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Abstract: We have developed a real-time operating system kernel which has 
been used to support the transmission and reception of streams of live digital 
audio and video in real-time as part of a workstation-based conferencing 
application. An experimental environment consisting of a number of 
workstations interconnected with a 16 Mbit token ring has been created and 
used to evaluate quantitatively the performance of the kernel and conferencing 
application, as well as the quality of the conferences they are capable of 
supporting. Our early experiences with these systems are described. 

Introduction 

Recent advances in video compression algorithms - -  and their realization in silicon - -  have 
made it possible to consider introducing streams of digitized audio and video into the 
processing workload of workstation operating systems. For example, by outfitting 
workstations with off-the-shelf video cameras, microphones, digital video and audio 
acquisition and compression hardware, and audio amplifiers, it is possible to construct 
multimedia applications such as integrated voice/video/text documents and browsers [Hopper 
90] as well as communication utilities such as workstation-based video and/or audio 
conferences [Terry & Swinehart 88, Jeffay & Smith 91]o 

While the hardware for such systems is readily available, existing operating systems and 
network communication protocols are inadequate for supporting multimedia applications such 
as browsing a video document or conferencing. This is due to the real-time processing 
requirements of digital audio and video, specifically, rigid throughput and latency 
requirements. For browsing or conferencing in a distributed system, frames of video must be 
acquired at a remote workstation (either from a camera or from a disk file) and transmitted so 
as to arrive at the local workstation and be displayed at the (precise) rate of one frame every 33 
ms. Problems such as these have stimulated programs of basic research in many of the 
traditional areas of operating systems such as file systems [Rangan & Vin 91], and scheduling 
and inter-process communication [Anderson et al. 90, Govindan & Anderson 91, Jeffay et al. 
91]. 

* This work supported in parts by grants from the National Science Foundation (numbers CCR-9110938 and 
ICI-9015443), and by the Digital Equipment Corporation and the IBM Corporation. 
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Our interest lies in the development of operating system infrastructure for the processing of 
live digital audio and video, specifically, workstation-based conferencing. Applications 
requiring live digital audio and video, such as conferencing, are unique in that their real-time 
throughput and latency requirements are particularly demanding. A conferencing application 
fundamentally requires that the audio and video data be processed as it is generated (i.e., with 
zero or one buffer). To do otherwise implies that either portions of the conference will not be 
reproduced (e.g., frames will be dropped) or that artificial latency is imposed between 
acquisition and display processes. In order for a system to be usable as a conferencing tool, 
we should minimize, if not avoid altogether, the occurrence of these events. Ideally a 
workstation-based conferencing system should be indistinguishable from the more traditional 
analog (i.e., non-computer based) system. 

We have constructed an experimental network of workstations capable of processing live 
digital audio and video and are using this system to experiment with operating system and 
network support for continuous-time media. In this note we describe some early experiences 
with a prototype conferencing application constructed on top of an operating system kernel we 
have built. The kernel provides real-time computation and communication services that enable 
a programmer to both specify real-time throughout requirements and to assess end-to-end 
latencies. Moreover, the kernel supports a tasking model for which it is possible to determine 
a priori if sufficient processing resources are currently available to meet an application's 
requirements. 

In designing the conferencing application, our approach has been to view the problem as one 
of real-time resource allocation and control. We hope to demonstrate by example that much of 
the technology developed within the real-time systems community is directly applicable to the 
problem of supporting applications that manipulate digital audio and video. Although we have 
chosen to focus on live digital audio and video, we believe the infrastructure we have 
developed is applicable to applications that manipulate both live and recorded media. 

The following section briefly describes the operating system kernel used to support real-time 
digital audio and video conferencing. We follow with a description of the architecture of the 
conferencing prototype itself and describe our initial experiences using this system. We 
conclude with a brief discussion of the appropriateness of the performance guarantees 
provided by the kernel and assess how well the kernel's programming model responds to the 
real-time processing needs of the conferencing application. 

