in the program, 
as an address in the memory, or as modeling a 
truth-value, an integer, etc. 

The uniformity of the data values makes the 
Pseudo SPARC language more realistic than 
those considered in previous compiler proofs. It 
contains two major idealizations, however, as fol- 
lows: 

�9 U n b o u n d e d  word  and m e m o r y  size: 
The data values are unbounded integers and 
this requires unbounded word size. We also 
assume that the program and memory sizes, 
the number of of registers in a register win- 
dow, and the number of register windows 
are unbounded. 

�9 R e a d - o n l y  code:  The program is placed 
separately, not in 'memory'. This implies 
that code will not be overwritten, and that 
data will not be "executed". 
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These idealizations simplify the correctness proof 
considerably, without removing any of the diffi- 
culties that we address. 

Pseudo SPARC Real SPARC 

skip sub gg0, Zg0, Zg0 
jump Z jmpl Z, Zg0 
branchequal Z be Z 
branchlessthan Z bneg Z 
call jmp]. g lobal ,  Zr8 
return jmp]. Zr8+8, ~gO 
store R1 in t/2 Z P st R1, R2+Z'~P 
load R1 Z P into R2 ld  RI+Z+P, R2 
stor eregisters save 
I o a d r e g i s t e r s  res to re  
m o v e R I t o R  or Zg0, RI ,  R 
move sum R RI  to R' add R, R I ,  R I 
move difference R RI  to R I sub R, RI ,  R' 
compare R with RI  subcc R, R I ,  7,gO 

Figure 3: The Pseudo SPARC machine language. 

Figure 3 shows the 14 Pseudo SPARC instruc- 
tions and how they (approximately) can be ex- 
panded to real SPARC instructions. In prac- 
tice, the expansion has to take care of fitting in- 
structions using large integers into several real 
SPARC instructions. It also has to insert ad- 
ditional "nop" instructions into so-called "delay 
slots". Pseudo SPARC instructions can also be 
expanded to instructions for the HP Precision Ar- 
chitecture, though with a little more difficulty. 

The function that models one step of compu- 
tation is defined as follows: 

step _ :: sparc-state --~ spare-state (total) . 

step m = next 
((program of m) at 
(program-counter of m) default skip) m . 

'step _' models the loading of the current instruc- 
tion, followed by its execution. The operation 
'next _ _ ' is defined in the following style (we 
give only a single example): 

next _ _ :: 
instruction, sparc-state --~ spare-state ( total)  . 

next call (p, pc, cz, cn, g, w, q) = 
(p, g at global default 0, cz, cn, 9, 
update to (map of return-address to pc), q) . 

Here, 'global' is one of the global registers, and 
'return-address' is a user-inaccessible register in 
the register-window. The use of 'default' mod- 
els that all registers and memory addresses are 
initialized to 0 before execution starts. Likewise, 
the program area contains 'skip' instructions ev- 
erywhere before the program is loaded. 

Note that 'step _' and 'next _ _' axe total func- 
tions. This emphasizes that computation con- 
tinues infinitely, once started. For exaxnple, the 
'call' instruction will be executed even though the 
global register contained a value that we thought 
of as a truth-value! It also means that we have 
avoided alignment problems, etc., so that a typ- 
ical run-time error such as "bus error" will not 
occur. This is accomplished by having a word- 
rather than byte-oriented definition of the Pseudo 
SPARC machine. 

3 . 2  C o m p i l i n g  A c t i o n  N o t a t i o n  

The compiler from action notation to Pseudo 
SPARC machine code proceeds in two passes: 

1. Type analysis and calculation of code size; 
and 

2. Code generation. 

For each pass there is a function defined for ev- 
ery syntactic category. Those defined for 'Act' 
have the following signatures (we cheat a little 
bit here, compared to [44], to improve the read- 
ability): 

a-count _ _ _ :: Act, data-type, symbol-table -4 
(natural, truth-value, data-type, 
truth-value, data-type, block) . 

perform ............ :: 
Act. data-type, general-register, 
frozen, symbol-table, 
cleanup, cleanup, cleanup, 
linenumber, linenumber-complete, 
linenumber-escape, linenumber-fail --~ 
(program, general-register, general-register) . 

