
Kernel Support for Live Digital Audio and Video"

Kevin Jeffay Donald L. Stone F. Donelson Smith

University of North Carolina at Chapel Hill
Department of Computer Science

Chapel Hill, NC, USA 27599-3175
{jeffay,stone,smithfd } @ cs.unc.edu

Abstract: We have developed a real-time operating system kernel which has
been used to support the transmission and reception of streams of live digital
audio and video in real-time as part of a workstation-based conferencing
application. An experimental environment consisting of a number of
workstations interconnected with a 16 Mbit token ring has been created and
used to evaluate quantitatively the performance of the kernel and conferencing
application, as well as the quality of the conferences they are capable of
supporting. Our early experiences with these systems are described.

Introduction

Recent advances in video compression algorithms - - and their realization in silicon - - have
made it possible to consider introducing streams of digitized audio and video into the
processing workload of workstation operating systems. For example, by outfitting
workstations with off-the-shelf video cameras, microphones, digital video and audio
acquisition and compression hardware, and audio amplifiers, it is possible to construct
multimedia applications such as integrated voice/video/text documents and browsers [Hopper
90] as well as communication utilities such as workstation-based video and/or audio
conferences [Terry & Swinehart 88, Jeffay & Smith 91]o

While the hardware for such systems is readily available, existing operating systems and
network communication protocols are inadequate for supporting multimedia applications such
as browsing a video document or conferencing. This is due to the real-time processing
requirements of digital audio and video, specifically, rigid throughput and latency
requirements. For browsing or conferencing in a distributed system, frames of video must be
acquired at a remote workstation (either from a camera or from a disk file) and transmitted so
as to arrive at the local workstation and be displayed at the (precise) rate of one frame every 33
ms. Problems such as these have stimulated programs of basic research in many of the
traditional areas of operating systems such as file systems [Rangan & Vin 91], and scheduling
and inter-process communication [Anderson et al. 90, Govindan & Anderson 91, Jeffay et al.
91].

* This work supported in parts by grants from the National Science Foundation (numbers CCR-9110938 and
ICI-9015443), and by the Digital Equipment Corporation and the IBM Corporation.

tl

Our interest lies in the development of operating system infrastructure for the processing of
live digital audio and video, specifically, workstation-based conferencing. Applications
requiring live digital audio and video, such as conferencing, are unique in that their real-time
throughput and latency requirements are particularly demanding. A conferencing application
fundamentally requires that the audio and video data be processed as it is generated (i.e., with
zero or one buffer). To do otherwise implies that either portions of the conference will not be
reproduced (e.g., frames will be dropped) or that artificial latency is imposed between
acquisition and display processes. In order for a system to be usable as a conferencing tool,
we should minimize, if not avoid altogether, the occurrence of these events. Ideally a
workstation-based conferencing system should be indistinguishable from the more traditional
analog (i.e., non-computer based) system.

We have constructed an experimental network of workstations capable of processing live
digital audio and video and are using this system to experiment with operating system and
network support for continuous-time media. In this note we describe some early experiences
with a prototype conferencing application constructed on top of an operating system kernel we
have built. The kernel provides real-time computation and communication services that enable
a programmer to both specify real-time throughout requirements and to assess end-to-end
latencies. Moreover, the kernel supports a tasking model for which it is possible to determine
a priori if sufficient processing resources are currently available to meet an application's
requirements.

In designing the conferencing application, our approach has been to view the problem as one
of real-time resource allocation and control. We hope to demonstrate by example that much of
the technology developed within the real-time systems community is directly applicable to the
problem of supporting applications that manipulate digital audio and video. Although we have
chosen to focus on live digital audio and video, we believe the infrastructure we have
developed is applicable to applications that manipulate both live and recorded media.

The following section briefly describes the operating system kernel used to support real-time
digital audio and video conferencing. We follow with a description of the architecture of the
conferencing prototype itself and describe our initial experiences using this system. We
conclude with a brief discussion of the appropriateness of the performance guarantees
provided by the kernel and assess how well the kernel's programming model responds to the
real-time processing needs of the conferencing application.