Kernel Overview 

Operating system support for our conferencing application is provided by an operating system 
kernel we have developed called YARTOS (Yet Another Real-Time Operating System) [Jeffay 
et aL 91]. This kernel was developed to experiment with a paradigm of process interaction 
called the real-time producer~consumer (RTP/C) paradigm [Jeffay 89]. The RTP/C paradigm 
defines a semantics of inter-process communication that provides a framework for reasoning 
about the real-time behavior of programs. This semantics is realized through an application of 
some recent results in the theory of deterministic scheduling and resource allocation. We 
believe YARTOS to be a "general purpose" real-time operating system kernel. In addition to 
the conferencing application, YARTOS prototypes have been used in a 3-dimensional 
interactive graphics system used for research in virtual realities, and a HiPPI data link 
controller. 

The programming model supported by YARTOS is an extension of Wirth's discipline of real- 
time programming [Wirth 77]. In essence it is a message passing system with a semantics of 
inter-process communication that specifies the real-time response that an operating system 
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must provide to a message receiver. This allows us to assert an upper bound on the time to 
receipt and processing of each message. The exact response time requirement is a function of 
such factors as the rate with which a process receives messages on a given input channel. 
Ultimately, these rates are functions of the rates at which data arrives from external sources. 
These semantics provide a framework both for expressing processor-time-dependent 
computations and for reasoning about the real-time behavior of programs. The programming 
model is described in greater detail elsewhere [Jeffay 89]. 

YARTOS itself supports two basic abstractions: tasks and resources. A task is an independent 
thread of control (i.e., a sequential program) that is invoked in response to the occurrence of 
an event. An event is a stimulus that may be generated by processes external to the system 
(e.g., an interrupt from a device) or by processes internal to the system (e.g., the arrival of a 
message). We assume events are generated repeatedly with a (non-zero) lower bound on the 
duration between consecutive occurrences of the same event. Each invocation of a task must 
complete execution before a well-defined deadline. The invocation intervals and deadlines for 
a task are derived from constructs in the higher-level programming model. During the course 
of execution, a task may require access to some number of resources. A resource is a 
software object (e.g., an abstract data type) that encapsulates shared data and exports a set of 
procedures for accessing and manipulating the data. Like a monitor, resources guarantee 
mutually exclusive access to the data they encapsulate. Resources are accessed indirectly 
through the kernel. Support for resources is included to ensure priority inversions do not 
occur - -  a phenomena in which low priority processes exclude high-priority processes from 
accessing time-critical data, thus causing the high priority processes to miss deadfines [Sha et 
al. 90]. 

For a given workload (a set of tasks and resources), the goal of YARTOS is to guarantee that 
(1) all requests of all tasks will complete execution before their deadlines and (2) no shared 
resource is accessed simultaneously by more than one task. We have developed an optimal 
(preemptive) algorithm for sequencing such tasks on a single processor [Jeffay 90]. The 
algorithm is optimal in the sense that it can provide the two guarantees whenever it is possible 
to do so. Moreover, an efficient algorithm has been developed for determining if a workload 
can be guaranteed a correct execution. This algorithm forms the basis for a resource 
reservation protocol that is executed prior to the start of a video conference by workstations 
participating in the conference. In addition to its academic value, the optimality of the 
YARTOS resource allocation policies are important for effectively trading-off processing 
requirements for guaranteed response time. If YARTOS cannot guarantee a correct execution 
to a process, feedback can be provided on why the guarantee is not possible. A programmer 
can typically achieve a compromise guarantee by either relaxing the response time constraint or 
by improving the execution time of one or two specified processes. The optimality properties 
ensure that the reasons for the lack of a guarantee are fundamental in nature. 

