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A b s t r a c t .  
Researchers have long argued that an attentional mechanism is required 

to perform many vision tasks. This paper introduces an attentiona] pro- 
totype for early visual processing. Our model is composed of a process- 
ing hierarchy and an attention beam that traverses the hierarchy, passing 
through the regions of greatest interest and inhibiting the regions that are 
not relevant. The type of input to the prototype is not limited to visual 
stimuli. Simulations using high-resolution digitized images were conducted, 
with image intensity and edge information as inputs to the model. The re- 
suits confirm that this prototype is both robust and fast, and promises to 
be essential to any real-time vision system. 

1 I n t r o d u c t i o n  

Systems for computer vision are confronted with prodigious amounts of visual informa- 
tion. They must locate and analyze only the information essential to the current task 
and ignore the vast flow of irrelevant detail if any hope of real-time performance is to 
be realized. Attention mechanisms support efficient, responsive analysis; they focus the 
system's sensing and computing resources on selected areas of a scene and may rapidly 
redirect these resources as the scene task requirements evolve. Vision systems that have 
no task guidance, and must provide a description of everything in the scene at a high 
level of detail as opposed to searching and describing only a sub-image for a pre-specified 
item, have been shown to be computationally intractable [16]. Thus, task guidance, or 
attention, plays a critical role in a system that is hoped to function in real time. In short, 
attention simplifies computation and reduces the amount of processing. 

Computer vision models which incorporate parallel processing are prevalent in the 
literature. This strategy appears appropriate for the vast amounts of input data that 
must be processed at the low-level [4, 19]. However, complete parallelism is not possible 
because it requires too many processors and connections [11, 17]. Instead, a balance 
must be found between processor-intensive parallel techniques and time-intensive serial 
techniques. One way to implement this compromise is to process all data in parallel at 
the early stages of vision, and then to select only part of the available data for further 
processing at later stages. Herein lies the role of attention: to tune the early visual input 
by selecting a small portion of the visual stimuli to process. 

This paper presents a prototype of an attentional mechanism for early visual process- 
ing. The attention mechanism consists of a processing hierarchy and an attention beam 
that guides selection. Most attention schemes previously proposed are fragile with respect 
to the question of "scaling up" with the problem size. However, the model presented here 
has been derived with a full regard of the amount of computation required. In addition, 
this model provides all of the details necessary to construct a full implementation that 
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is fast and robust. Very few implemented models of attention exist. Of those, ours is 
one of the first that performs well with general high-resolution images. Our implemented 
attention beam may be used as an essential component in the building of a complete 
real-time computer vision system. 

Certain aspects of our model are not addressed in this investigation, such as the 
implementation of task guidance in the attention scheme. Instead, emphasis is placed on 
the bottom-up dimensions of the model that localize regions of interest in the input and 
order these regions based on their importance. 

The simulations presented in this paper reveal the potential of this attention scheme. 
The speed and accuracy of our prototype are demonstrated by using actual 256 x ~56 

digitized images. The mechanism's input is not constrained to any particular form, and 
can be any response from the visual stimuli. For the results presented, image intensity 
and edge information are the only input used. For completeness, relationships to existing 
computational models of visual attention are described. 

2 T h e o r e t i c a l  F r a m e w o r k  

The structure of the attention model presented in this paper is determined in part by 
several constraints derived from a computational complexity analysis of visual search 
[17]. This complexity analysis quantitatively confirms that selective attention is a major 
contributer in reducing the amount of computation in any vision system. Furthermore, 
the proposed scheme is loosely modelled after the increasing neurophysiology literature 
on single-cell recordings from the visual cortex of awake and active primates. Moreover, 
the general architecture of this prototype is consistent with their neuroanatomy [17, 18]. 

At the most basic level, our prototype is comprised of a hierarchical representation 
of the input stimuli and an attention mechanism that guides selection of portions of 
the hierarchy from the highest, most abstract level through to the lowest level. Spatial 
attentional influence is applied in a "spotlight" fashion at the top. The notion of a 
spotlight appears in many other models such as that of Treisman [15]. However, if the 
spotlight shines on a unit at the top of the hierarchy, there seems to be no mechanism 
for the rest of the selection to actually proceed through to the desired items. 

