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A b s t r a c t .  Transparency produces visual ambiguities in interpreting mo- 
tion and stereo. Recent discovery of a general framework, principle of super- 
position, for building constraint equations of transparency makes it possible 
to analyze the mathematical properties of transparency perception. This 
paper theoretically examines multiple ambiguous interpretations in trans- 
parent optical flow and transparent stereo. 

1 I n t r o d u c t i o n  

Transparency perception arises when we see scenes with complex occlusions such as picket 
fences or bushes, with shadows such as those cast by trees, and with physically transpar- 
ent objects such as water or glass. Conventional techniques for segmentation problems 
using relaxation type techniques such as coupled MRF(Markov Random Field) with a 
line process which explicitly models discontinuities[5][13], statistical decision on veloc- 
ity distributions using statistical voting[1] [2] [3] or outlier rejection paradigm of robust 
statistics[14] and weak continuity[15], cannot properly handle these complex situations, 
since transparency is beyond the assumptions of these techniques. More recently, an iter- 
ative estimation technique for two-fold motion from three frames has been proposed[16]. 

The principle of superposition(PoS), a simple and elegant mathematical technique, 
has been introduced to build motion transparency constraints from conventional single 
motion constraints[25]. PoS resolves the difficulties in analyzing motion transparency and 
multiple motions at the level of basic constraints, i.e., of computational theory in contrast 
to conventional algorithm level segmentation techniques[21]. Using PoS, we can analyze 
the nature of transparent motion such as the minimum number of sets of measurements, 
signal components or correspondences needed to determine motion parameters in finite 
multiplicity arid to determine them uniquely. Another advantage is its computational 
simplicity in optimization algorithms such as convexity of the energy functionals. 

In this paper, the constraints of the two-fold transparent aptical flow is examined 
and ambiguities in determining multiple velocities are discussed. It is shown that con- 
ventional statistical voting type techniques and a previously described constraint-based 
approach[23][24] behave differently for some particular moving patterns. This behavioral 
difference will provide a scientific test for the biological plausibility of motion perception 
models regarding transparency. 

Then, I show that transparency in binocular stereo vision can be interpreted similarly 
to transparent motion using PoS. The constraint equations for transparent stereo match- 
ing are derived by PoS. Finally, recent results in studies on human perception of multiple 
transparent surfaces in stereo vision[19] are explained by this computational theory. 

* Part of this work was done while the author was at N T T  Human Interface Laboratories, 
Y o k o s u k a ,  J a p a n .  
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2 Principle of Superposition 

2.1 T h e  O p e r a t o r  F o r m a l i s m  a n d  C o n s t r a i n t s  o f  T r a n s p a r e n c y  

Most of the constraint equations in vision can be written as, 

a (p ) f (x )  = 0. (1) 

where f (x )  is a data distribution on data space G. f (x )  may be the image intensity 
data itself or outputs of a previous visual process, p is a point on a parameter space 
7-[ which represents a set of parameters to be estimated and a(p) is a linear operator 
parametrized by p. The linearity of the operator is defined by a(p){f l (x)  + f2(x)} = 
a (p) f l (x)  + a(p)f2(x) and a(p)0 = 0. We call the operator a(p) the amplitude operator. 
The amplitude operator and the data distribution may take vector values. 

Assume n data distributions f i (x)( i  = 1, 2 , . . . ,  n) on G, and suppose they are con- 
strained by the operators a(pi)(pl e 7-[i,i = 1,2 , . . .  ,n) as a(pl)f i(x)  = 0. The data 
distribution f (x)  having transparency is assumed to be an additve superposition of f i(x)  

as f (x )  = ~ fi(x).  According to PoS, the transparency constraint for f ( x ) ' c a n  be 
i = 1  

represented simply by 
a(pl)a(p2)  . . .  a(pn) f (x )  : 0. 2 (2) 

It should be noted that if the constraint of n-fold transparency holds, then the con- 
straint of m-fold transparency holds for any m > n. However, parameter estimation 
problems based on the constraint of m-fold transparency are ill-posed because extra 
parameters can take arbitrary values, i.e. are indefinite. Therefore, appropriate multi- 
plicity n may be determined by a certain measure of well-posedness or stability of the 
optimization as in [24]. 