Workstation-Based Conferencing 

M o t i v a t i o n  

Our emphasis on workstation-based conferencing arises from an interest in using computers 
and communication networks to facilitate collaboration among scientific and technical 
professionals [Smith et al. 90]. From a technological standpoint, the goal is to support 
multiple, concurrent streams of digital audio and video in a distributed network of computer 
workstations. These streams may either form disjoint conferences within the network or 
involve one workstation in multiple simultaneous conferences. 
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While the requirements for media in conferencing systems could be met using a combination 
of conventional digital and analog (audio/video) technology (e.g., a workstation with an 
adapter for analog video such as the Parallax card), by manipulating audio and video in an 
entirely digital format we leverage existing communications infrastructure (e.g., local-area 
networks) to construct new and powerful tools for collaboration with remote colleagues. 
Moreover, digital formats admit the possibility of writing software to implement functions that 
now require specialized hardware in teleconferencing systems (e.g., voice-activated controls 
to put the current speaker's image in a window; multi-image windows "quad-split" so that up 
to four participants are simultaneously visible). 

Exper imen ta l  Se t -Up 

We have built a private network to experiment with live digital audio and video. Currently we 
have a small number of IBM PS/2 workstations (Intel 80386 processor) interconnected with a 
16 Mbit token ring network. We use IBM-Intel ActionMedia 750 adapters (based on Intel's 
Digital Video Interactive (DVI) technology) for the acquisition, compression, decompression, 
and display of digital audio and video [Luther 90]. 1 The compression component of the 
ActionMedia system can be programmed to perform any of a number of compression 
algorithms that trade-off execution time for image size and quality. We use an algorithm 
capable of supporting real-time (i.e., full-motion - -  30 frames per second) compression or 
decompression of full color images at a resolution of 256• but with considerable loss of 
image quality. Newer high-performance versions of the display and image processors should 
provide larger and better quality images at 30 frames per second [Harney et al. 91]. 

Each workstation is configured with a set of ActionMedia adapters and is connected to a video 
camera, microphone, audio amplifier, and video monitor. Two ActionMedia adapters are 
required to acquire digital audio and video: (1) a capture adapter that digitizes RGB signals 
from a video camera along with two channels of analog audio inputs, and (2) a delivery 
adapter that provides (along with many other functions) capabilities for video compression, 
decompression, display control, and audio signal processing. The capture adapter alone is 
required for playback of an audio and video stream. With a pair of ActionMedia adapters, a 
given workstation may be either the originator or receiver of a audio/video stream, but cannot 
be both concurrently. With the addition of a second delivery adapter, a workstation can 
transmit and receive video streams simultaneously. In the following we consider only a single 
unidirectional audio/video stream between two workstations. 

In our experiments we have used a frame-independent compression algorithm (i.e., one in 
which the compression of a frame is not influenced by the compression of previous frames). 
In our present configuration, the resulting bandwidth requirement for transmitting a stream of 
compressed audio and video over a local area network is approximately 2 Mbits per second. 
A compressed audio frame is approximately 0.5 Kbytes and a compressed video frame is, 
depending on the scene, approximately 6.5-7.5 Kbytes. 

In addition to the digital system, we have also constructed a separate analog video 
conferencing system using an existing in-house CATV system. The output from the 
workstation camera simultaneously supplies the digital and analog systems with video input 
thereby providing a convenient mechanism for assessing the (qualitative) latency and image 
quality of the digital system. A preliminary comparison of the two systems is reported below. 

1 ActionMedia are Digital Video Interactive are registered trademarks of the Intel Corporation. 
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Software Architecture 

The conferencing application runs as a user program on top of the YARTOS kernel. There are 
separate applications for originating and receiving a conference. Figure 1 shows design of the 
conference origination application. The conference reception application is similar. The 
origination application is responsible for acquiring, compressing, and transmitting a video 
stream. As shown in Figure 1, the application consists of 5 tasks (represented by circles) and 
2 resources (represented as a collection of shaded circles). In Figure 1 single headed arrows 
indicate message channels. In YARTOS these provide control flow information. Double 
headed arrows indicate global data flow. Omitted from Figure 1 are the kernel-level interrupt 
handlers. 

The origination application is controlled by two externally generated signals. The network 
adapter signals an interrupt for one of two events. The Transmit Ready interrupt, TR, is 
generated sometime after an application initiates a network transmit. This signals that the 
network adapter is ready for the data. The Transmit Complete interrupt, TC, is generated 
when a packet has been transmitted. The ActionMedia hardware signals an interrupt for one 
of three events. Two Vertical Blanking Interrupts, VBI0 and VBI1, are generated after each 
half of a frame of video has been scanned. A Compression Complete interrupt, CC, is 
generated after a frame of video has been compressed. 