Since action notation contains unusual con- 
structs, e.g., 'complete', 'escape', 'fail', the def- 
inition of the type analysis and code genera- 
tion employ unusual techniques, though not very 
difficult. For example, the definition of 'per- 
form' requires as argument both the desired start- 
address ('[inenumber') of the code to be gener- 
ated, but also addresses of where to jump to, 
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should the performance complete ('linenumber- 
complete'), escape ('linenumber-escape'), or fail 
('linenumber-fail'). These addresses are calculated 
using 'a-count' which, in addition to type analy- 
sis, calculates the size of the code to be generated. 

The function 'a-count' is defined as a forwards 
abstract interpretation, computing with types of 
tuples of data ('data-type'), types of bindings 
('symbol-table'), and code sizes ('natural'). The 
first 'truth-value' component tells if the action 
being analyzed has a chance of completing. If 
it does, then the following 'data-type' component 
tells the type of the tuple of data that will pro- 
duced. The next two components give similar 
information about escaping. 

The function 'perform' takes as arguments the 
'data-type' and 'symbol-table' that are also sup- 
plied to 'a-count'. In addition, it takes a 'general- 
register' which at run-time will contain a pointer 
to a representation of the tuples of data that 
will be received when executing then code. The 
set 'frozen' contains those registers that the code 
to be produced must not modify, and the three 
'cleanup' values are natural numbers that indi- 
cate how much to pop from the stack, should the 
performance complete, escape, or fail. 

The calculation of whether an action can com- 
plete or not, and whether it can escape or not, 
are examples of the compile time analyses that 
axe built into the compiler. They are used to gen- 
erate better code, and they are fully integrated in 
the proof of correctness, see later. 

3.3 P e r f o r m a n c e  E v a l u a t i o n  

The Cantor system hem the structure shown in 
figure 4. In practice, a session with Cantor looks 
as follows on the screen: 

cantor syntax semantics compiler 
compiler program code 
code input output 

Cantor system. 

The compiler generator can to r  is written in 
Perl [61], and the generated compilers are writ- 
ten in Scheme [1]. Examples of a syntax and 
a semantics are given in appendix B; it is the 
I~TEX source of the appendix that is processed 
by cantor .  The generated compiler contains a 
syntax checker, a program-to-action transformer, 
the action compiler described above, and finally 
a Pseudo SPAKC assembler that currently can 
emit code for the SPARC and the HP Precision 
Architecture. The input file is a sequence of in- 
tegers, as is the output file. 

The HypoPL language, defined in appendix B, 
is taken from Lee's book on realistic compiler 
generation [22], with the difference that we treat 
nesting of procedures in its full generality but do 
not allow recursion. (For a discussion of why re- 
cursion is problematic, see later.) 

�9 Generating a compiler for HypoPL takes 3 
seconds. 

We have used this compiler to translate Lee's 
bubblesort program (50 lines). 

�9 Compile time: 486 seconds; 

�9 Object code size: 114688 bytes; and 

�9 Object code execution time (for sorting 10 
integers): 0.1 seconds. 

These figures indicate that the system is rather 
tedious to work with in practice. Additional ex- 
periments, see [43], have shown that the code 
runs at least two orders of magnitude slower 
tha~ a corresponding target program produced 
by the C compiler (without optimization). This is 
somewhat disappointing but still an improvement 
compared to the classical systems of Mosses, 
Paulson, and Wand where a slow-down of three 
orders of magnitude has been reported [22]. In- 
spection of the code emitted by Cantor-generated 
compilers reveals that the inefficiency mainly 
stems from three sources: 
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�9 Lack of compile time constant propagation; 

�9 Poor register allocation; and 

�9 Naive representation of bindings, closures, 
and lists. 

Improving the action compiler to avoid this in- 
efficiency would significantly complicate the cor- 
rectness theorem, which we consider next. 