Kernel Overview

Operating system support for our conferencing application is provided by an operating system
kernel we have developed called YARTOS (Yet Another Real-Time Operating System) [Jeffay
et aL 91]. This kernel was developed to experiment with a paradigm of process interaction
called the real-time producer~consumer (RTP/C) paradigm [Jeffay 89]. The RTP/C paradigm
defines a semantics of inter-process communication that provides a framework for reasoning
about the real-time behavior of programs. This semantics is realized through an application of
some recent results in the theory of deterministic scheduling and resource allocation. We
believe YARTOS to be a "general purpose" real-time operating system kernel. In addition to
the conferencing application, YARTOS prototypes have been used in a 3-dimensional
interactive graphics system used for research in virtual realities, and a HiPPI data link
controller.

The programming model supported by YARTOS is an extension of Wirth's discipline of real-
time programming [Wirth 77]. In essence it is a message passing system with a semantics of
inter-process communication that specifies the real-time response that an operating system

12

must provide to a message receiver. This allows us to assert an upper bound on the time to
receipt and processing of each message. The exact response time requirement is a function of
such factors as the rate with which a process receives messages on a given input channel.
Ultimately, these rates are functions of the rates at which data arrives from external sources.
These semantics provide a framework both for expressing processor-time-dependent
computations and for reasoning about the real-time behavior of programs. The programming
model is described in greater detail elsewhere [Jeffay 89].

YARTOS itself supports two basic abstractions: tasks and resources. A task is an independent
thread of control (i.e., a sequential program) that is invoked in response to the occurrence of
an event. An event is a stimulus that may be generated by processes external to the system
(e.g., an interrupt from a device) or by processes internal to the system (e.g., the arrival of a
message). We assume events are generated repeatedly with a (non-zero) lower bound on the
duration between consecutive occurrences of the same event. Each invocation of a task must
complete execution before a well-defined deadline. The invocation intervals and deadlines for
a task are derived from constructs in the higher-level programming model. During the course
of execution, a task may require access to some number of resources. A resource is a
software object (e.g., an abstract data type) that encapsulates shared data and exports a set of
procedures for accessing and manipulating the data. Like a monitor, resources guarantee
mutually exclusive access to the data they encapsulate. Resources are accessed indirectly
through the kernel. Support for resources is included to ensure priority inversions do not
occur - - a phenomena in which low priority processes exclude high-priority processes from
accessing time-critical data, thus causing the high priority processes to miss deadfines [Sha et
al. 90].

For a given workload (a set of tasks and resources), the goal of YARTOS is to guarantee that
(1) all requests of all tasks will complete execution before their deadlines and (2) no shared
resource is accessed simultaneously by more than one task. We have developed an optimal
(preemptive) algorithm for sequencing such tasks on a single processor [Jeffay 90]. The
algorithm is optimal in the sense that it can provide the two guarantees whenever it is possible
to do so. Moreover, an efficient algorithm has been developed for determining if a workload
can be guaranteed a correct execution. This algorithm forms the basis for a resource
reservation protocol that is executed prior to the start of a video conference by workstations
participating in the conference. In addition to its academic value, the optimality of the
YARTOS resource allocation policies are important for effectively trading-off processing
requirements for guaranteed response time. If YARTOS cannot guarantee a correct execution
to a process, feedback can be provided on why the guarantee is not possible. A programmer
can typically achieve a compromise guarantee by either relaxing the response time constraint or
by improving the execution time of one or two specified processes. The optimality properties
ensure that the reasons for the lack of a guarantee are fundamental in nature.

Workstation-Based Conferencing

M o t i v a t i o n

Our emphasis on workstation-based conferencing arises from an interest in using computers
and communication networks to facilitate collaboration among scientific and technical
professionals [Smith et al. 90]. From a technological standpoint, the goal is to support
multiple, concurrent streams of digital audio and video in a distributed network of computer
workstations. These streams may either form disjoint conferences within the network or
involve one workstation in multiple simultaneous conferences.

