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A b s t r a c t .  Binocular differences in orientation and foreshortening are sys- 
tematically related to surface slant and tilt and could potentially be ex- 
ploited by biological and machine vision systems. Indeed, human stereopsis 
may possess a mechanism that specifically makes use of these orientation 
and spatial frequency disparities, in addition to the usual cue of horizontal 
disparity. In machine vision algorithms, orientation and spatial frequency 
disparities are a source of error in finding stereo correspondence because 
one seeks to find features or areas which are similar in the two views when, 
in fact, they are systematically different. In other words, it is common to 
treat as noise what is useful signal. 

We have been developing a new stereo algorithm based on the outputs 
of linear spatial filters at a range of orientations and scales. We present a 
method in this framework, making use of orientation and spatial frequency 
disparities, to directly recover local surface slant. An implementation of this 
method has been tested on curved surfaces and quantitative experiments 
show that accurate surface orientation can be recovered efficiently. This 
method does not require the explicit identification of oriented line elements 
and also provides an explanation of the intriguing perception of surface 
slant in the presence of orientation or spatial frequency disparities, but in 
the absence of systematic positional correspondence. 

1 Introduction 

Stereopsis has traditionally been viewed as a source of depth information. In two views 
of a three-dimensional scene, small positional disparities between corresponding points in 
the two images give information about the relative distances to those points in the scene. 
Viewing geometry, when it is known, provides the calibration function relating disparity 
to absolute depth. To describe three-dimensional shape, the surface normal, n(x,  y), can 
then be computed by differentiating the interpolated surface z(z,y).  In practice, any 
inaccuracies present in disparity estimates will be compounded by taking derivatives. 

However, there are other cues available under binocular viewing that can provide di- 
rect information about surface orientation. When a surface is not fronto-parallel, surface 
markings or textures will be imaged with slightly different orientations and degrees of 
foreshortening in the two views (Fig. 1). These orientation and spatial frequency dispar- 
ities are systematically related to the local three-dimensional surface orientation. It has 
been demonstrated that humans are able to exploit these cues, when present, to more 
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accurately determine surface orientation (Rogers and Cagenello, 1989). In stimuli consist- 
ing of uncorrelated dynamic visual noise, filtered to contain a certain spatial frequency 
band, the introduction of a spatial frequency disparity or orientation disparity leads to 
the perception of slant, despite the absence of any systematic positional disparity cue 
(Tyler and Sutter, 1979; yon der Heydt et al., 1981). In much the same way that random 
dot stereograms confirmed the existence of mechanisms that makes use of horizontal dis- 
parities (:lulesz, 1960), these experiments provide strong evidence that the human visual 
system possesses a mechanism that can and does make use of orientation and spatial 
frequency disparities in the two retinal images to aid in the perception of surface shape. 

Fig. 1. Stereo pair of a planar surface tilted in depth. Careful comparison of the two views 
reveals slightly different orientation and spacing of corresponding grid lines. 

There has been very little work investigating the use of these cues in computational 
vision. In fact, it is quite common in computational stereo vision to simply ignore the 
orientation and spatial frequency differences, or image distortions, that occur when view- 
ing surfaces tilted in depth. These differences are then a source of error in computational 
schemes which try to find matches on the assumption that corresponding patches (or 
edges) must be identical or very nearly so. Some approaches acknowledge the existence 
of these image distortions, but still treat them as noise to be tolerated, as opposed to an 
additional signal that may exploited (Arnold and Binford, 1980; Kass, 1983; Kass, 1987). 
A few approaches seek to cope using an iterative framework, starting from an initial 
assumption that disparity is locally constant, and then guessing at the parameters of the 
image distortion to locally transform and compensate so that image regions can again be 
compared under the assumption that corresponding regions are merely translated copies 
of one another (Mori et al., 1973; Quam, 1984; Witkin et al., 1987). The reliance of this 
procedure on convergence from inappropriate initial assumptions and the costly repeated 
"warping" of the input images make this an unsatisfactory computational approach and 
an unlikely mechanism for human stereopsis. 