4 T h e  C o r r e c t n e s s  
T h e o r e m  

To give an overview of the correctness theorem, 
we will introduce a bit of notation, as follows (we 
cheat a little bit again, compared to [44], to im- 
prove the readability): 

run _ _ :: Act,  [integer] list --* s ta te .  

sparc-run _ _ :: 
program, natural, page --+ sparc-state.  

compile _ :: Act  --~ 
(program, truth-value, data-type, 
truth-value, data-type, 
general-register, general-register) . 

abstract . . . . . . .  :: 
sparc-state, truth-value, data-type, 
truth-value, data-type, 
general-register, general-register --+ s t a t e .  

i-abs _ .  :: natural, page --~ [integer] list . 

(1) a-count A 0 (list of empty-l ist)  = 
(n ,  ~ , / ~ ,  z~, he, empty-l ist)  ; 

(2) perform A () (reg 0) empty-set 
(list of  empty-l ist)  0 0 0 0 n n n = 
(p, ~, a.) 

=:~ compile A = (p, z, , , /~,  z., he, ~ ,  a . ) .  

We have only given the definition of 'com pile _', in 
terms of 'a-count' and 'perform'. The operations 
have the following informal meaning: 

1. The operation 'run A i l '  specifies the per- 
formance of an action A which is given 
the empty tuple of data, no bindings, an 
empty-storage, an empty output-file, and 
the input-file il (an integer-list). If the per- 
formance terminates, then that will result 
in a final state ('state') which can be either 
completed, escaped, or failed. 

2. The operation 'sparc-run p n Be' specifies 
loading the program p into the program 
area, and then taking n steps starting in 
line 0. It also records if the execution at 
any point "jumps outside the code". The 
memory, registers, status bits, and output 
file are initialized appropriately, the input 
file is initialized to Be. 'sparc-run' is defined 
in terms of 'step', described above. 

3. The operation 'compile A' translates the ac- 
tion A into a machine language program 
p and it also gives type information about 
what will be produced when performing A. 
The program p will start in line 0. 

4. The operation 'abstract rnp zn hn ze he an 
ae' will give a sort of all those states (from 
the action-level) that are represented by the 
spare-state rap, and that have the type ex- 
pressed by the following four arguments. 
The last two arguments are those registers 
which will contain pointers to the represen- 
tations of the data produced, should the ac- 
tion complete or escape. 

5. The operation 'i-abs n Be' will give the 
input-file ('[integer] list') which is repre- 
sented by the natural number n and the 
page Be. 

The use of both type information and a machine- 
state in the definition of 'abstract' makes it pos- 
sible to make do without type information in the 
semv, ntics of Pseudo SPARC. 

None of the above five operations are total. 
The performance of an action may diverge; the 
execution of a machine program may "jump out- 
side the code"; the compilation of an action may 
find a type error; the machine state may repre- 
sent no state at all from the action-level; and the 
page for input-files may contain something with- 
out the right format. 

The le ts-notat ion for unified algebras makes 
it particularly easy to specify such partial op- 
erations. This is because it supports a unified 
treatment of sorts and individuals: an individ- 
ual is treated as a special case of a sort. Thus 
operations can be applied to sorts as well as in- 
dividuals. A vacuous sort represents the lack of 
an individual, in particular the 'undefined' result 
of a partial operation. For example, if the per- 
formance of the action A with input-file il ter- 
minates, then 'run A i l '  will be an individual, 
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otherwise it will be a vacuous sort. We need not 
specify that such sorts axe vacuous; if it does not 
follow from the specification that they contain an 
individual, then they will automatically be vacu- 
ous. 

The operations 'run', 'sparc-run', 'compile', and 
'i-abs' will all yield either an individual or a vac- 
uous sort. In contrast, 'abstract' may yield a sort 
containing several individuals, and it may also 
yield a vacuous sort. The possibility of yielding a 
sort containing several individuals is needed when 
abstracting with respect to a closure type. This is 
because if two actions differs only in the naming 
of tokens (they axe equal with respect to "alpha- 
conversion"), then the compiled code for them 
will be identical. 