13

While the requirements for media in conferencing systems could be met using a combination
of conventional digital and analog (audio/video) technology (e.g., a workstation with an
adapter for analog video such as the Parallax card), by manipulating audio and video in an
entirely digital format we leverage existing communications infrastructure (e.g., local-area
networks) to construct new and powerful tools for collaboration with remote colleagues.
Moreover, digital formats admit the possibility of writing software to implement functions that
now require specialized hardware in teleconferencing systems (e.g., voice-activated controls
to put the current speaker's image in a window; multi-image windows "quad-split" so that up
to four participants are simultaneously visible).

Exper imen ta l Se t -Up

We have built a private network to experiment with live digital audio and video. Currently we
have a small number of IBM PS/2 workstations (Intel 80386 processor) interconnected with a
16 Mbit token ring network. We use IBM-Intel ActionMedia 750 adapters (based on Intel's
Digital Video Interactive (DVI) technology) for the acquisition, compression, decompression,
and display of digital audio and video [Luther 90]. 1 The compression component of the
ActionMedia system can be programmed to perform any of a number of compression
algorithms that trade-off execution time for image size and quality. We use an algorithm
capable of supporting real-time (i.e., full-motion - - 30 frames per second) compression or
decompression of full color images at a resolution of 256• but with considerable loss of
image quality. Newer high-performance versions of the display and image processors should
provide larger and better quality images at 30 frames per second [Harney et al. 91].

Each workstation is configured with a set of ActionMedia adapters and is connected to a video
camera, microphone, audio amplifier, and video monitor. Two ActionMedia adapters are
required to acquire digital audio and video: (1) a capture adapter that digitizes RGB signals
from a video camera along with two channels of analog audio inputs, and (2) a delivery
adapter that provides (along with many other functions) capabilities for video compression,
decompression, display control, and audio signal processing. The capture adapter alone is
required for playback of an audio and video stream. With a pair of ActionMedia adapters, a
given workstation may be either the originator or receiver of a audio/video stream, but cannot
be both concurrently. With the addition of a second delivery adapter, a workstation can
transmit and receive video streams simultaneously. In the following we consider only a single
unidirectional audio/video stream between two workstations.

In our experiments we have used a frame-independent compression algorithm (i.e., one in
which the compression of a frame is not influenced by the compression of previous frames).
In our present configuration, the resulting bandwidth requirement for transmitting a stream of
compressed audio and video over a local area network is approximately 2 Mbits per second.
A compressed audio frame is approximately 0.5 Kbytes and a compressed video frame is,
depending on the scene, approximately 6.5-7.5 Kbytes.

In addition to the digital system, we have also constructed a separate analog video
conferencing system using an existing in-house CATV system. The output from the
workstation camera simultaneously supplies the digital and analog systems with video input
thereby providing a convenient mechanism for assessing the (qualitative) latency and image
quality of the digital system. A preliminary comparison of the two systems is reported below.

1 ActionMedia are Digital Video Interactive are registered trademarks of the Intel Corporation.

14

Software Architecture

The conferencing application runs as a user program on top of the YARTOS kernel. There are
separate applications for originating and receiving a conference. Figure 1 shows design of the
conference origination application. The conference reception application is similar. The
origination application is responsible for acquiring, compressing, and transmitting a video
stream. As shown in Figure 1, the application consists of 5 tasks (represented by circles) and
2 resources (represented as a collection of shaded circles). In Figure 1 single headed arrows
indicate message channels. In YARTOS these provide control flow information. Double
headed arrows indicate global data flow. Omitted from Figure 1 are the kernel-level interrupt
handlers.

The origination application is controlled by two externally generated signals. The network
adapter signals an interrupt for one of two events. The Transmit Ready interrupt, TR, is
generated sometime after an application initiates a network transmit. This signals that the
network adapter is ready for the data. The Transmit Complete interrupt, TC, is generated
when a packet has been transmitted. The ActionMedia hardware signals an interrupt for one
of three events. Two Vertical Blanking Interrupts, VBI0 and VBI1, are generated after each
half of a frame of video has been scanned. A Compression Complete interrupt, CC, is
generated after a frame of video has been compressed.