Each video frame goes through a three stage pipeline: digitzafion, compression of the digitized 
image, and transmission of the compressed data over the network. At any given time, there 
are three frames in the pipeline. The pipeline is initiated by a VBII signal. A digitize is 
initiated ("scheduled") by providing an address of a buffer to the capture adapter. Two VBI0s 
later (the first VBI0 signals that the digitize has begun - -  the second VBI0 signals that it is 
complete) the frame has been digitized. After the second VBI0, the compression is initiated. 
As the frame is compressed, the hardware reads digitized video from one buffer and deposits 
compressed video data into another. The CC interrupt signals the end of this operation. At 
this point, the transmission over the network is initiated. Lastly, when the network adapter is 
ready to transmit, it raises the TR interrupt and network packets are transferred onto the 
adapter. The results of a stage in the pipeline are communicated to later stages through two 
buffer pools (two YARTOS resources) that are shared between software tasks (as shown in 
Figure 1) and hardware tasks (as described in Table 1). One buffer pool holds digitized 
frames, the other holds compressed frames. 

The timing of the execution of all tasks is critical to the functioning of the pipeline. The 
response time guarantees provided by the YARTOS kernel are used to ensure correct operation 
of the pipeline. For example, since a digitize always begins at a VBI0, the Schedule Digitize 
task (invoked by VBI1 messages) must be completed before the next VBI0. VBI interrupts 
occur at intervals of 16.5 ms, so this task must complete within 16.5 ms. of its invocation. 
Table 1 summarizes the sequence of hardware and software operations required to acquire, 
compress, and transmit a frame of video and specifies the response time requirements of the 
software tasks and the assumed hardware timing characteristics. 

Experimental Results 

We have run a number of experiments with unidirectional conferences (one origination 
application and one reception application) to test both the performance of our system and the 
qualitative nature of the conference. (For unidirectional digital conferences, we have the 
capability of providing audio and video channels in the reverse direction with our analog 
system.) The measures of interest are the intra-workstation and intra-network latency for a 
frame of video and the effect of dropped or missed frames on the perceived quality of the 
conference. 
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Table  1: Hardware/Software pipeline for transmitting a video frame. 

Operation 

Schedule 
Digitize 

Digitize 

Schedule 
Compress 

Compression 

Transmit 

Initiate 
Transmit 

Network 
Driver 

Transmission 

SW 

HW 

SW 

HW 

SW 

HW 

SW 

HW 

Function 

Get a free digitize buffer a and initiate the 
digitization of the next frame of video. 

Scan a flame of video into a digitizing buffer. 

Get a digitizing buffer and initiate the compression 
of the most recently digitized video frame. 

Compress a frame of video from a compress source 
buffer into a compress sink buffer. 

Get a compress sink buffer, make it into a network 
packet, and initiate a network transmit. 

Signals that a buffer is available on the token ring 
adapter. 

Copy data from a compress buffer onto the token 
ring adapter. 

Physically transmit data. 

Timing Properties 

Must complete 
within 16.5 ms. 

Completed in 33 ms. 

Must complete 
within 16.5 ms. 

Completed in 20 ms. 

Must complete 
within 20 ms. 

Completed in less 
than 1 ms. 

Must complete 
within 16.5 ms. 

A function of 
network load. 

For the conference origination application we define the intra-workstation latency for a frame 
of video as the difference between the time a network packet containing the data for a frame is 
transmitted and the time the digitization of the frame started. We can demonstrate analytically 
that the worst case latency is 3.5 frame times (approximately 116 ms.) for this application. 
(This assumes an otherwise idle network.) The conference reception application is structured 
similarly and has similar latency. Figure 2 illustrates the worst case interleaving of the 
software and hardware operations for the origination application. In Figure 2, hardware 
processes execute throughout the intervals shown for hardware processes. Software tasks 
execute somewhere between the left and right endpoints of the intervals shown for software 
tasks. 