We can now state the correctness theorem. 
Note that ' t  :- s '  is another syntax f o r ' s  : t ' .  
The meaning is that s is an individual contained 
in t. 

T h e o r e m :  

(z) compile A:Act = 
(p:program ~ : t r u t h - v a l u e / ~ : d a t a - t y p e  
ze:truth-value he:data-type 
~:general-register a~:general-register) ; 

(2) i-abs (se at 0) se = / / : [ in teger ]  list 

=P (z) run A i l  = m~:state =~ 
(:1 mv:sparc-state :l n:natural , 
sparc-run p n se ~- ~ ,  ; 
abstract m v zn /~  ze he an o~ :- me ) ; 

(2) sparc-run p n se = mv:sparc-state =~ 
(:[ ms:state. 

run A i f =  mr,; 
abstract rr~ z~ /~  zc he an ae :- ms ) �9 

The structure of the theorem resembles the cor- 
rectness statement of Despeyroux. Informally: 

If the action A is compiled into a machine lan- 
guage program p (and some additional type in- 
formation, etc., is produced), and the input-file 
il is represented properly in the machine as se, 
then two properties hold: 

1. Comple t enes s :  If the performance of the 
action A (with input-file il) terminates in 
state ms, then there exists a spaxc-state m r 
and a number n such that an n-step execu- 
tion of p will reach mr, and m r represents 
ms (and the program-counter points to the 
last line of p). 

2. Soundness :  If an n-step execution of 
p (with input se) reaches m n (and the 
program-counter points to the last line of 
p), then there exists a state m, ,  represented 
by rnp, such that a performance of A (with 
input il) will terminate in ms. 

Notice that  it is built into the definition of 'spare- 
run', and hence the correctness theorem, that  the 
execution of the machine language program never 
"jumps outside the code". 

5 The  P r o o f  Technique 

A number of lemmas axe needed to prove the the- 
orem; here is an overview: 

* C o m p i l e r  cons is tency:  These lemmas 
state that the calculation of code size is cor- 
rect. They also state that the code is placed 
consecutively, starting in the desired line. 

�9 C o r r e c t n e s s  of  ana lys i s :  These lemmas 
state that the type analysis asserts correct 
typings, relative to the semantics of actions. 

�9 C o d e  we l l -behavedness :  These lemmas 
state that if the execution of some compiled 
code at some point reaches "the end of the 
code", then it used the memory and reg- 
isters in a disciplined fashion, and, in ad- 
dition, the machine state will represent an 
abstract state (with the type given by the 
compiler). 

It is also necessary to prove strengthened versions 
of completeness and soundness. 

Let us now consider how to adopt Despeyroux's 
proof technique to the framework of unified alge- 
bras. 

Despeyroux expresses natural semantics in the 
Oentzen's system style, with axioms and infer- 
ence rules. In such a system one can make natu- 
ral deduction, and can then prove lemmas about 
the system by induction in the length of such de- 
ductions. In contrast, the framework of unified 
algebras provide Horn clauses, and there are no 
build-in deduction rules. We have replaced infer- 
ence rules by Horn clauses, so to be able to do 
deduction, we adopt a standard axiomatization 
of Horn logic, as follows. 

All specifications in the meta-notation for uni- 
fied algebras can be transformed into a core no- 
tation which is outlined in the following. Let ~2 
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(ft, r )  ~- t = t 

(ft, r )  ~- ~ = t (ft, r )  t- t = ,~ 
(ft, r )  ~ s = u 

{(ft, r )  ~ al = ti}in_-i if f E E 
(ft, F) I- f (s l  . . . . .  s ,)  -.= f ( t l , . . . ,  t,,) 

t 9. {(ft, F) I- s / =  i}i=, (ft, F) I- p(s, ,  sg.) if p E {- < : -} 
(ft, r )  ~- p ( t , ,  tg.) - '  - 