Each video frame goes through a three stage pipeline: digitzafion, compression of the digitized
image, and transmission of the compressed data over the network. At any given time, there
are three frames in the pipeline. The pipeline is initiated by a VBII signal. A digitize is
initiated ("scheduled") by providing an address of a buffer to the capture adapter. Two VBI0s
later (the first VBI0 signals that the digitize has begun - - the second VBI0 signals that it is
complete) the frame has been digitized. After the second VBI0, the compression is initiated.
As the frame is compressed, the hardware reads digitized video from one buffer and deposits
compressed video data into another. The CC interrupt signals the end of this operation. At
this point, the transmission over the network is initiated. Lastly, when the network adapter is
ready to transmit, it raises the TR interrupt and network packets are transferred onto the
adapter. The results of a stage in the pipeline are communicated to later stages through two
buffer pools (two YARTOS resources) that are shared between software tasks (as shown in
Figure 1) and hardware tasks (as described in Table 1). One buffer pool holds digitized
frames, the other holds compressed frames.

The timing of the execution of all tasks is critical to the functioning of the pipeline. The
response time guarantees provided by the YARTOS kernel are used to ensure correct operation
of the pipeline. For example, since a digitize always begins at a VBI0, the Schedule Digitize
task (invoked by VBI1 messages) must be completed before the next VBI0. VBI interrupts
occur at intervals of 16.5 ms, so this task must complete within 16.5 ms. of its invocation.
Table 1 summarizes the sequence of hardware and software operations required to acquire,
compress, and transmit a frame of video and specifies the response time requirements of the
software tasks and the assumed hardware timing characteristics.

Experimental Results

We have run a number of experiments with unidirectional conferences (one origination
application and one reception application) to test both the performance of our system and the
qualitative nature of the conference. (For unidirectional digital conferences, we have the
capability of providing audio and video channels in the reverse direction with our analog
system.) The measures of interest are the intra-workstation and intra-network latency for a
frame of video and the effect of dropped or missed frames on the perceived quality of the
conference.

15

Table 1: Hardware/Software pipeline for transmitting a video frame.

Operation

Schedule
Digitize

Digitize

Schedule
Compress

Compression

Transmit

Initiate
Transmit

Network
Driver

Transmission

SW

HW

SW

HW

SW

HW

SW

HW

Function

Get a free digitize buffer a and initiate the
digitization of the next frame of video.

Scan a flame of video into a digitizing buffer.

Get a digitizing buffer and initiate the compression
of the most recently digitized video frame.

Compress a frame of video from a compress source
buffer into a compress sink buffer.

Get a compress sink buffer, make it into a network
packet, and initiate a network transmit.

Signals that a buffer is available on the token ring
adapter.

Copy data from a compress buffer onto the token
ring adapter.

Physically transmit data.

Timing Properties

Must complete
within 16.5 ms.

Completed in 33 ms.

Must complete
within 16.5 ms.

Completed in 20 ms.

Must complete
within 20 ms.

Completed in less
than 1 ms.

Must complete
within 16.5 ms.

A function of
network load.

For the conference origination application we define the intra-workstation latency for a frame
of video as the difference between the time a network packet containing the data for a frame is
transmitted and the time the digitization of the frame started. We can demonstrate analytically
that the worst case latency is 3.5 frame times (approximately 116 ms.) for this application.
(This assumes an otherwise idle network.) The conference reception application is structured
similarly and has similar latency. Figure 2 illustrates the worst case interleaving of the
software and hardware operations for the origination application. In Figure 2, hardware
processes execute throughout the intervals shown for hardware processes. Software tasks
execute somewhere between the left and right endpoints of the intervals shown for software
tasks.

