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Abstract. This paper presents a computer algorithm which, given a dense tem- 
poral sequence of intensity images of multiple moving objects, will separate the 
images into regions showing distinct objects, and for those objects which are ro- 
tating, will calculate the three-dimensional structure and motion. The method in- 
tegrates the segmentation of trajectories into subsets corresponding to different 
objects with the determination of the motion and structure of the objects. Trajecto- 
ries are partitioned into groups corresponding to the different objects by fitting the 
trajectories from each group to a hierarchy of increasingly complex motion mod- 
els. This grouping algorithm uses an efficient motion estimation algorithm based 
on the factorization of a measurement matrix into motion and structure compo- 
nents. Experiments are reported using two real image sequences of 50 frames each 
to test the algorithm. 

1 Introduction 

This paper is concerned with three-dimensional structure and motion estimation for scenes 
containing multiple independently moving rigid objects. Our algorithm uses the image motion to 
separate the multiple objects from the background and from each other, and to calculate the three- 
dimensional sgucture and motion of each such object. The two-dimensional motion in the image 
sequence is represented by the image plane trajectories of feature points. The motion of each ob- 
ject, which describes the three-dimensional rotation and translation of the object between the im- 
ages of the sequence, is computed from the object's feature trajectories. If the object on which a 
particular group of feature points lie is rotating, the relative three-dimensional positions of the 
feature points, called the structure of the object, can also be calculated. 

Our algorithm is based on the following assumptions: (1) the objects in the scene are rigid, 
i.e., the three-dimensional distance between any pair of feature points on a particular object is 
constant over time, (2) the feature points are orthographically projected onto the image plane, and 
(3) the objects move with constant rotation per frame. This algorithm integrates the task of seg- 
menting the images into distinctly moving objects with the task of estimating the motion and 
structure for each object. These tasks are performed using a hierarchy of increasingly complex 
motion models, and using an efficient and accurate factorization-based motion and structure es- 
timation algorithm. 

This paper makes use of an algorithm for factorization of a measurement matrix into separate 
motion and structure matrices as reported by the authors in [DA1]. Subsequently in [TK1], To- 
masi and Kanade present a similar factorization-based method which allows arbitrary rotations, 
but does not have the capability to process trajectories starting and ending at arbitrary frames. 
Furthermore, it appears that some assumptions about the magnitude or smoothness of motion are 
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still necessary to obtain feature trajectories. Kanade points out [Kal] that with our assumption of 
constant rotation we are absorbing the trajectory noise primarily in the structure parameters 
whereas their algorithm absorbs them in both the motion and structure parameters. 

Most previous motion-based image sequence segmentation algorithms use optical flow to 
segment the images based on consistency of image plane motion. Adiv in [Adl] and Bergen et al 
in [BB 1] instead segment on the basis of a fit to an affine model. Adiv further groups the resulting 
regions to fit a model of a planar surface undergoing 3-D motions in perspective projection. In 
[BB2] Boult and Brown show how Tomasi and Kanade's motion factorization method can be 
used to split the measurement matrix into parts consisting of independently moving rigid objects. 

2 Structure and Motion Estimation 

Our method relies heavily on the motion and structure estimation algorithm presented in 
[DA1], [Del], and [DA2]. The input to this algorithm is a set of trajectories of orthographically 
projected feature points lying on a single rigid object rotating around a fixed-direction axis and 
translating along an arbitrary path. If these constraints do not hold exactly the algorithm will pro- 
duce structure and motion parameters which only approximately predict the input trajectories. 
Given a collection of trajectories (possibly all beginning and ending at different frames) for which 
the constraints do hold, our algorithm finds accurate estimates of the relative three-dimensional 
positions of the feature points at the start of the sequence and the angular and translational veloc- 
ities of the object. The algorithm also produces a confidence number, in the form of an error be- 
tween the predicted and the actual feature point image positions. Aside from SVDs, the algorithm 
is closed form and requires no iterative optimization. 