One way to solve this problem in a computer vision system is to simply address the 
unit of interest. Such a solution works in the computer domain because computer memory 
is random access. Unfortunately, there is no evidence four random access in the visual 
cortex. Another possible solution is to simply connect all the units of interest directly. 
This solution also fails to explain how the human visual cortex may function because the 
number of such connections is prohibitive. For instance, to connect all possible receptive 
fields to the units in a single 1000 x 1000 representation, 10 :s connections are needed to 
do so in a brute force manner 1. Given that the cortex contains 10 :~ neurons, with an 
estimated total number of connections of 10:3 , this is clearly not how nature implements 
access to high resolution representations. 

The spotlight analogy is therefore insufficient, and instead we propose the idea of a 
"beam" - something that illuminates and passes through the entire hierarchy. A beam is 
required that "points" to a set of units at the top. That particular beam shines throughout 
the processing hierarchy with an inhib i t  zone  and a pass  zone, such that the units in the 
pass zone are the ones that are selected (see Fig. 1). The beam expands as it traverses 
the hierarchy, covering all portions of the processing mechanism that directly contribute 

: see Tsotsos 1990 [17] for this derivation 
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to the output at its point of entry at the top. At each level of the processing hierarchy, 
a winner-take-all process (WTA) is used to reduce the competing set and to determine 
the pass and inhibit zones [18]. 
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Fig. 1. The inhibitory attentional beam concept. Several levels of the processing hierarchy are 
shown. The pass z o n e  of the beam encompasses all winning inputs at each level of the hierarchy. 
The darkest beams represent the actual i nh ib i t  z o n e s  rooted at each level of the hierarchy. The 
light-grey beam represents the effective inhibit zone rooted at the most abstract level. 

3 The Attention Prototype 

The proposed attention prototype consists of a set of hierarchical computations. The 
mechanism does not rely on particular types of visual stimulus; the input only considers 
the magnitude of the responses. Connectivity may vary between levels. Each unit com- 
putes a weighted sum of the responses from its input at the level below. The weighted 
response used in this paper is a simple average; but in general the distribution of weights 
need not be uniform and may even be different at each level. Processing proceeds as 
dictated by Algorithm 1. An inhibit zone and a pass zone are delineated for a beam that 
"shines" through all levels of the hierarchy. The pass zone permeates the winners at each 
level and the inhibit zone encompasses those elements at each level that  competed in the 
WTA process. This algorithm is similar to the basic idea proposed by Koch and Ullman 
[5]. One important  difference is that  our scheme does not rely on a saliency map. Another 
distinction is that  we use a modified WTA update rule that  allows for multiple winners 
and does not attenuate the winning inputs 2. Also, the final stage of the algorithm is not 
simply the routing of information as Koch and Ullman claim, but rather a recomputation 
using only the stimuli that  were found as "winners" at the input level of the hierarchy. 

For illustrative purposes, the attention scheme is shown with a one-dimensional rep- 
resentation and illustrated in Fig. 2; the extension to two dimensions is straightforward. 
If a simple stimulus pattern is applied to the input layer, the remaining nodes of the 

2 The WTA updating function and a proof of convergence are described in Tsotsos 1991 [18] 
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1. Receive stimulus at the input layer. 
2. Do 3 through 8 forever. 
3. Compute the remaining elements of the hierarchy based on the 

weighted sum of their inputs. 
4. Do 5 through 6 for each level of the hierarchy, starting at the top. 
5. Run WTA process at the current level. 
6. Pass winner's beam to the next level. 
7. Recompute based on winning input. 
8. Inhibit winning input. 