In practice we estimate the end-to-end latency in a conference to be between 6 to 7 frame times
(200 ms. - 230 ms.). This latency in the digital system is easily noticeable when compared
side-by-side with the analog system. However, when the system is used for conferencing,
specifically, when users are physically separated and there there is no reference standard, we
have found the digital system to be adequate. We conjecture that this is because in
conferencing there is little physical movement in front of the camera and often only one
individual speaks at a time. We further conjecture that without synchronizing the sending
camera and the receiving display, it is not possible to achieve a worst case end-to-end latency
of less than 5 frame times in the present generation ActionMedia system. (A latency of 5
frame times would require an infinitely fast processor and network.)

Although we are limited in our present experimental configuration to only originating or
receiving 30 frames of video per second, 2 we are confident that the latency guarantees
provided by YARTOS for a single video stream would remain unchanged as the number of
video streams manipulated by a workstation increases - - provided that the processor does not

2 We simulate multi-person conferences by displaying video images at a receiving station at a reduced rate (e.g.
15 frames per second for displaying two remote conferees) and replaying the audio from only one stream at a
time. (Two streams of audio can be played simultaneously by playing one channel from each stream.)

16

become saturated, ff a task with a minimum inter-invocation time ofp time units is guaranteed
a response time o fp time units, then YARTOS is effectively reserving c/p of the processor,
where c is the cost of executing the task, for the execution of this task. So long as YARTOS
does not over commit the processor, the task will be guaranteed a response time o f p time
units independent of the number and processing requirements of other tasks in the system.

We have run a number of experiments on our network to determine how the quality of a
conference degrades as a function of the delay in the network. In the initial experiments
reported here we use do not use any of the priority reservation mechanisms of the token ring.
Conference quality is assessed in terms of the number of "frame incidents" observed in an
interval. A frame incident occurs at the conference receiver when a previously played frame
has to be replayed. This occurs when either a frame is discarded by the origination application
(because the network has not transmitted frame n by the time frame n+l is ready for
transmission), or when a frame arrives "late" at the receiver.

In assessing the quality of a conference, it should be noted that for our use of the ActionMedia
system, faithful reproduction of the audio component is paramount. This is because audio
data is acquired in fairly large blocks (33 ms. worth). In the conferencing application, an
observer can (easily) detect a single dropped or replayed audio frame whereas several
consecutive video frames need to be dropped in order for a user to notice. Since we currently
transmit audio and video frames in the same network packet it is not possible to drop/replay
one frame without doing the same to the other. Therefore while our emphasis is primarily on
audio frames, we will speak only of dropped/replayed flames.

In the current implementation of a unidirectional conference, there is no explicit
synchronization between the sending and receiving workstations. (To add synchronization
would fundamentally add latency.) The origination workstation transmits frames at an
aggregate rate of 1 frame every 33 ms. (with a measured jitter of +2 ms.). The display tasks
on the receiving workstation side are driven off (local) VBI interrupts. On each VBI0, a frame
from a queue (typically of length one) of received frames is inserted into a
decompression/display pipeline. If the receiving side is ahead of the sending side, i.e. a frame
arrives late, then the receiver replays the previous frame. Such an event typically occurs at
most once (and typically within the first few frames) for a light to moderately loaded network.

Our preliminary observations indicate that a frame incident rate of more than 2-4 incidents per
1000 frames is noticeable (i.e., annoying). 3 Moreover, we observe that as the delay in the
network (in our case due to artificially generated traffic) as seen by a workstation originating a
conference, approaches 16 milliseconds, the occurrence of frame incidents increases
dramatically and hence the audio quality and the quality of the conference itself deteriorates
rapidly. This can be explained by noting that some of the latency in the conference is due to
the fact that the (hardware) video processes generating VBI interrupts on the originating and
receiving machines are not synchronized. If there were no delay in the network then one
would expect that on average a frame of audio and video would be queued for 16 ms. (i.e.,
half a frame time) at the receiving workstation before entering the decompression/display
pipeline. Therefore, on average, the receiving workstation should be immune to substantial
delays in the network. (For a 16 Mbit token ring, a 10 ms. delay would correspond to a
utilization of the network bandwidth of approximately 75% [Bux 89].)