{(ft, F) I- Fi},~l if (Fx ; . . . ;F ,  =~ F) e F 
(ft, r )  F- f 

(Reflexivity) 

(Transitivity) 

(Functional Congruence) 

(Predicative Congruence) 

(Modus Ponens) 

Figure 5: Axiomatization of Horn clause logic. 

be a so-called homogeneous first-order signature, 
that is, a pair (E, H) where E is a set of operation 
symbols and II is a set of predicate symbols. In 
the setting of unified algebras, it is required that 

_.D {nothing, _ ] _, _&_} 

and 

H =  { _ = _ , _ < _ , _ : _ }  

The value of the constant 'nothing' is a vacuous 
sort, included in all other sorts. The operation 
'-  I -' is sort union, and '_&_' is sort intersection. 
The predicate '_ = _' asserts equality, '_ < _' as- 
serfs sort inclusion, and 'T1 : I"2' asserts that the 
value of the term T1 is an individual included in 
the (sort) value of the term Tg.. 

Further, let F be a set of Horn clauses built up 
from ft. Any specification F of such Horn clauses 
will be augmented with some basic Horn clauses, 
stating for example the reflexivity of '_ < _', see 
[34]. Finally, let F be a formula built up from ft. 
We will then write 

(ft, r )  t-- F 

(read F is (ft, F)-deducible) if (ft, F) I-- F can 
be obtained by finitely many applications of the 
deduction rules shown in figure 5. A deduction 
rule consists of a conclusion (given beneath the 
line), none, one, or several premises (given above 
the line), and possibly a condition (given at the 
right-hand side of the line). A deduction rule 
stands for the statement: 

�9 If all premises are deducible, the condition 
is satisfied, and F is a formula built up from 
ft, then the conclusion (ll, F) I- F is de- 
ducible. 

With these deduction rules, we can do proof by 
induction in the number of occurrences of "modus 
ponens" in deductions. Note that a single ap- 
plication of modus ponens corresponds closely 
to a natural deduction step. This makes our 
proof strategy close to Despeyroux's. All lemmas 
proved by induction in the length of deduction are 
satisfied by the initial model of the specification. 
The key property of an initial model needed here 
is that it only contain entities that are values of 
ground terms (it contains "no junk"). 

We will end this section by explaining why we 
do not treat recursion, in contrast to Despeyroux. 
The reason for this is rather subtle; it hinges on 
the expre~iveness of the unified meta-notation. 

Full action notation offers self-referential bind- 
ings as the means for describing for example re- 
cursive procedures. A self-referential binding is a 
cyclic structure; the run-time representation will 
obviously also be cyclic. In Despeyroux's paper, 
such cyclic structures are represented as graphs 
with self-loops--both in the source and target 
languages. This allows her to uniquely determine 
the run-time representation of a self-referential 
environment. 

Compared to Despeyroux, we use a much more 
low-level target language where values can be 
placed in more than one plas in the memory. 
This means that not only can one target value 
represent more than one source value, as in De- 
speyroux's paper, it is also possible for one source 
value to be represented by different parts of the 
memory. In other words, there is no functional 
connection between source and target values; 
there is only a relation stating which source val- 
ues are represented by a given part of the mere- 
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ory. 
In the case of cyclic structures, the relation be- 

tween semantic values seems to be impossible to 
define in the unified meta-notation. This is be- 
cause the meta-notation only allows the expres- 
sion of Horn clauses. Evidence for this is found 
in Amadio and Cardelli's paper on subtyping re- 
cursive types [2]. They axiomatize several rela- 
tionships between cyclic structures, and it seems 
that a rule of the following non-Horn kind cannot 
be avoided: 

( z R y =P a R # ) =~ g z . a  R py .#  

Since we want to apply the unified recta-notation 
exclusively in all specifications, we avoid self- 
referential bindings. Thus we cannot treat re- 
cursion. 