In Section 4, the results of applying our motion and structure estimation algorithm to real im- 

age sequences are presented in terms of the rotational parameters O~ and ~ and the translational 

motion parameter ; .  The parameter t.0 represents the angular speed of rotation about the axis 

along the unit vector ~, where ~ is chosen such that it points toward the camera ((0 is a signed 
quantity). Since we are assuming orthographic projection, the depth component of the translation 

cannot be recovered, so ~ is a two vector describing the image plane projection of the translation- 
al motion. Although the motion and structure estimation algorithm can accommodate arbitrary 
motion, most of the objects in the experimental image sequences are moving with constant veloc- 

ity and their translational velocity is given in terms of r 

3 Image Sequence Segmentation and Motion and Structure Estimation 

The segmentation of the feature point trajectories into groups corresponding to the differently 
moving 3D objects and the estimation of the structure and motion of these objects are highly in- 
terrelated processes: if the correct segmentation is not known, the motion and structure of each 
object cannot be accurately computed, and if the 3D motion of each object is not accurately 
known, the trajectories cannot be segmented on the basis of their 3D motion. To circumvent this 
circular dependency, we integrate the segmentation and the motion and structure estimation steps 
into a single step, and we incrementally improve the segmentation and the motion and structure 
estimates as each new frame is received. 

The general segmentation paradigm is split and merge. Each group of trajectories (or region) 
in the segmentation has associated with it one of three region motion models, two of which de- 
scribe rigid motion (the translational and rotational motion models), and the third (unmodeled 
motion) which accounts for all motions which do not fit the two rigid motion models and do not 
contain any local motion discontinuities. When none of these motion models accurately account 
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for the motion in the region, the region is split using a region growing technique. When splitting 
a region, a measure of motion consistency is computed in a small neighborhood around each tra- 
jectory in the region. If the motion is consistent for a particular trajectory, we assume that the 
trajectories in the neighborhood all arise from points on a single object. Thus the initial subre- 
gions for the split consist of groups of trajectories with locally consistent motion, and these are 
grown out to include the remaining trajectories. 

Initially all the trajectories are ina single region. Processing then continues in a uniform fash- 
ion: the new point positions in each new frame are added to the trajectories of the existing regions, 
and then the regions are processed to make them compatible with the new data. The processing 
of the regions is broken into four steps: (1) if the new data does not fit the old region motion mod- 
el, find a model which does fit the data or split the region, (2) add any newly visible points or 
ungrouped points to a compatible region, (3) merge adjacent regions with compatible motions, 
(4) remove outliers from the regions. 

Compatibility among feature points is checked using the structure and rotational motion esti- 
marion algorithm or the translational motion estimation algorithm described in [Del]. A region's 
feature points are considered incompatible if the fit error returned by the appropriate motion es- 
timation algorithm is above a threshold. We assume that the trajectory detection algorithm can 
produce trajectories accurate to the nearest pixel, and therefore we use a threshold (which we call 
the error threshold) of one half of a pixel per visible trajectory point per frame.The details of the 
four steps listed above may be found in [Del] or [DA3]. 

4 Experiments 

Our algorithm was tested on two real image sequences of 50 frames: (1) the cylinder sequence, 
consisting of images of a cylinder rotating around a nearly vertical axis and a box moving right 
with respect to the cylinder and the background, and (2) the robot arm sequence, consisting of 
images of an Unimate| PUMA| Mark III robot arm with its second and third joints rotating in 
opposite directions. These sequences show the capabilities of the approach, and also demonstrate 
some inherent limitations of motion based segmentation and of monocular image sequence based 
motion estimation. 

Trajectories were detected using the algorithm described in [De1] (using a method described 
in [BH 1 ]), which found 2598 tzajectories in the cylinder sequence and 202 trajectories in the robot 
arm sequence. These trajectories were input to the image sequence segmentation algorithm de- 
scribed in Section 3, which partitioned the trajectories into groups corresponding to different rigid 
objects and estimated the motion and structure parameters. 

