Skip to main content

Knowledge refinement using Knowledge Acquisition and Machine Learning Methods

  • Conference paper
  • First Online:
Current Developments in Knowledge Acquisition — EKAW '92 (EKAW 1992)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 599))

Abstract

APT system integrates Machine Learning (ML) and Knowledge Acquisition (KA) methods in the same framework. Both kinds of methods closely cooperate to concur in the same purpose: the acquisition, validation and maintenance of problem-solving knowledge. The methods are based on the same assumption: knowledge acquisition and learning are done through experimentation, classification and comparison of concrete cases. This paper details APT's mechanisms and shows through examples and applications how APT underlying principles allow various methods to fruitfully collaborate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aussenac N., “Conception d'une méthodologie et d'un outil d'acquisition de connaissances expertes”. Thèse d'Informatique, Université Paul Sabatier de Toulouse, 1989.

    Google Scholar 

  • Bareiss R., “Exemplar-Based Knowledge Acquisition”, Academic Press Inc, San Diego, 1989.

    Google Scholar 

  • Bento C., Costa E., Fereira J.L., “APT as a knowledge elicitation tool in the domain of hypertension therapy “, MLT Esprit Project report, January 1991.

    Google Scholar 

  • Bento C., Costa E., Fereira J.L., “APT as a knowledge acquisition tool in the domain of Analysis ”, MLT Esprit Project report, October 1991.

    Google Scholar 

  • Bisson G.,“Learning in FOL with a similarity measure”, Proceedings of AAAI, eds AAAI press, (to appear), July 1992.

    Google Scholar 

  • Carbonell J. G., Knoblock C. A., Minto N. S., “PRODIGY: An integraated Architecture for Planning and Learning,”, in Architectures for Intelligence, K. VanLehn (Ed), 1990. De Raedt L., “Interactive Concept-Learning”, Ph.D. diss. Katholieke Universiteit Leuven,1991.

    Google Scholar 

  • Fikes, R. E. and Nilsson N. J., “STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence 2 pp. 198–208, 1971

    Article  Google Scholar 

  • Kodratoff Y., Addis T., Mantaras R.L, Morik K., Plaza E. “Four Stances on Knowledge Acquisition and Machine Learning”, Proceeding EWSL 91, Springer-Verlag, Porto, 1991.

    Google Scholar 

  • Kodratoff Y. and Ganascia, J. G., “Improving the generalization step in Learning”, in Machine Learning II: An Artificial Intelligence Approach, RR.S. Michalski J.G. Carbonell and T.M. Mitchell (Eds) Morgan Kaufmann, 1986.

    Google Scholar 

  • Lopez B., Meseguer P. and Plaza E., “Knowledge Based Systems Validation: A State of the Art”, in AICOM Vol. 3, June 1990.

    Google Scholar 

  • Mitchell, T. M., “Version Spaces: An Approach to Concept Learning”, Ph.D. diss. Standford University, 1978.

    Google Scholar 

  • Mitchell, T. M., Mahadevan, S., Steinberg, L. I. “LEAP: A Learning Apprentice for VLSI Design ”, in Machine Learning III: An Artificial Intelligence Approach, pp 271–289, Kodratoff Y. & Michalski R. (eds), Morgan Kaufmann, 1989.

    Google Scholar 

  • Morik K. “Underlying Assumptions of Knowledge Acquisition and Machine Learning”, in Knowledge Acquisition, Vol. 3, No. 2, pp. 137–156, 1991.

    Article  Google Scholar 

  • Morik K. “Sloppy modeling”, in Knowldge Representation and Organisation in Machine Learning, Morik K. (ed), 1989.

    Google Scholar 

  • Nedellec C. “A smallest generalization steps strategy” in the proceedings of the International Workshop on Machine Learning, IWML-91 Chicago, 1991

    Google Scholar 

  • Nedellec C. “APT User's Guide”, MLT Esprit Project Deliverable 4.2, 1991.

    Google Scholar 

  • Rouveirol C., “Semantic Model for induction of First Order Theories”, Proceeding of 12th LTCAL pp 685–690 Sydney, 1991.

    Google Scholar 

  • Sammut, C.A. and Banerji, R.B., “Learning Concepts by asking Questions”, in Machine Learning II: An Artificial Intelligence Approach, pp 167–192, R.S. Michalski J.G. Carbonell and T.M. Mitchell (Eds) Morgan Kaufmann, 1986.

    Google Scholar 

  • Shapiro, E. Y. “Algorithmic program debugging”, MIT press, Cambridge, MA, 1983.

    Google Scholar 

  • Smith B. D. and Rosenbloom P. S., “Incremental Non-Backtracking Focusing: A Polynomially Bounded Generalization Algorithm for Version Space.”, in proceedings of AAAI-90.

    Google Scholar 

  • Tecuci G. & Kodratoff Y., “Apprenticeship Learning in Nonhomogeneous Domain Theories”, in Machine Learning III: An Artificial Intelligence Approach, Kodratoff Y. & Michalski R. (eds), Morgan Kaufmann, 1989.

    Google Scholar 

  • Wielienga B.J., Shreiber A. TH., Breuker J.A., “KADS: A Modelling Approach to Knowledge Engineering”, Submitted to Knowledge Acquisition, May 8 1991.

    Google Scholar 

  • Wrobel S., “Demand-Driven Concept Formation”, in Knowldge Representation and Organisation in Machine Learning, Morik K. (ed), 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Wetter Klaus-Dieter Althoff John Boose Brian R. Gaines Marc Linster Franz Schmalhofer

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nedellec, C., Causse, K. (1992). Knowledge refinement using Knowledge Acquisition and Machine Learning Methods. In: Wetter, T., Althoff, KD., Boose, J., Gaines, B.R., Linster, M., Schmalhofer, F. (eds) Current Developments in Knowledge Acquisition — EKAW '92. EKAW 1992. Lecture Notes in Computer Science, vol 599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55546-3_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-55546-3_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55546-9

  • Online ISBN: 978-3-540-47203-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics