Abstract
Many propositional calculus problems (for example the Ramsey or the pigeon hole problems) can quite naturally be represented by a small set of first order logical clauses which becomes a very large set of propositional clauses when we substitute the variables by the constants of the domain. In many cases, the set of clauses contains several symmetries i.e. the set of clauses remains invariant under a permutation of variable names. We will show how we can shorten the proofs of such problems. We present an algorithm which detects the symmetries and explain how the symmetries are introduced and used in the following methods: Slri, Davis and Putnam and Semantic Evaluation. With symmetries we have got good results on many known problems such pigeon hole, Schur's lemma, Ramsey, the eight queen etc. The most interesting one is that we have been able to prove for the first time the unsatisfiability of the Ramsey problem for 17 vertices and 3 colors.
This work has been suported by the PRC-GDR Intelligence Artificielle.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
B. Benhamou and L. Sais. Etude des symétries en calcul propositionnel. Master's thesis, GIA Luminy (Marseille), 1990.
B. Benhamou and L. Sais. Etude des symétries en calcul propositionnel. Technical Report 1, Université de provence, 1991.
W. Bibel. Short proofs of the pigeon hole formulas based on the connection method. Automated reasoning, (6):287–297, 1990.
S. Cook. A short proof of the pigeon hole principle using extended resolution. SIGACT News, (8):28–32, oct.-dec. 1976.
C. Cubbada and M. D. Mouseigne. Variantes de l'algorithme de SL-Résolution avec retenue d'information. PhD thesis, GIA Luminy (Marseille), 1988.
M. Davis and H. Putnam. A computing procedure for quatification theory. JACM, (7):201–215, 1960.
J. Kalbfleisch and R. Stanton. On the maximal triangle-free edge-chromatic graphs in three colors. combinatorial theory, (5):9–20, 1969.
R. Kowalski and D. Kuehner. Linear resolution with selection function. Artificial Intelligence, (2):227–260, 1971.
B. Krishnamurty. Short proofs for tricky formulas. Acta informatica, (22):253–275, 1985.
B. Krishnamurty and R. Moll. Examples of hard tautologies in the propositionnal calculus, 1981.
D. W. Loveland. A linear format for resolution. In Springer, editor, Lecture notes in computer science, number 125, 1970.
R. Lyndon. Notes of logic. Van Nostrand Mathematical Studies, 1964.
L. Oxusoff and A. Rauzy. L'évaluation sémantique en calcul propositionnel. PhD thesis, GIA — Luminy (Marseille), 1989.
J. A. Robenson. Teorem proving on computer. JACM, pages 163–174, 1963.
I. SCHUR, Uber die kongruenz x m+ym=zmmod(p). J ber Deutsch Verein, (25):114–116, 1916.
G. S. Tseitin. On the complexity of derivation in propositional calculus. In Structures in the constructive Mathematics and Mathematical logic, pages 115–125. H.A.O Shsenko, 1968.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Benhamou, B., Sais, L. (1992). Theoretical study of symmetries in propositional calculus and applications. In: Kapur, D. (eds) Automated Deduction—CADE-11. CADE 1992. Lecture Notes in Computer Science, vol 607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55602-8_172
Download citation
DOI: https://doi.org/10.1007/3-540-55602-8_172
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55602-2
Online ISBN: 978-3-540-47252-0
eBook Packages: Springer Book Archive