2.2 S u p e r p o s i t i o n  U n d e r  Occ lus ion  and T r a n s p a r e n c y  

An important property of the transparency constraint equation is its insensitivity to 
occlusion, ff some region of data fi(x) is occluded by another pattern, we can assume 
that f i(x) is zero in the occluded region. The transparency constraint equation still holds 
because of its linearity. Therefore, in principle, occlusion does not violate the assumption 
of additive superposition. 

In the case of transparency, there are typically two types of superposition: additive 
and multiplicative. Multiplicative superposition is highly non-linear and therefore sub- 
stantially violates the additivity assumption. However, taking the logarithm of the data 
distribution transforms the problem into a case of additive superposition. 

3 Visual Ambiguities in Motion Transparency 

3.1 T h e  C o n s t r a i n t  E q u a t i o n s  o f  T r a n s p a r e n t  Opt ica l  Flow 

In the case of optical flow, the amplitude operator in spatial and frequency domains are 
defined by[24] 

0 0 0 
a(u,v) ---- u~-~x + v~u + ~ ,  5(u,v) -- 2~'i(u~= + v~ v +wt) ,  (3) 

Y 

2 For this constraint to be satisfied strictly, the operator a(pi) must commute, i.e., a(p~)a(pj) = 
a(pDa(p0 for i # j. 
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where (u, v) is a flow vector. Then, the fundamental constraints of optical flow can be writ- 
ten as a(u, v ) f (x ,  y, t) = 0 and 5(u, v)F(w~:, wy, wt) = 0 where .f(x, y, t) and F(w~:, wy, wt) 
denote a space-time image and its Fourier transform[9][10][ll][12]. Using PoS, the con- 
straints for the two-fold transparent optical flow are simply a(ul, v~)a(u2, v2).f(x, y, t) = 0 
and 5(u~, v~)5(u2,v2)F(w=,w~,w~) = 0 where (Ul,V~) and (u2, v2) are two flow vectors 
which coexist at the same image location. 

These two constraints of two-fold motion transparency can be expanded into 

dzzUlU2 + dyyvlv2 + dzu(u~v2 + VlU2) -~- dzt(Ul + u2) + d~t(Vl + v2) + dtt = 0, (4) 
8 ~ 

where components of d -- ( d~z, d~ ,  d=u, d~,t, dyt , dtt ) are for example d~t = o--~ f (  x, y, t) 
for the spatial domain representation and dut = (2~ri)2w~wtF(w~, w~, wt) for the frequency 
domain representation. Therefore, we can simultaneously discuss brightness measuments 
and frequency components. 

3.2 T h e  Cons t ra in t  Curve  of  Two-fold  T r a n s p a r e n t  Opt ica l  Flow 

Equation (4) is quadratic in four unknowns Ul, vl, u2 and v2. Therefore, if we have four 
independent measurements or signal components d(k)(k = 1,2,3,4), a system of four 
quadratic constraint equations denoted by Ek will produce solutions of a finite ambiguity. 
The solution can be obtained as intersections of two cubic curves in velocity space as 
shown below. This is the two-fold transparent motion version of the well-known fact that 
the intersection of two lines which represent the single optical flow constraint equations 
in the velocity space (u, v) uniquely determines a flow vector. 

From E1 and E2, we can derive rational expressions u2 = Gu(dO), d(2); ul, vl) and 
v2 = G~(d (1), d(2);ul, vl) which transform the flow vector (Ul, vl) into (u2, v2) and vice 
versa. The concrete forms of these rational expressions can be written as 

G~(d(O,d(J);u,v) = ~u ~t - q~ qu q(1)q(j) q(i)q(j)' G~(d(O'd(J);u'v) = q~i)q(j) q(1)q~j) .(i).(j) q(i)q(D' (5) 
~ g  , /y  

i) (0 (0 q~')  ( A ' ) u ~ i ) v ~ d  (1)~ and q~') - (d(~)u+~ '2v+~)) .  where q(2 = ( d L u + d . , v + d . , ) ,  = T .  , , ,  

If we have three measurements/components d (1), d(D and d (k), then the equation 
Gu(d(0, d(J); u, v) = Gu(d (~), d(k); u, v) gives the constraint for the velocity (u, v) in the 
case of two-fold transparent optical flow. This equation can be factored into the form of 
q(0Gu~(d(0, d(J), d(k); u, v) = 0 where 

Gu~(d (i), d (j), d(k); u, v) = ~="(1)"(J)"(k)~y ~t + ~y"(i)"(/)"(k)~t ~x + ~t"(i)"(J)"(k)~= ~y 
.(0.(J).(k) .(~).(j).(~) .(0.(j).Ck) (6) 