Algorithm 1 

hierarchy will compute their responses based on a weighted summation of their inputs, 
resulting in the configuration of Fig. 2(a). The first pass of the WTA scheme is shown in 
Fig. 2(b). This is accomplished by applying steps 5 and 6 of Algorithm i for each level of 
the hierarchy. Once an area of the input is attended to and all the desired information is 
extracted, then the winning inputs are inhibited. The attention process continues "look- 
ing" for the next area. The result is a very fast, automatic, independent, robust system. 
Moreover, it is a continuous and reactive mechanism. In a time-varying image, it can 
track an object that is moving if it is the item of highest response. In order to construct 
such a tracking system, the input would be based on motion. 
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Fig. 2. A one-dimensional processing hierarchy. (a) The initial configuration. (b) The most 
"important" item is selected - the beam's pass (solid lines) and inhibit zone (dashed lines) are 
shown. 

A number of the prototype's  characteristics may be varied, including the number of 
levels in the processing hierarchy and the resolution of each level. The elements that  
compete in the WTA process are termed ~receptive fields" (RF) after the physiological 
counterpart. In our implementation, a minimum RF (minRF) and a maximum RF 
(mazRF) are specified in terms of basic image units such as pixels. All rectangular RFs 
from rainRF x minRF to ma~RF x maxRF are computed and compete at each 
position in the input. RF shapes other than rectangular are possible. In general, a set of 
RFs are chosen that  are appropriate for the current input computation. 

There is an issue to consider when RFs of different sizes compete. If  a small RF has 
a response of k~ and a larger competing RF has a response (k~ -- e), then for a sufficiently 
small e, the larger RF should "win" over the smaller one. For example, consider a RF 
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R1 of size 2 x 2 that has a weighted average of 212, and a competing RF R2 of size 20 
x 20 that has a weighted average of 210. Since R2 is 100 times the size of R1 and over 
99% the intensity, it seems reasonable to favour R2 over R1. Formally, this is exactly one 
of the constraints proposed in Tsotsos 1989 [16] for visual search: given more than one 
match with approximately the same error, choose the largest one. In the implementation 
of the attention model, this favouring of larger RFs of comparable value is accomplished 
by multiplying the weighted averages of all RFs by a normalizing factor that is a function 
of the size of the RF. 

Mart suggests the following selection criterion for RF sizes: choose a given size if 
receptive fields of slightly smaller size give an appreciably smaller response and receptive 
fields that axe larger do not give appreciably larger responses [7]. Marr notes, however, 
that more than one receptive field size may satisfy this requirement. For instance, consider 
a normalizing function that is linear. Also consider a 256 x 256 image-sized RF whose 
weighted average is 128. In such an instance, the largest possible RF should be weighted 
considerably less than two times the smallest possible RF. For this to hold, a linear 
function would have a slope less than 0.000015. Therefore, for two small competing RFs 
with similar sizes, the weighting is insignificantly small. Clearly a linear normalization 
function is not acceptable. 

In the experiments presented in this paper, a normalization function whose rate of 
change is greatest for small RFs, without weighting very large RFs excessively is estab- 
lished. Since e depends on RF size, it is smaller for small RF sizes. Thus, small RF sizes 
must be weighted more than larger RFs. This means that an acceptable function has 
a steep slope for small RF sizes and shallow slopes for the larger RF sizes. A good fit 
to this point distribution is the function 1/(1 + e-z) .  In the experiments conducted, a 
similar compensating function of a more general form is used: a 

o~+1 
- 

~ + 3 - v ~  ' 

where, z represents the number of basic elements in the receptive field. Varying t~ affects 
the absolute value of the function's asymptote; varying/~ affects the steepness of the 
first part of the function. It was found empirically that values of t~ = 10 and/~ = 1.03 
generally give good results in most instances (see Figure 3). 
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a The number 1 in the numerator is a result of normalizing ~'(z) for z -- O. The V~ is used to 
account for the a r e a  of the RF. 



556 

4 E x p e r i m e n t a l  R e s u l t s  

We have implemented this attention prototype in software on a Silicon Graphics 4D/340 
VGX. Simulations have been conducted using a wide variety of digitized 256 x 256 8-bit 
grey-scale images. In this paper, only brightness and edge information computed from 
the images are used as input to the prototype. Further research is required to determine 
on what other computations this attention beam should be applied. 