This paper describes a novel computational method for directly recovering surface 
orientation by exploiting these orientation and spatial disparity cues. Our work is in 
the framework of a filter-based model for computational stereopsis (:/ones, 1991; Jones 
and Malik, 1992) where the outputs of a set of linear filters at a point are used for 
matching. The key idea is to model the transformation from one image to the other 
locally as an affine transformation with two significant parameters, H~, Hy, the gradient 
of horizontal disparity. Previous work has sought to recover the deformation component 
instead (Koenderink and van Doom, 1976). 

For the special case of orientation disparity, Wildes (1991) has an alternative approach 
based on determining surface orientation from measurements on three nearby pairs of 
corresponding line elements (Canny edges). Our approach has the advantage that it 
treats both orientation and spatial frequency disparities. Another benefit, similar to least 
squares fitting, it makes use of all the data. While measurements on three pairs may be 
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adequate in principle, using minimal information leads to much greater susceptibility to 
noise. 

2 Geometry of Orientation and Spatial Frequency Disparities 

Consider the appearance of a small planar surface patch, ruled with a series of evenly 
spaced parallel lines (Fig. 2A). The results obtained will apply when considering orienta- 
tion and spatial frequencies of general texture patterns. To describe the parameters of an 
arbitrarily oriented plane, start with a unit vector pointing along the z-axis. A rotation 
Cz around the z-axis describes the orientation of the surface texture. Rotations of Cx 
around the z-axis, followed by Cy around the y-axis, combine to allow any orientation of 
the surface itself. The three-dimensional vector v resulting from these transformations 
indicates the orientation of the lines ruled on the surface and can be written concisely: 

[ ] v  = /[sinr176176176 

Lsin Cx cos Cy sin Cz - sin Cu cos Cz J 

In order to consider orientation and spatial frequency disparities, this vector must be 
projected onto the left and right image planes. In what follows, orthographic projection 
will be used, since it provides a very close approximation to perspective projection, 
especially for the small surface patches under consideration and when line spacing is 
small relative to the viewing distance. The projection of v onto the left image plane is 
achieved by replacing Cy with Cy +/~r (where/~r = tan-l(b/2d)), and then discarding 
the z component to give the two-dimensional image vector yr. Similarly, replacing r with 
Cy - ACy gives vr, the projection of v on the right image plane. 

left view right view 

Y Y 

left view right view 

Fig. 2. Differences in two views of a tilted surface. A. A planar surface is viewed at a distance 
d, from two vantage points separated by a distance b. Three-dimensional vectors He parallel (v) 
and perpendicular (w) to a generic surface texture (parallel lines). Arbitrary configurations are 
achieved by rotations ~z, r and ~ ,  in that order. Different viewpoints are handled by adding 
an additional rotation 5:A~y, where / ~  = tan-l(b/2d). B. Resulting two-dimensional image 
textures are described by orientation, 0, and spacing, )~. Orientation disparity, 0r-01, and spatial 
frequency disparity, ~l/~r, are systematically related to surface orientation, ~=, ~ .  
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Let 01 and/gr be the angles the image vectors vt and vr make with the z-axis (Fig. 2B). 
These can be easily expressed in terms of the components of the image vectors. 

tan 91 = cos r tan r 
sin ~bx sin(r + Af t )  tan Cz + cos(r + Ar 

This enables us to determine the orientation disparity, 0r - St, given the pattern orien- 
tation Cz, 3-D surface orientation characterized by ~b~, ~bv, and view angle Ar 

Let Az, A~ be the spacing, and fl = 1/Ai, fr = 1/A~ be the spatial frequency, of 
the lines in the left and right images (Fig. 2B). Since spatial frequency is measured 
perpendicular to the lines in the image, a new unit vector w, perpendicular to v, is 
introduced to indicate the spacing between the lines. An expression for w can be obtained 
from the expression for v by replacing r with r + 90 ~ When these three-dimensional 
vectors, v and w, are projected onto an image plane, they generally do not remain 
perpendicular (e.g., va and wz in Fig.2B). If we let v f  = (-vz~,vl~), then uz = vf/[]vzll 
is a unit vector perpendicular to vl. The length of the component of wt parallel parallel 
to ut is equal to A/, the line spacing in the left image. 