In practice we estimate the end-to-end latency in a conference to be between 6 to 7 frame times 
(200 ms. - 230 ms.). This latency in the digital system is easily noticeable when compared 
side-by-side with the analog system. However, when the system is used for conferencing, 
specifically, when users are physically separated and there there is no reference standard, we 
have found the digital system to be adequate. We conjecture that this is because in 
conferencing there is little physical movement in front of the camera and often only one 
individual speaks at a time. We further conjecture that without synchronizing the sending 
camera and the receiving display, it is not possible to achieve a worst case end-to-end latency 
of less than 5 frame times in the present generation ActionMedia system. (A latency of 5 
frame times would require an infinitely fast processor and network.) 

Although we are limited in our present experimental configuration to only originating or 
receiving 30 frames of video per second, 2 we are confident that the latency guarantees 
provided by YARTOS for a single video stream would remain unchanged as the number of  
video streams manipulated by a workstation increases - -  provided that the processor does not 

2 We simulate multi-person conferences by displaying video images at a receiving station at a reduced rate (e.g. 
15 frames per second for displaying two remote conferees) and replaying the audio from only one stream at a 
time. (Two streams of audio can be played simultaneously by playing one channel from each stream.) 
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become saturated, ff a task with a minimum inter-invocation time ofp time units is guaranteed 
a response time o fp  time units, then YARTOS is effectively reserving c/p of the processor, 
where c is the cost of executing the task, for the execution of this task. So long as YARTOS 
does not over commit the processor, the task will be guaranteed a response time o f p  time 
units independent of the number and processing requirements of other tasks in the system. 

We have run a number of experiments on our network to determine how the quality of a 
conference degrades as a function of the delay in the network. In the initial experiments 
reported here we use do not use any of the priority reservation mechanisms of the token ring. 
Conference quality is assessed in terms of the number of "frame incidents" observed in an 
interval. A frame incident occurs at the conference receiver when a previously played frame 
has to be replayed. This occurs when either a frame is discarded by the origination application 
(because the network has not transmitted frame n by the time frame n+l is ready for 
transmission), or when a frame arrives "late" at the receiver. 

In assessing the quality of a conference, it should be noted that for our use of the ActionMedia 
system, faithful reproduction of the audio component is paramount. This is because audio 
data is acquired in fairly large blocks (33 ms. worth). In the conferencing application, an 
observer can (easily) detect a single dropped or replayed audio frame whereas several 
consecutive video frames need to be dropped in order for a user to notice. Since we currently 
transmit audio and video frames in the same network packet it is not possible to drop/replay 
one frame without doing the same to the other. Therefore while our emphasis is primarily on 
audio frames, we will speak only of dropped/replayed flames. 

In the current implementation of a unidirectional conference, there is no explicit 
synchronization between the sending and receiving workstations. (To add synchronization 
would fundamentally add latency.) The origination workstation transmits frames at an 
aggregate rate of 1 frame every 33 ms. (with a measured jitter of +2 ms.). The display tasks 
on the receiving workstation side are driven off (local) VBI interrupts. On each VBI0, a frame 
from a queue (typically of length one) of received frames is inserted into a 
decompression/display pipeline. If the receiving side is ahead of the sending side, i.e. a frame 
arrives late, then the receiver replays the previous frame. Such an event typically occurs at 
most once (and typically within the first few frames) for a light to moderately loaded network. 

Our preliminary observations indicate that a frame incident rate of more than 2-4 incidents per 
1000 frames is noticeable (i.e., annoying). 3 Moreover, we observe that as the delay in the 
network (in our case due to artificially generated traffic) as seen by a workstation originating a 
conference, approaches 16 milliseconds, the occurrence of frame incidents increases 
dramatically and hence the audio quality and the quality of the conference itself deteriorates 
rapidly. This can be explained by noting that some of the latency in the conference is due to 
the fact that the (hardware) video processes generating VBI interrupts on the originating and 
receiving machines are not synchronized. If there were no delay in the network then one 
would expect that on average a frame of audio and video would be queued for 16 ms. (i.e., 
half a frame time) at the receiving workstation before entering the decompression/display 
pipeline. Therefore, on average, the receiving workstation should be immune to substantial 
delays in the network. (For a 16 Mbit token ring, a 10 ms. delay would correspond to a 
utilization of the network bandwidth of approximately 75% [Bux 89].) 