This prototype lends itself to an implementation that is very fast, especially on hard- 
ware that supports parallel processes, such as the SGI 4D/340 VGX. In particular, the 
calculation of each element in a given level of the hierarchy is independent of all other 
elements at the same level. Therefore, the calculation of the hierarchy may be completed 
in parallel for each level. Furthermore, the WTA calculations at each time iteration are 
independent and may be done in parallel. In addition, the WTA process converges very 
quickly, typically taking less than ten iterations to determine the winner. 

A simulation of the implementation for brightness is shown in Fig. 4. The lowest level 
of the processing hierarchy is the digitized image, and each successive level is a simple 
average of the previous level. This averaging computation has the effect of making each 
level appear as a smaller "blurred" version of the previous level. The WTA process is 
performed at the top of the hierarchy, and the pass zone is dictated by the RF that is 
"brightest". At each successively lower level, the WTA only operates on the B.Fs that 
fall within the beam from the previous level. Once the attention beam has located the 
winning RF and the surrounding inhibit zone in the input level, and all the information 
that is required is gathered from that focus of attention, the area is inhibited. In the 
simulations presented here, the region inhibited at the input layer is defined by the 
inhibit zone of the attention beam, contrary to the one-dimensional example in Sect. 3 
where only elements in the pass zone are inhibited. In practice, once a region of the input 
is processed, or '~oveated', it need not be considered again. The prototype then looks 
for the next "bright" area, starting by recalculating the processing hierarchy with the 
newly-inhibited image as its input. In this particular instance, the time taken to attend 
to each area in the input is approximately 0.35 seconds. 

Following the movement of the pass zone on the input layer for successive fixations 
produces scan paths like the one shown in Fig. 5. The scan paths are interesting from a 
computational perspective because they prioritize the order in which parts of the image 
are assessed. The attention shifts discussed throughout this paper have been covert forms 
of attention in which different regions of the visual input have been attended. It is 
experimentally well established that these covert attention shifts occur in the humans [12]. 
In a similar way, the human visual system has special fast mechanisms called saccades 
for moving the fovea to different spatial targets (overt attention). The first systematic 
study of saccadic eye movements in the context of behaviour was done by Yarbus [20]. 
A future area of research is to discover a possible correlation between the scan paths of 
our attention beam and the scan paths of Yarbus. 

A simulation using edge information was also conducted. At the bottom of the hi- 
erarchy is the output of a simple difference operator and again, each successive level is 
a simple average of the previous level. The WTA process successively extracts and then 
inhibits the most conspicuous items. Corresponding scan paths are displayed in Fig. 6. 
The results of this simulation using edges are interesting in several respects. The focus of 
attention falls on the longest lines first 4. In effect, the strongest, or most salient, features 

4 In this instance, maxRF was set to 100 pixels so that only a portion of the longest line was 
attended to at first 
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Fig. 4. Processing hierarchy and attention beam at two time intervals. The input layer is a 256 
• 256 8-bit image. The beam is rooted at the highest level and "shines" through the hierarchy 
to the input layer. The darker portion of the attention beam is the pass zone. Once a region of 
the input is attended to, it is inhibited and the next "bright" area is found. The black areas in 
the input layer indicate the regions that have been inhibited. 

are attended to in order of the length of the line, much like Sha'ashua and Ullman's work 
on saliency of curvature [14]. 