At---- t o l . v f "  
Ilvlll 

Substituting expressions for vt and wt gives an expression for the numerator, and a simple 
expression for the denominator can be found in terms of 01. 

Ic~162 sin Cz I 
w l ' v  x = cosr162 v+ACy)  ; [[viii = sin01 

Combining these with similar expressions for Ar gives a concise expression for spatial 
frequency disparity. 

)tl w, . v ,  ,,v,.,, , cos (C ,+Ar  

f l  =- Ar -- IIv,ll w ~ . v ~  = I Ic~162162 

To determine spatial frequency disparity from a given pattern orientation Cz, surface 
orientation r Cy, and view angle ACu , this equation and the previous ones to determine 
0:, 0r are all that are needed. 

For solving the inverse problem (i.e., determining surface orientation), it has been 
shown that from the orientations 0t, 0r and 0~, 0" of two corresponding line elements, (or 
0t, 0r and At, Ar for parallel lines), the three-dimensional surface normal can be recovered 
(Jones, 1991). If more observations are available, they can be exploited using a least 
squares algorithm. This is based on the following expression: 

tan r = cos r cos(ACy) (tan 0~, -- tan 0t,) + sin r sin(ACy) (tan 0r, + tan 01,) 
sin(2ACu) tan 0r, tan 0z, 

= ai COS Cy q- bi sin Cy 

This has the convenient interpretation that for a given surface orientation, all the ob- 
servations (ai, bi) should lie along a straight line whose orientation gives r and whose 
perpendicular distance from the origin is tan Cx. Details of the derivation and experi- 
mental results may be found in (Jones and Malik, 1991). 

In Section 4 we present an alternative solution which does not depend on the identifi- 
cation of corresponding line elements, but simply on the output of a set of linear spatial 
filters. To develop a solution in a filter-based framework, the next section first re-casts 
the information present in orientation and spatial frequency disparities in terms of the 
disparity gradient. 
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3 F o r m u l a t i o n  u s i n g  G r a d i e n t  o f  H o r i z o n t a l  D i s p a r i t y  

Consider a region of a surface visible from two viewpoints. Let P = (z, y) be the coor- 
dinates of a point within the projection of this region in one image, and P~ = (x', y~) be 
the corresponding point in the other image. If this surface is fronto-parallel, then P and 
P~ differ only by horizontal and vertical offsets H, V throughout this region - -  the image 
patch is one view is merely a translated version of its corresponding patch in the other 
view. If the surface is tilted or curved in depth then the corresponding image patches will 
not only be translated, but will also be distorted. For this discussion, it will be assumed 
that this distortion is well-approximated by an affine transformation. 

Hx, Hy, Vx, Vv specify the linear approximation to the distortion and are zero when the 
surface is fronto-parallel. For planar surfaces under orthogonal projection, the transfor- 
mation between corresponding image patches is correctly described by this affine trans- 
formation. For curved surfaces under perspective projection, this provides the best linear 
approximation. The image patch over which this needs to be a good approximation is 
the spatial extent of the filters used. 

The vertical disparity V is relatively small under most circumstances and the vertical 
components of the image distortion are even smaller in practice. For this reason, it will be 
assumed that V~, W = 0, leaving H~ which corresponds to a horizontal compression or 
expansion, and Hy which corresponds to a vertical skew. In both cases, texture elements 
oriented near vertical are most affected. It should also be noted that the use of Hx, Hv 
differs from the familiar Burt-fulesz (1980) definition of disparity gradient, which is with 
respect to a cyclopean coordinate system. 

Setting aside positional correspondence for the moment, since it has to do with relative 
distance to the surface and not its orientation, this leaves the following: 

If we are interested in how a surface, or how the tangent plane to the surface, is tilted 
in depth, then the critical parameters are Hx and Hy. If they could be measured, then 
the surface orientation could be estimated, up to some factor related to the angular 
separation of the eyes. For a planar surface, with orientation Cx, Cv, the image distortion 
is given by: 