If q(x 0 ---- 0 then we can substitute the i by another index i ~ which is not equivalent to 
i, j and k. Then q(x r -- 0 cannot hold if we have transparency, because two equations 
q(O = 0 and q(~') = 0 imply single optical flow. Thus, we can substitute i by r without 
loss of generality. Therefore, the cubic equation Gu~ (d(0, d(D, d(k); u, v) ---- 0 with respect 
to u and v gives the constraint curve on the velocity space (u, v) under the assumption 
of two-fold transparency. Intersecting points of two curves in uv-space 

C1 : G,,~(d(1),d(2),d(8);u,v) = O, C2 : G~,~(d(1),d(2),d(4);u,v) = O, (7) 

provide the candidate flow estimates for (ul, Vl) and (u~, v2). By using (5), we can make 
pairs of solutions for {(ul, vl), (u2, v2)} from these intersections. 
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T h e  Three - fo ld  Ambigu i ty  of  F o u r - c o m p o n e n t  Mot ion .  In the space-time fre- 
quency domain, there exists a three-fold ambiguity in interpreting the transparent mo- 
tion of four frequency components, since there are three possible ways to fit two planes 
so that they pass through all four points (frequency components) and the origin. Fig- 
ure 1 provides the predicted visual ambiguity due to this fact. If we have two image 
patterns A and B each of which has frequency components along just two space direc- 
tions ({G1, G2} for A and {G3, G4} for B), and they move with different velocities VA 
and vB, their superposed motion pattern has three-fold multiple interpretations. 

G 4  V 

True sol 

G1 

m U 

\ 
G2 

tk~ Two tahm 

Fig. 1. The three-fold ambiguity of transparent motion 

G1 

0 = u  

3.3 Unique  Solut ion f rom Five  M e a s u r e m e n t s  or  C o m p o n e n t s  

If a system of five constraint equations Ek of five independent measurements or five 
frequency components d(k)(k -~ 1,2, 3, 4, 5) are available, we can determine two velocities 
uniquely. The system of equations can be solved with respect to a vector of five 'unknown 
parameters', 

( , , , ) 
c = = u l u 2 , v l v 2 ,   (ulv2 + + + , iS )  

as a linear system. Component flow parameters ul, u2, vl and v2 can be obtained by 
solving two quadratic equations, u 2 - 2 c x t u  + c ,~  = 0 and v 2 - 2%~v + c~ = 0. We 

denote their solutions 
f _ _ . _  

as u• = c=t =t: - c=x and v• -- c~t -4- ~ /c~t -  %y. There are 

constraints c2~ > c~, and c~t _ c~  for the existence of real solutions. We now have two 
possible solutions for (ul, vl) and (u2, v2) as {(ul, vl), (u2, v2)} = {(u+, v+), (u_, v_)} 
and {(Ul, vl), (u2, v2)} = {(u+, v_), (u_, v+)}. However, we can determine a true solution 
by checking their consistency with the remaining relation cx~ = �89  .-b v~u2)  of (8). 
Therefore, we have a unique interpretation for the general case. 

Behav io ra l  Difference Agains t  Conven t iona l  Schemes.  The significance of trans- 
parent motion analysis described above is its capability of estimating multiple motion 
simultaneously from the m i n i m u m  amount of image information, i.e. minimum measure- 
ments or signal components as shown above. In this subsection, I show that conventional 
techniques by statistical voting of constraint lines on velocity space (e.g. [1][2][3][4]) can- 
not correctly estimate multiple flow vectors from this minimum information. 
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Figure 2(a) shows an example of moving patterns which produces this behavioral 
difference between the proposed approach and conventional statistical voting. The two 
moving patterns A and B are superposed. Pattern A has two frequency components which 
may be produced by two plaids G1 and G2; its velocity is VA. The other pattern B, which 
has velocity VB, contains three frequency components produced by three plaids G3, G4 
and Gs. If the superposed pattern is given to our algorithm based on the transparent 
optical flow constraint, the two flow vectors VA and vB can be determined uniquely as 
shown in the previous subsection. Figure 2(b) shows plots of conventional optical flow 
constraint lines on the velocity space (u, v). There are generally seven intersection points 
only one of which is an intersection of three constraint lines but other six points are of two 
constraint lines. 3 The intersection of three lines is the velocity vB and can be detected 
by a certain peak detection or clustering techniques on the velocity space. However, the 
other velocity VA cannot be descriminated from among the six two-line intersections! 