3 These experiments were performed using a CD player as the audio input source on the originating machine. 
It is not clear how the threshold on frame incidents would differ for voice. We pla n to perform additional 
experiments with live voice input. 
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On Performance Guarantees 

The notion of a response time or other performance guarantee is central to our work and is 
indeed essential for supporting applications that manipulate live digital audio and video. As 
one example, if the Schedule Digitize task does not complete execution within 16 ms. of 
receiving a VBI1 message, then a frame of video and audio necessarily will be lost. Through 
careful attention to processor scheduling, YARTOS provides the desired guarantees. 
Moreover, we can demonstrate both analytically and empirically that frames are not dropped 
by a workstation originating a conference because of the workload in the system. There are, 
however, two aspects of these performance guarantees that need to be examined in closer 
detail to determine how well YARTOS supports the real-time requirements of the conferencing 
application. 

The first concerns the usefulness of the guarantees. For a given programming model that 
includes repetitive real-time processing constraints, it is typically not very difficult to derive 
sufficient conditions on the operating environment - -  called schedulability conditions - -  that 
will ensure that the real-time response properties of tasks wilt be met. The more interesting 
question is how accurate these conditions are. That is, if a set of tasks do not satisfy the 
conditions then does this necessarily imply that a deadline will be missed if the tasks are 
executed? Moreover, if this is indeed the case then how can the programmer ameliorate this 
situation? For YARTOS, it is the case that if a set of tasks do not satisfy the schedulability 
conditions then it is possible to demonstrate a maximal, finite set of orderings of events (e.g., 
message arrivals) that will necessarily lead to a missed deadline, ff the programmer is willing 
to certify that none of these sequences of events can happen then no deadlines will ever be 
missed. 

The second, and likely more important issue, concerns the fit between the programming model 
exported by YARTOS and the processing needs (both real-time and non-real-time) of the 
conferencing application. Although YARTOS can provide meaningful real-time guarantees, 
these guarantees come at a cost of a fairly restrictive programming model. YARTOS was 
designed to to support applications whose real-time processing constraints arise from the need 
to process data at a precise rate. Therefore, each task has a notion of a minimum inter-arrival 
time of activation messages and a deadline based on this inter-arrival time. This meshes nicely 
with the processing required to respond appropriately to VBI interrupts - -  i.e., it is periodic 
and has a well-defined deadline. It is not well suited, however, to support some of the 
processing required to respond to a CC interrupt. This is because there are several logical 
operations that are executed in response to a CC interrupt but not all of these operations have 
the same deadline. In particular, some of these deadlines are not a function of the inter-arrival 
time of the CC interrupt. One important function has been omitted from Figure h the 
movement of digitize and compress buffers from the compress source and transmit queues 
respectively, back to their corresponding free queues. In the case of digitize buffers on the 
compress source queue, at the occurrence of a CC interrupt, a digitize buffer on the compress 
source queue may be moved to the free queue. 

A careful analysis of Figure 2 reveals that the conference origination application can, in 
principle, work with three digitize buffers. This can be seen by noting that at the fourth VBI0 
in Figure 2 (the start of the digitization of the unshown fourth frame), the hardware 
compression of frame 1 must have completed and hence the digitize buffer used for frame 1 
can be reused for frame 4. If, however, the operation to free the digitize buffer is performed 
as part of the Transmit task, it is possible that the free operation for the digitize buffer used for 
frame n may not take place before execution of the Schedule Digitize task for frame n+3. This 
is because under YARTOS the deadline for the Transmit task can be expressed only in terms 
of the when the next CC message is expected to arrive. In general, this deadline is insufficient 
for ensuring that a digitize buffer can be freed before the next invocation of the Schedule 
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Digitize task (i.e., before the next VBI1). Therefore, if the buffer flee operation is performed 
by the Transmit task then the implementation of the digitize buffer resource must provide four 
buffers. 