6 Conc lus ion  

A p p e n d i x  A: 
A c t i o n  N o t a t i o n  

grammar: 

Act = "complete" I "escape" I "fail" I 
"commit" I "diverge" I "regive" I 
~" "give" Dep ~ I [ "check" Dep ~ I 
J "bind" token "to" Dep ] I 
| "store" Dep "in" Dep ] I 
| "allocate" "truth-value" "cell" ] I 
[ "allocate" "integer" "cell" ~ I 
| "batch-send" Dep ] I 
| "batch-receive" "an" "integer" ] I 
[ "enact" "application" Dep 
"to" Tuple ] [ 
[ "indivisibly" Act ] I 
| "unfolding" Unf ] I 
| Act Infix Act ] I 
[ | "furthermore" Act ] "hence" Act ] I 
| | "furthermore" Act J "thence" Act ] . 

Our compiler generator is specified and proved 
correct solely in an algebraic framework. To our 
knowledge, it is the first time that this has been 
accomplished. 

The generated compilers emit realistic, albeit 
poor, machine code. Future work includes build- 
ing in more analyses, for the benefit of the code Dep = 
generator. 

The use of action semantics makes the process- 
able specifications easy to read and pleasant to 
work with. We believe that the Cantor system is 
a promising first step towards user-friendly and 
automatic generation of realistic and correct com- 
pilers. 
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Unf = | Act Infix Unf ] I [ Unf "or" Act ] I 
"unfold" . 

Tuple = " 0 " I  Dep I [Tupte "," Tuple ] I 
"them" . 

Unary = 

"true" J "false" ] natural J 
[ "empty-llst .... ~: .... [" Type "]" "list" ] I 
| "closure" "abstraction" "of" Act " ~ "  
"[" "perhaps" "using" Data "]" "act" | I 

Unary Dep ] l 
[ Binary "(" Dep "," Dep ")" ~ I 
[ Dep "is" Dep ] l 
~" Dep | "is" "less" "than" ] Dep ] I 
~" "component#" Dep "items" Dep ] I 
"it" I 
[ "the" "given" Datum "#"  natural ~ I 
[ "the" Datum "bound" "to" token ] I 
[ "the" Datum "stored" "in" Dep ] I 
| "(" Dep ")" ] .  

[ "and" "then" ] I "then" I "before" I 
"trap" ] "or" .  

"not" I "negation" I [ "llst" "o f" ]  I 
"head" I " la i r ' .  

Binary = 

Datum = 

Data = 

"both" I "either" I "sum" I 
"difference" I "concatenation". 

"datum" I "cell" I "abstraction" I 
"list" I [ Datum " I " Datum ] I Type. 

"0" I Type I [ Data "," Data | .  
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Type = "truth-value" I "integer" I 
[ "truth-value" "cell" ]l I 
[ "integer" "cell" J I 
[ "[" Type "]" "list" ] .  

A . 1  A c t i o n  P r i n c i p l e s  

Action notation is designed to allow comprehen- 
sible and accessible descriptions of programming 
languages. Action semantic descriptions scale up 
smoothly from small example languages to real- 
istic languages, and they can make widespread 
reuse of action semantic descriptions of related 
languages. 

Actions reflect the gradual, stepwise nature of 
computation. A performance of an action, which 
may be part of an enclosing action, either 

�9 completes, corresponding to normal termi- 
nation (the performance of the enclosing ac- 
tion proceeds normally); or 

�9 escapes, corresponding to exceptional ter- 
mination (the enclosing action is skipped 
until the escape is trapped); or 

�9 fails, corresponding to abandoning the per- 
formance of an action (the enclosing action 
performs an alternative action, if there is 
one, otherwise it fails too); or 

�9 diverges, corresponding to nontermination 
(the enclosing action also diverges). 

The information processed by action performance 
may be classified according to how far it tends to 
be propagated, as follows: 

�9 transient: tuples of data, corresponding to 
intermediate results; 

�9 scoped: bindings of tokens to data, corre- 
sponding to symbol tables; 

�9 8table: data stored in cells, corresponding 
to the values assigned to variables; 

�9 permanent: data communicated between 
distributed actions. 