The segmentation for the cylinder sequence is shown in Fig. 1. The algorithm separated out 
the three image regions: the cylinder, the box, and the background.The cylinder is rotating, and 
thus its structure can be recovered from the image sequence. Fig. 2 shows a projection along the 
cylinder axis of the 3D point positions calculated from the 1456 points on the cylinder. The points 
lie very nearly on a cylindrical surface. Table 1 shows the estimated and the actual motion param- 

Table 1. Comparison of the parameters estimated by the algorithm and the true parameter for the cylinder 
image sequence experiment. 

Parameters 

CO 

Estimated 

-0.022 

Actual 

-0.017 

(0,.99,.12) (0,.98,.19) 

(.29,-.19) (.14,0) 



Fig. 1 The image sequence segmentation found 
for the cylinder sequence (the segmentation is 
superimposed on the last frame of the sequence). 
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Fig. 2 An end-on view of the three-dimensional 
point positions calculated by our structure and 
motion estimation algorithrn from point trajectories 
derived from cylinder image sequence. 

Table 2. Comparison of the estimated and the true 
parameter values for the second (larger) segment of 
the robot arm. 

Parameters Estimated Actual 

co .0133 .0131 

(-.67,-.01,.74) (-.62,.02,.79) 

(.02,-.07) (0,0) 

Fig. 3 The image sequence segmentation found 
for the robot arm sequence (the segmentation is 
superimposed on the last frame of the sequence). 

Table 3. Comparison of the estimated and the true 
parameter values for the third (smaller) segment of 
the robot arm. 

Parameters Estimated Actual 

co -.0127 -.0131 

(-.58,.06,.81) (-.62,.02,.79) 

eters for the cylinder. The error in the to estimate is large because the cylinder is rotating around 
an axis nearly parallel to the image plane and, as pointed out in [WH1], a rotation about an axis 
parallel to the image plane is inherently difficult to distinguish from translation parallel to the im- 

age plane and perpendicular to the rotation axis (this also explains the error in ~). Note that the 
predicted trajectory point positions still differ from the actual positions by an average of less than 
the error threshold of 0.5 pixel. The accuracy of  the motion and structure estimation algorithm for 
less ambiguous motion is illustrated in the experiments on the robot arm sequence. 

The image sequence segmentation for the robot arm sequence is shown in Fig. 3. Note that 
several stationary feature points (only two visible in Fig. 3) on the background are grouped with 
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the second segment of the arm. This occurs because any stationary point lying on the projection 
of a rotation axis with no translational motion will fit the motion parameters of the rotating object. 
Thus these points are grouped incorrectly due to an inherent limitation of segmenting an image 
sequence on the basis of motion alone. The remaining points are grouped correctly into three im- 
age regions: the second and the third segments of the robot arm, and the background. The two 
robot arm segments are rotating and their three-dimensional structure was recovered by the mo- 
tion and structure estimation algorithm.Only a small number of feature points were associated 
with the robot arm segments making it difficult to illustrate the structure on paper, but the esti- 
mated motion parameters of the second and third robot arm segments are shown in Table 2 and 
Table 3, respectively. Note that all the motion parameters were very accurately determined. 

5 Conclusions 

The main features of our method are: (1) motion and structure estimation and segmentation 
processes are integrated, (2) frames are processed sequentially with continual update of motion 
and structure estimates and segmentation, (3) the motion and structure estimation algorithm fac- 
tors the trajectory data into separate motion and structure matrices, (4) aside from SVDs, the mo- 
tion and structure estimation algorithm is closed form with no nonlinear iterative optimization 
required, (5) the motion and structure estimation algorithm provides a confidence measure for 
evaluating any particular segmentation. 
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