Abstractly, this is solely an issue of efficient resource utilization since the addition of a fourth 
digitize buffer would have no impact on the real-time performance of the application. In the 
current configuration of our system, however, this is a critical issue as digitize and compress 
buffer resources are implemented in memory on the ActionMedia adapter and there is 
insufficient space for four digitize buffers. 

The root of the problem is that the true deadline of the buffer free operation is not a function of 
the interarrival time of CC interrupts and hence cannot be directly supported with a YARTOS 
task. The solution we have adopted is to associate an eventcount [Reed & Kanodia 79] with 
each message port in the system. Whenever a message is sent to a task the eventcount is 
incremented. The eventcount is then used for producer/consumer synchronization on events 
as described in [Reed & Kanodia 79]. In the case of the digitize buffer-free operation, this 
operation can now be performed when it is needed as a side effect of the resource call to 
remove a free digitize buffer. When this call is made, the kernel is invoked to check the 
eventcount for the Transmit task. The value of this event count indicates the number of CC 
interrupts that have occurred and this corresponds to the number of times digitize buffers have 
been freed. If the CC eventcount differs from the VBI1 eventcount (indicating the number of 
times free digitize buffers have been removed) by less than the number of digitize buffers in 
the system there is indeed a free digitize buffer. 

In general, the eventcount mechanism must be a kernel provided function because the 
recognition of the event and the increment of the eventcount must be indivisible in order to 
preserve the semantics of eventcounts. 

Future  Direct ions  

In the near term we will be experimenting with alternate conference application designs and 
measuring their performance. The goal is to characterize the cost of an "acceptable" quality 
conference in terms of the observed rate of frame incidents, the latencies induced by (a generic 
model of) the video hardware, the operating system and the network, and to demonstrate how 
fluctuations in the values of one component affect the others and the conference itself. 

With regard to the conferencing application itself, of  particular interest is the separation of 
audio and video into independent network packets. In the ActionMedia system, compressed 
audio data for a flame is available 33 ms. before the corresponding compressed video data and 
hence could be transmitted significantly earlier than the video data. Given that the quality of 
the audio in a conference is the primary indicator of overall conference quality, by transmitting 
audio as soon as it is available we should be able to tolerate substantial network delays (e.g., 
delays on the order of 80 ms.). This is, of course, an artifact of the 200 ms. end-to-end 
latency for video data in our system. 

Given that our emphasis on workstation-based conferencing arises from an interest in using 
such systems to facilitate collaboration among scientific and technical professionals, we are 
striving to integrate our kernel and conferencing applications into a computing environment 
that includes UNIX workstations. To this end, we are currently adding ethemet support and 
porting a TCP/IP implementation to the YARTOS kernel. The token ring network (and 
hopefully its FDDI successor) will remain primarily a private network for experiments with 
real-time communications protocols. In addition we are working on porting an X server to 
YARTOS. In essence we hope to construct a real-time multimedia workstation that provides a 
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window onto existing computing environments while providing new, real-time 
communications and continuous media services. 

Summary and Conclusions 

The YARTOS programming model provides response time guarantees to tasks based on their 
minimum inter-invocation time. While this basic mechanism has not supported the 
conferencing application seamlessly, it has been sufficient to construct the system. In 
particular, the accuracy of the YARTOS schedulability analysis has been most useful as it has 
allowed us to concentrate on issues of logical correctness while ignoring efficiency 
considerations. (For example, we have constructed, and received the desired performance 
guarantees, for conferencing applications that utilize close to 80% of the CPU.) 

Concerning our experiments, we have empirically determined that when the delay in the 
network exceeds 16 ms. then the perceived quality of the conference falls off sharply (more 
than 4 dropped/replayed frames per 1000). Therefore, for our system we posit that if 
P(network delay < 16 ms.) > .996, no reservation or priority mechanisms are required to 
ensure good fidelity conferences on our (token ring) network. 
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Figure 1: Conference origination application. 

Figure 2: Execution of the conference origination application for the 
processing of three frames of video. 