G G2 G=4 - -G5 ~Vs 

A S 
( a )  

V 

. G1 ~ ~ C'~ 
A V! G4 

( b )  

Fig. 2. Moving pattern from which statistical voting schemes cannot estimate the correct two  

flow vectors 

4 V i s u a l  A m b i g u i t i e s  in  S t e r e o  T r a n s p a r e n c y  

In this section, the transparency in stereo is examined by PoS. Weinshall[19][20] has 
demonstrated that the uniqueness constraint of matching and order preservation con- 
straint are not satisfied in the multiple transparent surface perception in human stereo 
vision. Conventional stereo matching algorithms cannot correctly explain perception of 
transparency, i.e., multiple surfaces[20]. My intention is not to provide a stereo algorithm 
for the transparent surface reconstruction, but to provide stereo matching constraints 
which admit and explain the transparency perception. 

4.1 T h e  C o n s t r a i n t  o f  S te reo  M a t c h i n g  

The constraints on stereo matching can also be written by the operator formalism. We 
denote the left image patterns by L(z) and the right image patterns by R(z) where z 
denotes a coordinate along an epipolar line. Then, the constraint for single surface stereo 

3 Figure 2(b) actually contains only five two-line intersections. However, in general, it will 
contain six. 
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with disparity D can be written as 

[ r,-,,x>l 0 )  f(z) - [R(x)J  a ( O ) f ( x ) - -  0 where, a(D)_= - 9  0 )  ' . (9) 

9 ( 0 )  is a shift operator which transforms L(x) into L(z - 0 )  and R(x) into R(z - 0) .  4 
It is easy to see that the vector amplitude operator a(D) is linear, i.e. both a(D)0 = 0 
and a(O){fl(x)  + f2(z)} = a(O)f l (x)  + a(O)f~(z) hold. 

Figure 3 is a schematic diagram showing the function of the vector amplitude operator 
a(D). The operator a(D) eliminates signal components of disparity D from the pair of 
stereo images, L(z) and R(z), by substitutions. 

I _, I 
I I oc0  ,- I _ 

Fig. 3. Function of the amplitude operator of stereo matching 

4.2 T h e  C o n s t r a i n t  o f  T r a n s p a r e n t  S te reo  

According to PoS, the constraint of the n-fold transparency in stereo can be hypothesized 
a s  

a ( D n ) . . ,  a(D2)a(D1)f(x) = 0, (10) 

where f(z)  = ~ f;(z), and each fi(x) is constrained by a(O,)fi(x) = 0. It  is easily proved 
i = 1  

using the commutability of the shift operator 9 ( D )  that amplitude operators a(D~) and 
a(Dj)  commute, i.e. a(O,)a(Dj)  : a (Dj)a(Oi)  for i # j under the condition of constant 
Di and Dj. Further, the additivity assumption on superposition is reasonable for random 
dot stereograms of small dot density. 

4.3 P e r c e p t i o n  of  Mul t ip l e  T r a n s p a r e n t  P l a n e s  

In this section, the human perception of transparent multiple planes in stereo vision 
reported in [19] is explained by the hypothesis provided in the previous section. 

We utilize a random dot image P(x). If L(x) = P(x - d) and R(z) -- P(z) ,  then the 
constraint of single surface stereo holds for disparity D = d, since 

a ( d ) f ( x )  = r d) _ V(d)P(z) ] r P ( x  - d) - P ( x  - d ) ]  
[ P ( x ) - 9 ( - d ) P ( z - d ) ]  = L P ( z ) - P ( z - d + d )  - -0 .  (11) 

4 We can write this shift operator explicitly in a differential form as /~(D) = exp(-Da-~ ) = 
2 2 3 3 

1 - D -~-" D" ~ _ p__: ~ However, only the shifting property of the operators is essential 
Ox - 2! ~x ~ 3! ax ~ "" "" 

in the following discussions. 
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In [19], a repeatedly superimposed random dot stereogram shown in Fig.4 is used to 
produce the transparent plane perception. This situation can be represented by defining 
L(x) and R(x) as 

L(x) = P(x) + P(x - dL), R(x) -- P(x) + P(x + dR), (12) 

where dL and dR are shift displacements for the pattern repetitions in left and right 
image planes. According to [19], when dz ~ dR, we perceive four transparent planes 
which correspond to disparities D = 0, dz, dR and dL + dR. The interesting phenomenon 
occurs in the case of dL = dR = de. The stereogram produces a single plane perception 
despite the fact that the correlation of two image patterns L(x) and R(x) has three strong 
peaks at the disparities D = 0, dc and 2dc. 

s P(x) s P(x) 

,,,x.C/_ / .................... ; . . /  

/ �9 ~ : ~ "  

dR 

Fig. 4. The stereogram used in the analysis 

From the viewpoint of the constraints of transparent stereo, these phenomena can be 
explained as shown below. 