Transient information is made available to an ac- 
tion for immediate use. Scoped information, in 
contrast, may generally be referred to throughout 
an entire action, although it may also be hidden 
temporarily. Stable information can be changed, 

but not hidden, in the action, and it persists un- 
til explicitly destroyed. Permanent information 
cannot even be changed, merely augmented. 

When an action is performed, transient infor- 
mation is given only on completion or escape, 
and scoped information is produced only on com- 
pletion. In contrast, changes to stable informs. 
tion and extensions to permanent information are 
made during action performance., and are unaf; 
fected by subsequent divergence or failure. 

Our subset of action notation omits all no- 
tation for communication. Instead, the ad hoc 
constructs 'batch-send' and 'batch-recelve' allow 
a primitive form of communication with batch- 
files, as in standard Pascal. 

The information processed by actions consist 
of items of data, organized in structures that give 
access to the individual items. Data can include 
various farniliar mathematical entities, such as 
truth-values, integers, and lists. Actions them- 
selves are not data, but they can be incorpo- 
rated in so-called abstractions, which axe data, 
and subsequently 'enacted' back into actions. 

Dependent data are entities that can be eval- 
uated to yield data during action performance. 
The data yielded may depend on the current in- 
formation, i.e., the given transients, the received 
bindings, and the current state of the storage and 
batch-files. Evaluation cannot affect the current 
information. Data is a special case of dependent 
data, and it always yields itself when evaluated. 
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A p p e n d i x  B: 
H y p o P L  Ac t ion  Seman t i c s  

B.1 Abstract Syntax 

coercively A:act = 
IA 
then 
I give the given item #1  or 

give the item stored in the given cell #1  . 

g r a m m a r :  

Program = iT "program" Identifier Block ] .  

Declaration = [ "int" Identifier ] I 
R" "bool" Identifier ] I 
~" "const" identifier "="  Integer ] J 

"array" Identifier "[" Integer "]" ] I 
"procedure" Identifier 

"(" Identifier ")" Block ] I 
Declaration ";" Declaration ] . 

Block = [ Declaration 
"begin" Statement "end" ] I 
IT "begin" Statement "end" ] .  

Statement = ~" Expression " :="  Expression ] I 
R" "write" Expression ]] I 
~" "read" Expression ] I 

" i f" Expression "then" Statement 
"else" Statement "endif" ] I 
~" "while" Expression "do" 
Statement "endwhile" ] I 
IT Identifier "(" Expression ")" ] I 
[ 

B.3 Semantic  Functions 

in t roduces :  
run _, establish _, ac t i va te . ,  execute _,  
evaluate _, operatlon-result _, 
in teger -va lue _ ,  id _. 

B.3 .1  P r o g r a m s  

�9 run _ :: Program --* act .  

run [ "program" /:Identif ier B:block ] = activate B .  

B . 3 . 2  D e c l a r a t i o n s  

�9 e s t a b l i s h  _ :: Declaration -+ act .  

establish IT "int" /: identif ier ] = 
allocate integer cell then bind id I to it . 

Statement ";" Statement ] [ "skip" . establish IT "boor' /:Identifier ] = 
allocate truth-value cell then bind id I to i t .  

Expression = "true" I "false" I Integer I 
Identifier I 
IT Identifier "[" Expression "]" ] J 

Expression Operation Expression ] ] 
H "not" Expression ] . 

Operation = "+" I " - "  I " < "  I "=" I "and" .  

Integer = natural I ~" " - "  natural ] .  

Identifier = token. 

B.2 Semantic Entities 
B.2.1  I t e m s  

in t roduces :  item. 

item = truth-value [ integer. 

B .2 .2  C o e r c i o n  

in t roduces :  coercively _. 

