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A b s t r a c t .  Interpolation of 3D segments obtained through a trinocular stereo 
process is achieved by using a 2D Delannay triangulation on the image plane of 
one of the vision system cameras. The resulting two-dimensional triangulation 
is backprojected into the 3D space, generating a surface description in terms 
of triangular faces. The use of a constrained Delaunay triangulation in the 
image plane guarantees the presence of the 3D segments as edges of the surface 
representation. 

1 Introduction 

Delaunay triangulation has turned out to be a very powerful tool in many application fields, 
including finite element analysis, motion planning, digital terrain modeling and surface 
reconstruction in computer tomography [LR1, Chl,  Bol, DP1]. Such representation has 
several important properties: it is invariant through rigid transformations, it adapts to the 
data distribution, it is easy to update because of the local effect of inserting new points 
or segments. 

In classical computer vision problems, like scene reconstruction and autonomous nav- 
igation, Delaunay triangulation has been often adopted for both 2D and 3D data. In 
particular, its discontinuity-preserving nature makes it especially suitable to interpolate 
passive stereo data, which usually correspond to scene discontinuities. The use of 3D 
Delaunay triangulation for interpolation of data obtained by a stereo process was first 
proposed in [Boll. A coherent and comprehensive presentation of this approach can be 
found in [FL1], where the authors suggest a modification to standard Delannay triangula- 
tion to include stereo segments as part of the triangulation, based on the addition of extra 
points. 

A new approach to 3D surface reconstruction which starts from stereo data and makes 
use of a two-dimensional Delaunay triangulation including the projections of the segments 
as part of the triangulation, has been proposed in [BG1]. The basic idea is to interpolate 
the image segments which form the input for the stereo reconstruction process. The 
computed 2D mesh is then backprojected into the 3D space using the corresponding 
reconstructed stereo data. The result of the whole process is a triangular-faced piecewise 
linear surface, in which the stereo segments are somehow preserved. Interesting features 
of this approach are its fairly low computational cost, due to the fact that most of the 
processing is done in 2D, and its robustness toward calibration and  stereo reconstruction 
errors. A drawback of this approach is in the splitting of the segments in the image 
plane, which requires the computation of the 3D coordinates of the introduced points and 
produces many small triangles in special segment configurations. 

In this paper, we present a further development of that work by proposing an approach 
to 3D surface reconstruction from stereo data based on the computation of constrained 
Delaunay triangulation in the image plane which avoids the segment splitting and therefore 
the computation of the 3D position of the added points [Chl, LL1, DP1]. 
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2 T h r e e - D i m e n s l o n a l  S u r f a c e  R e c o n s t r u c t i o n  S t r a t e g y  

The surface reconstruction process consists of three phases: stereo segment reconstruction, 
constrained Delaunay triangulation in the image plane, and backprojection of the two- 
dimensional tessellation. 

The edge segment-based stereo process developed under the Esprit Project P940 [ALl, 
Mull has been adopted. Three images are acquired from slightly different points of view. 
On each image a low-level processing made of edge detection, edge linking and polygonal 
approximation is performed, resulting in a set of 2D segments corresponding to relevant 
scene features. One of the three images is selected as reference image. For each segment of 
the reference image, possible matches, i.e., segments corresponding to the same feature in 
the other two images, are selected, making use of the epipolar constraint. Then, for each 
triple of matched segments the 3D segment is reconstructed, on the basis of perspective 
projection. 

The triangulation is computed on the 2D segments of the reference image plane selected 
by the stereo process. Note that such segments are perspective projection of real observed 
features, and therefore they reflect the visibility properties of the world features from 
which they have been originated. As the low-level phases of edge linking and polygonal 
approximation guarantee that the segments are disjoint, each triangle is bounded by only 
one stereo segment. Moreover, as the image segments are directly the output of the stereo 
matching, the triangulation can be computed independently of the stereo reconstruction, 
avoiding the errors which may occur in the reconstruction phase. 

The 2D mesh is then backprojected into the 3D space using the corresponding 3D 
segments endpoints evaluated during the stereo phase. The result of the whole process 
is a triangular-faced piecewise linear surface, in which the stereo segments are somehow 
preserved. For each triangular face of the surface, the normal unit vector is computed, 
achieving a space-variant needle map representation of the observed scene. The geometric 
structure resulting from the backprojection can be defined by a function p -- p(~, ~) in a 
system of spherical coordinates centered in the pin-hole of the camera. Therefore, possible 
intersections among the triangular faces of the 3D surface can be caused only by errors 
occurred in the stereo process. 

3 C o m p u t i n g  C o n s t r a i n e d  D e l a u n a y  T r i a n g u l a t i o n  

The two-dimensional Delaunay triangulation of a set ~ = {Pi, P2,. �9 Pn~ of points in the 
plane is the straight-line dual of the Voronoi diagram [PS1]. The Voronoi diagram of ~ is 
a collection r = {V1, V2,. . . ,  Vn~ of convex regions, called Voronoi regions, such that  V/is 
the locus of the points of E 2 closer to Pi than to any other point in ~ .  Given a set ~ of 
points in the plane and a set S of non-intersecting straight-line segments whose endpoints 
are contained in ~,  the pair G = (~ ,S)  defines a planar straight-line graph, called the 
constraint graph. A triangulation T o f ~  whose edge set contains S is called a constrained 
triangulation of ~ with respect to S. A Constrained Delaunay Triangulation (CDT) T of 
a set of points ~P with respect to a set 5 of line segments is a constrained triangulation 
of ~ in which the circumcircle of each triangle t of T does not contain (in its interior) 
any other vertex Pi of ~P which can be joined to each vertex of t by a line segment not 
intersecting any constraint segment (see Figure 1). 