- tan Cx sin(2ACv) cos(r v A f v ) _ l  �9 H v = 
H~ = cos(r + ACv) , cos(r + Ar 

These are the parameters for moving from the left view to the right view. To go in 
the other direction requires the inverse transformation. This can be computed either by 
changing the sign of ACy in the above equations to interchange the roles of the two 
viewpoints, or equivalently, the inverse of the transformation matrix can be computed 
directly. Compression and skew depend on the angular separation 2ACv of the viewpoints 
and are reduced as this angle decreases, since this is the angle subtended by the view- 
points, relative to a point on the surface. More distant surfaces lead to a smaller angle, 
making it more difficult to judge their inclination. 
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4 S u r f a c e  S h a p e  f r o m  D i f f e r e n c e s  in S p a t i a l  F i l t e r  O u t p u t s  

We have been developing a new stereo algorithm based on the outputs of linear spatial 
filters at a range of orientations and scales. The collection of filter responses at a position 
in the image (the filter response vector, v~ = F T I~), provides a very rich description of 
the local image patch and can be used as the basis for establishing stereo correspondence 
(Jones and Malik, 1992). For slanted surfaces, however, even corresponding filter response 
vectors will differ, but in a way related to surface orientation. Such differences would 
normally be treated as noise in other stereo models. 

From filter responses in the right image, we could, in principle, reconstruct the image 
patch using a linear transformation, namely the pseudo-inverse (for details and exam- 
ples, Jones and Malik, 1992). For a particular surface slant, specified by Hx, Hv, we could 
predict what the image should look like in the other view, using another linear trans- 
formation - -  the affine transformation discussed earlier. A third linear transformation 
would predict the filter responses in the other view (Fig. 3). 

FT v~ = �9 T.=,. .  �9 (FT) -1 v~ 

MH],H~ 

Here the notation (FT)  -1 denotes a pseudo-inverse. This sequence of transformations 
can, of course, be collapsed into a single one, M,=,N,, that  maps filter responses from 
one view directly to a prediction for filter responses in the other view. These M matrices 
depend on Hr and Hv but not on the input images, and can be pre-computed once, ahead 
of time. A biologically plausible implementation of this model would be based on units 
coarsely tuned in positional disparity, as well as the two parameters of surface slant. 

Surface 

\ 

Response Response 
Vector Vector 

hi 
v L ,M v R 

v L' = M v R 

Fig. 3. Comparing spatial filter outputs to recover 3-D surface orientation. 

This provides a simple procedure for estimating the disparity gradient (surface orien- 
tation) directly from v n and VL, the output of linear spatial filters. For a variety of choices 
of H. ,  H~, compare V~L = MH=,R. "VR, the filter responses predicted for the left view, with 
VL, the filter responses actually measured for the left view. The choice of H. ,  Hv which 

' and v~ is the best estimate of the disparity gradient. minimizes the difference between v~ 
The sum of the absolute differences between corresponding filter responses serves as a 
efficient and robust method for computing the difference between these two vectors, or 
an error-measure for each candidate H. ,  H~. 
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5 T h e  A c c u r a c y  o f  R e c o v e r e d  S u r f a c e  O r i e n t a t i o n s  

This approach was tested quantitatively using randomly generated stereo pairs with 
known surface orientations (Fig.4). For each of 49 test surface orientations (H~, H~ E 
{0.0,-4-0.1, =t=0.2, :i:0.4}), 50 stereo pairs were created and the values of H=, Hy were re- 
covered using the method described in this paper. The recovered surface orientations 
(Fig. 5) are quite accurate, especially for small slants. For larger slants, the spread in 
the recovered surface orientation increases, similar to some psychophysical results. Small 
systematic errors, such as those for large rotations around the vertical axis, are likely not 
an inherent feature of the model, but an artifact of this particular implementation where 
surface orientation was computed from coarse estimates using the parabolic interpolation. 

Fig. 4. Stereo pair of surfaces tilted in depth. A white square marked on each makes the hor- 
izontal compression/expansion, when H= # 0, and vertical skew, when H~ ~ 0, quite apparent. 

Disl~rity C_,mditut I~, 

0 . 5  

J 
- 0 . q  

@ Oe| 0 

i i i i i , i , , i i , , , 

-o.$ 0.0 0.5 

H~mua Compom~ ( l~  

Fig. 5. Disparity gradient estimates. For various test surface orientations (open circles), the 
mean (black dot) and standard deviation (ellipse) of the recovered disparity gradient are shown. 