�9 coercively _ :: act ~ act .  

establish ~" "const" /:Identifier "="  j: integer ] = 
bind id I to integer-value j . 

establish IT "array" /:identifier "[" j: integer "]" ] = 
I give empty-list & [integer cell] list and then 

give sum(integer-value j ,  1) 
then 

unfolding 
I check the given integer #2  is 0 and then 

give the given list #1  
or 

I regive and then allocate integer cell 
then 

give concatenation( 
list of the given integer cell #3,  
the given list #1 )  

and then 
give difference( 

the given integer #2,  1) 
then 
I unfold 

then 
I bind id I to the given list # 1 .  
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establish ] "procedure" ll:ldentifier 
"(" Is:Identifier ")" B:Block ] = 
bind id 11 to 
closure abstraction of 

furthermore 
I give the given integer #1 and then 

allocate integer cell 
then 
I I store the given integer #1 

in the given cell #2  
and then 
J bind id I2 to the given cell #2  

thence activate B 
& [perhaps using integer] act . 

establish ~ Dl:Declaration ";" ~:Declaration ] = 
establish D1 before establish D2 . 

B.3.3 Blocks 

�9 activate _ :: Block --~ act . 

activate ~D:Declaration 
"begin" S:Statement "end"~ = 
I furthermore establish D 
hence execute S .  

activate ~ "begin" S:Statement "end" ]  = execute S .  

B.3.4 Statements 

�9 execute _ :: Statement --* act. 

execute ~F_,l:Expression " :="  F_~:Expression ] = 
l evaluateEland then 

coercively evaluate/~ 
then 
I store the given item #2  

in the given c e l l # l .  

execute ] "write" E:Expression ] = 
coercively evaluate E then batch-send i t .  

execute ~ "read" E:Expression ] =  
I batch-receive an integer and then evaluate E 
then 
I store the given in teger# l  

in the given integer cell # 2 .  

execute I" "if" E:Expression "then" Sl:Statement 
"else" S2:Statement "endif" ] = 
I coercively evaluate E 
then 

I check it then execute $1 
or 
I check not it then execute $2 �9 

execute [ "while" E:Expression "do" S:Statement 
"endwhile" ] = 
unfolding 

I coercively evaluate E 
then 
I I check it then execute S then unfold 

or check not i t .  

execute [/:Identif ier "(" E:Expression ")" ] = 
I give the abstraction bound to id I and then 

coercively evaluate E 
then 
I enact application the given abstraction #1  

to the given integer # 2 .  

execute ~ Sl:Statement ";" 82:Statement ] = 
execute $1 and then execute $2 �9 

execute "skip" = complete. 

B.3.5 Expressions 

�9 evaluate _ :: Expression --~ act . 

evaluate "true" = give true. 

evaluate "false" = give false. 

evaluate i:lnteger = give integer-value i .  

evaluate/:Identifier = give the datum bound to id I .  

evaluate [/:Identifier "[" E: Expression "]" ] = 
I give the list bound to id I and then 

I coercively evaluate E then give sum(it, 1) 
then 
I give component# (the given integer #2)  

items (the given list #1 )  . 

evaluate 
El:Expression O:0peration F__~:Expression ] = 

I coercively evaluate El and then 
coercively evaluate F_~ 

then give operation-result O .  

evaluate ~ "not" E:Expression ] = 
coercively evaluate E then 
give not i t .  

B.3.6 Operations 

�9 operation-result _ : :  

Operation --~ dependent datum . 

operation-result "-I-" = 
sum(the given integer #1, 

the given integer # 2 ) .  
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operation-result " - "  = 

difference(the given integer #1, 
the given integer ~2)  . 

operation-result "<" = 
(the given integer ~ 1 )  is less than 
(the given integer # 2 ) .  

operation-result "--" -- 
(the given item I cell ~ 1 )  is 
(the given i tem I cell # 2 )  . 

operation-result "and" = 
both(the given truth-value #1, 

the given truth-value ~2)  . 

B.3.7 I n t e g e r s  

�9 integer-value  _ :: Integer --, i n t e g e r .  

integer-value n:natura[ = n .  

integer-value [ "-" n:natural ] = negation n . 

B.3.8 Iden t i f i e r s  

* i d .  :: Identifier ~ token. 

id k:token = k . 
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