Static algorithms for computing a CDT appeared recently in the computational geom- 
etry literature [LL1, Chl]. The algorithm we use, proposed in [DP1], is instead based on 
incremental refinements of a Delaunay triangulation. It starts from an initial Delaunay 
triangulation of a specified subset of the input data, and then modifies the triangulation 
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Figure 1: An example of constrained Delaunay triangulation. Thick lines represent con- 
straint segments. 

by inserting the points of 7 ~ and the segments in ~q one at a time. Thus, the two major 
computational steps of the algorithm are (i) CDT modification when inserting a point P, 
(ii) CDT modification when inserting a segment I. 

Step 1 is performed by extending a standard method for adding a point to a Delaunay 
triangulation to the constrained case [Wal]. When a new point P is inserted, the trian- 
gles whose circumcircle contains P are deleted and the resulting star-shaped polygon is 
triangulated by connecting the vertices of such a polygon to P. The worst-case complex- 
ity of this step is O(r~). Thus, inserting all n data points leads to an O(n 2) worst-case 
complexity, which reduces to O(nlog n) if randomized algorithms are used [GK1]. 

Step 2 is performed by intersecting the new segment l with the existing triangulation 
and retriangulating the region of the plane defined by the union of the triangles intersected 
by I. The edges bounding the region of T intersected by l, called influence region, form 
a simple polygon Qt, called i~fluence polygon, of which I is a diagonal. I splits Qt in two 
simple polygons lrl and lr2, which are triangulated by recursively splitting them into three 
subpolygons. The resulting triangulation of ~rl and ~r2 is then locally optimized by an 
iterative application of the empty circle criterion for a CDT [DP1]. 

The time complexity of the influence region computation of a constraint segment I is 
linear in the number of triangles intersected by I. Both rebuilding the constrained Delaunay 
triangulation of a polygon and its optimization have a quadratic worst-case complexity in 
the number of vertices of the influence polygon. The worst-case complexity of the segment 
insertion algorithm is O(m~2), where m is the number of constraint segments (m -- 2r~ if 
the points of 7 ~ are the endpoints of the segments of•). By using an asymptotically optimal 
Delaunay triangulation algorithm for simple polygons [LL1], the worst-case complexity of 
the algorithm could be reduced to O(ranlog n), by losing the implementation simplicity. 

An alternative approach to include sets of segments to a Delaunay triangulation, con- 
sists of splitting the segments into subsegments (by adding additional vertices), so that 
the constrained Delaunay triangulation of all subsegments is the same as the Delaunay 
triangulation of the augmented vertex set. In [FL1] a preprocessing step is used to split 
the segments according to their minimum distance. 

A comparison between the CDT algorithm and the segment-splitting algorithm de- 
scribed in [FL1] has been done. Experimental results show that the average number of 
inserted points triples the number of original points (segments endpoints). The number 
of points (and triangles) increases dramatically when close parallel segments occur in the 
input data. Figure 2 shows the results of CDT and segment-splitting algorithms on a real 
indoor scene. 
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Figure 2: Reference image of a trinocular stereo system (a) and matched segments (b). 
C D T  (c) and segment-splitting triangulations (d). 

4 E x p e r i m e n t a l  R e s u l t s  on S c e n e  R e c o n s t r u c t i o n  

The complete process of scene reconstruction has been tested on a set of teal scenes. 
Assuming as reference applications both scene surface characterization and free space 
detection for autonomous navigation tasks, indoors images (i.e., office and laboratory 
images) have been acquired. 

The DMA machine, developed under the Esprit Project P940, has been used to get 
both the 3D reconstructed segments and the corresponding 2D segments of the reference 
image. First an unconstrained Delaunay triangulation is built on the segments endpoints. 
Then, the resulting triangulation is updated, by adding the input segments as Delaunay 
edges. 

The surface obtained backprojecting the C D T  into 3D is made of a minimum number 
of triangles (for instance, two parallel segments define only two triangles). Besides, very 
elongated triangles, which may occur in the image-plane CDT,  often correspond to more 
equiangular triangles in 3D, due to the perspective projection under which the scene has 
been seen. 
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Experimental results have shown that the running time of the whole surface recon- 
struction process reduces of about the 50% using the CDT algorithm, rather than the 
segment-splitting one. Such a reduction is due to both the triangulation phase (without 
the splitting of the constraint segments) and the backprojection phase. 

5 Concluding Remarks 

The proposed scene reconstruction process starting from stereo segments is based on a 
two-dimensional Constrained Delaunay Triangulation done in the image plane and results 
in a triangular-faced piecewise linear description of scene surfaces. With respect to what 
presented in [BG1], the main novelty is in the use of a powerful algorithm which constrains 
the triangulation to the input segments, avoiding the insertion of extra points. Some ex- 
perimental tests on real data have confirmed the foreseen advantages of this new approach 
in terms of both computational efficiency and improvement of the resulting surface de- 
scription. 

As the bottleneck of the whole strategy is in the computation of the CDT, a parallel 
implementation of this phase on the Elsag Bailey multiprocessor machine EMMA2 has 
been completed. 
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