First, it should be pointed out that the data distribution f(x) can be represented as 
a weighted linear sum of four possible unique matching components. 

where 

LP(x)J 

f (~ )  = ~ f l ( x )  + . f ~ ( x )  + (1 - . ) f ~ ( ~ )  + (1 - . ) f ~ ( ~ ) ,  (13) 

, f 2 ( x ) =  Lp(= + d . ) j '  f3(x)= �9 - , . - .  �9 , f.,.(x)= iF(x  + dR)J' 
(14) 

and 

a(0)fl(x) = 0, a(dL + dR)f2(x) = 0, a(dL)f3(x) = 0, a(dR)f4(x) = 0. (15) 

Note that the weights have only one freedom as parameterized by or. 
When assuming dL ys dR, the following observation can be obtained regarding the 

constraints of the transparent stereo. 

1. The constraint of single surface stereo a(D1)f(x) = 0 cannot hold for any values of 
disparities Dr. 

2. The constraint of two-fold transparent stereo a(D2)a(Di)f(x) -- 0 can hold only 
for two sets of disparities {Dz, D2} -- {0, dL + dR} and {Dz, D2} = {dR, dL} which 
correspond to cr = 1 and c~ = 0, respectively. 
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3. The constraint of three-fold transparency a(Dz)a(D2)a(D1)f(z) = 0 can hold only 
when c~ = 1 or a = 0 as same as the two-fold transparency. However, one of the three 
disparities can take arbitrary value. 

4. The constraint of four-fold transparency a(D4)a(Dz)a(D2)a(D1)f(z) = 0 can hold 
for arbitrary c~. The possible set of disparities is unique as {D1,D2, D3,D4} = 
{0, dL, dR, dL + dR} except the cases of {O1,02} = {0, dL + dR} and {D1,02} = 
{dL, dR} which correspond to c~ = 1 and c~ = 0, respectively. 

5. The constraints of more than four-fold transparency can hold, but some of the dis- 
parity parameters can take arbitrary values. 

We can conclude that the stereo constraint of n-fold transparency is valid only for n = 2 
and n = 4 by using the criterion of Occam's razor, i.e., the disparities should not take 
continuous arbitrary values. Then, in both cases for n = 2 and n = 4, the theory predicts 
coexistence of four disparities 0, dL, dR and dL + dR. 

When dL = dn = dc, the constraint of single surface stereo a(D1)f(x) = 0 can hold 
only for D1 = de, since 

r {P(z) + P(x _ de)} - V(dc){P(z) + P(z + de)} ] 
a(dc)f(z) = [{P(z)  + P ( x +  de)} - V(-dc) lP(z)  + P(x - de)}] 

_ r { P ( z )  + P ( z  - d c ) }  - { p ( x  - d e )  + P ( z  + d c  - d c ) } ]  = o .  
- [ { P ( z ) + P ( z + d c ) }  { P ( z + d c ) + P ( x - d c + d c ) } J  

(16) 

Therefore, the case of dL = dn must produce the single surface perception, if we claim 
the criterion of Occam's razor on disparities. 

5 C o n c l u s i o n  

I have analyzed visual ambiguities in transparent optical flow and transparent stereo 
using the principle of superposition formulated by parametrized linear operators. Ambi- 
guities in velocity estimates for particular transparent motion patterns were examined by 
mathematical analyses of the transparent optical flow constraint equations. I also pointed 
out that conventional statistical voting schemes on velocity space cannot estimate mul- 
tiple velocity vectors correctly for a particular transparent motion pattern. Further, the 
principle of superposition was applied to transparent stereo and human perception of 
multiple ambiguous transparent planes was explained by the operator formalism of the 
transparent stereo matching constraint and the criterion of Occam's razor on the number 
of disparities. 

Future work may include development of a stereo algorithm based on the constraints of 
transparent stereo. The research reported in this paper will not only lead to modification 
and extension of the computational theories of motion and stereo vision, but will also 
help with modeling human motion and stereo vision by incorporating transparency. 
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