5 Di scuss ion  

The implementation of our attention prototype has a number of important  properties that  
make it preferable to other schemes. For example, Chapman [3] has recently implemented 
a system based on the idea of a pyramid model of attention introduced by Koch and 
Ullman [5]. Chapman 's  model places a log-depth tree above a saliency map. Similar to 
our model, at each level nodes receive activation from nodes below. It differs, however, 
in that  Chapman's  model only passes the maximum of these values to the next level. 
There are several difficulties with this approach, the most serious being that  the focus of 
attention is not continuously variable. The restriction this places on Chapman 's  model 
is that  it cannot handle real pixel-based images but must assume a prior mechanism for 
segmenting the objects and normalizing their sizes. Our scheme permits receptive fields 
of all sizes at each level, with overlap. In addition, the time required for Chapman 's  
model is logarithmic in the maximum number of elements, making it impractical for 
high-resolution images. Further, the time required to process any item in a sensory field 



558 

Fig.  5. Scan paths for a 256 x 256 8-bit image digitized image ( m i n R F  = 5, m a x R F  = 40).  
The paths displays a priority order in which regions of the image are assessed. 

Fig .  6. Scan paths for a 256 • 256 8-bit image digitized image consisting of horizontal and 
vertical lines ( m i n R F  = 10, m a x R F  = 100).  The path displays a priority order in which regions 
of the image are assessed. The focus of attention falls on the longest lines first (only a portion 
of the longest line is attended to first in this example because rnaxRF  = 100). 
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is dependent on its location, which is contrary to recent psychological evidence [6]. In 
our model, constant time is required irrespective of the locations of the sensory items. 

Anderson and van Essen have proposed the idea of "shifter networks" to explain 
attentional effects in vision [1]. There is some similarity between their model and the 
inhibitory beam idea presented here. The Anderson and van Essen proposal requires a 
two-phase process. First, a series of microshifts map the attention focus onto the nearest 
cortical module, then a series of macroshifts switch dynamically between pairs of modules 
at the next stage, continuing in this fashion until an attentional centre is reached. A major 
drawback to this scheme is that there is no apparent method for control of the size and 
shape of the attention focus. This is easily accomplished in our beam proposal because 
the beam has internal structure that may be manipulated. Also, Anderson and van Essen 
do not describe how the effects of nonattended regions of a receptive field are eliminated. 
Finally, the shifting operation is quite complex and time consuming; whether this sort of 
strategy can account for the extremely fast response times of human attention is unclear. 

Califano, Kjeldsen and Bolle propose a multiresolution system in which the input 
is processed simultaneously at a coarse resolution throughout the image and at a finer 
resolution within a small "window" [2]. An attention control mechanism directs the high- 
resolution spot. In many respects, our scheme may be considered a more general expan- 
sion of the Califano model. Our model, however, allows for many resolutions whereas 
Califano's is restricted to two. Moreover, our model allows for a variable size and shape 
of the focus of attention, whereas both are fixed in Califano's model. The size and shape 
of their coarse resolution representation are also fixed. These restrictions do not allow a 
"shrink wrapping" around an object, as it is attended to, from coarser to finer resolu- 
tions; nevertheless, our model performs this, as also observed in monkey visual cortex by 
Moran and Desimone [8]. 

Several attentional schemes have been proposed by the connectionist community. 
Mozer describes a model of attention based on iterative relaxation [9]. Attentional se- 
lection is performed by a network of simple computing units that constructs a variable- 
diameter "spotlight" on the retinotopic representation. This spotlight allows sensory in- 
formation within it to be preferentially processed. Sandon describes a model which also 
uses an iterative rule but performs the computation at several spatial scales simultane- 
ously [13]. There are several shortcomings of iterative models such as these. One problem 
is that the settling time is quite sensitive to the size and nature of the image. The time 
required may be quite long if there are similar regions of activity that are widely sepa- 
rated. For example, Mozer reports that his scheme took up to 100 iterations to settle on 
a 36 x 6 image [10]. These schemes are clearly not suited to real-world high-resolution 
images. 

S u m m a r y  

We have argued that an attention mechanism is a necessary component of a computer 
vision system if it is to perform tasks in a complex, real world. A new model for visual 
attention was introduced whose key component is an attentional beam that prunes the 
processing hierarchy, drastically reducing the number of computations required. The 
parallel nature of the hierarchy structure further increases the efficiency of this model. 
This efficiency was shown empirically with simulations on high-resolution images. The 
results confirm that our model is one that is highly suited for real-world vision problems. 
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