Because the test surfaces are marked with random textures, the orientation and spatial 
frequency disparities at a single position encode surface orientation to varying degrees, 
and on some trials would provide only very limited cues. Horizontal stripes, for example, 
provide ao information about a rotation around the vertical axis. For large planar sur- 
faces, or smooth surfaces in general, estimates could be substantially refined by pooling 
over a local neighborhood, trading off spatial resolution for increased accuracy. 
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6 O r i e n t a t i o n  a n d  S p a t i a l  F r e q u e n c y  D i s p a r i t i e s  A l o n e  

The approach for recovering three-dimensional surface orientation developed here makes 
use of the fact that it is the identical textured surface patch that is seen in the two 
views. It is this assumption of correspondence that allows an accurate recovery of the 
parameters of the deformation between the two retinal images. However, orientation and 
spatial frequency disparities lead to the perception of a tilted surface, even in the absence 
of any systematic correspondence (Tyler and Sutter, 1979; yon der Heydt et al., 1981). 
One interpretation of those results might suppose the existence of stereo mechanisms 
which make use of orientation or spatial frequency disparities independen$ of positional 
disparities or correspondence. Such mechanisms would seem to be quite different from 
the approach suggested here. On the other hand, it is not immediately apparent how the 
present approach would perform in the absence of correspondence. 

Given a pair of images, the implementation used in the previous experiment deter- 
mines the best estimate of surface orientation - -  even if it is nonsense. This allow us to 
examine how it performs when the assumption of correspondence is false. Stereo pairs 
were created by filtering random, uncorrelated one-dimensional noise to have a band- 
width of 1.2 octaves and either an orientation disparity (Fig. 6A) or spatial frequency 
disparity. Since a different random seed is used for each image, there is no consistent 
correspondence or phase relationship. A sequence of 100 such pairs was created and for 
each, using the same implementation of the model used in the previous experiment, the 
parameters of surface orientation, or the disparity gradient,/Ix, H~ were estimated. 

nbt~Ld~ Omdimt F.~mata 

O~ 

J 
--0.5 

' O = ~-$ deLpus 
bw- 1.2 oc~n~J 

~ o  ~ ' ' ~  
.oQ.*" | 

, , | , w , | i , , , , i , 

--0..5 0.0 0.-5 

Horizootal Compcmemt (Hx) 
(C..mnprmL ion/Exp m~ ion) 

Fig. 6. A.Orientation disparity without correspondence. B. Disparity gradient estimates. 

There is a fair bit of scatter in these estimates (Fig. 6B), but if the image pairs were 
presented rapidly, one after the other, one might expect the perceived surface slant to 
be near the centroid. In this case, Hx = 0 and Hy is positive, which corresponds to a 
surface rotated around the horizontal axis - -  in agreement with psychophysical results 
(yon der Heydt et al., 1981). In fact, the centroid lies close to where it should be based 
on the 10 ~ orientation disparity (Hx = 0.0, Hy = 0.175), despite the absence of corre- 
spondence. The same procedure was repeated for several different orientation disparities 
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and for a considerable range, the recovered slant (Hy) increases with orientation dispar- 
ity. Similar results were found for stereo pairs with spatial frequency disparities, but no 
systematic correspondence. 

7 Conclusion 

In this paper, a simple stereopsis mechanism, based on using the outputs of a set of 
linear spatial filters at a range of orientations and scales, has been proposed for the direct 
recovery of local surface orientation. Tests have shown it is applicable even for curved 
surfaces, and that interpolation between coarsely sampled candidate surface orientations 
can provide quite accurate results. Estimates of surface orientation are more accurate for 
surfaces near fronto-parallel, and less accurate for increasing surface slants. 

There is also good agreement with human performance on artificial stereo pairs in 
which systematic positional correspondence has been eliminated. This suggests that the 
psychophysical results involving the perception of slant in the absence of correspondence 
may be viewed, not as an oddity, but as a simple consequence of a reasonable mechanism 
for making use of positional, orientation, and spatial frequency disparities to perceive 
three-dimensional shape. 
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