3 These experiments were performed using a CD player as the audio input source on the originating machine.
It is not clear how the threshold on frame incidents would differ for voice. We pla n to perform additional
experiments with live voice input.

17

On Performance Guarantees

The notion of a response time or other performance guarantee is central to our work and is
indeed essential for supporting applications that manipulate live digital audio and video. As
one example, if the Schedule Digitize task does not complete execution within 16 ms. of
receiving a VBI1 message, then a frame of video and audio necessarily will be lost. Through
careful attention to processor scheduling, YARTOS provides the desired guarantees.
Moreover, we can demonstrate both analytically and empirically that frames are not dropped
by a workstation originating a conference because of the workload in the system. There are,
however, two aspects of these performance guarantees that need to be examined in closer
detail to determine how well YARTOS supports the real-time requirements of the conferencing
application.

The first concerns the usefulness of the guarantees. For a given programming model that
includes repetitive real-time processing constraints, it is typically not very difficult to derive
sufficient conditions on the operating environment - - called schedulability conditions - - that
will ensure that the real-time response properties of tasks wilt be met. The more interesting
question is how accurate these conditions are. That is, if a set of tasks do not satisfy the
conditions then does this necessarily imply that a deadline will be missed if the tasks are
executed? Moreover, if this is indeed the case then how can the programmer ameliorate this
situation? For YARTOS, it is the case that if a set of tasks do not satisfy the schedulability
conditions then it is possible to demonstrate a maximal, finite set of orderings of events (e.g.,
message arrivals) that will necessarily lead to a missed deadline, ff the programmer is willing
to certify that none of these sequences of events can happen then no deadlines will ever be
missed.

The second, and likely more important issue, concerns the fit between the programming model
exported by YARTOS and the processing needs (both real-time and non-real-time) of the
conferencing application. Although YARTOS can provide meaningful real-time guarantees,
these guarantees come at a cost of a fairly restrictive programming model. YARTOS was
designed to to support applications whose real-time processing constraints arise from the need
to process data at a precise rate. Therefore, each task has a notion of a minimum inter-arrival
time of activation messages and a deadline based on this inter-arrival time. This meshes nicely
with the processing required to respond appropriately to VBI interrupts - - i.e., it is periodic
and has a well-defined deadline. It is not well suited, however, to support some of the
processing required to respond to a CC interrupt. This is because there are several logical
operations that are executed in response to a CC interrupt but not all of these operations have
the same deadline. In particular, some of these deadlines are not a function of the inter-arrival
time of the CC interrupt. One important function has been omitted from Figure h the
movement of digitize and compress buffers from the compress source and transmit queues
respectively, back to their corresponding free queues. In the case of digitize buffers on the
compress source queue, at the occurrence of a CC interrupt, a digitize buffer on the compress
source queue may be moved to the free queue.

A careful analysis of Figure 2 reveals that the conference origination application can, in
principle, work with three digitize buffers. This can be seen by noting that at the fourth VBI0
in Figure 2 (the start of the digitization of the unshown fourth frame), the hardware
compression of frame 1 must have completed and hence the digitize buffer used for frame 1
can be reused for frame 4. If, however, the operation to free the digitize buffer is performed
as part of the Transmit task, it is possible that the free operation for the digitize buffer used for
frame n may not take place before execution of the Schedule Digitize task for frame n+3. This
is because under YARTOS the deadline for the Transmit task can be expressed only in terms
of the when the next CC message is expected to arrive. In general, this deadline is insufficient
for ensuring that a digitize buffer can be freed before the next invocation of the Schedule

18

Digitize task (i.e., before the next VBI1). Therefore, if the buffer flee operation is performed
by the Transmit task then the implementation of the digitize buffer resource must provide four
buffers.

Abstractly, this is solely an issue of efficient resource utilization since the addition of a fourth
digitize buffer would have no impact on the real-time performance of the application. In the
current configuration of our system, however, this is a critical issue as digitize and compress
buffer resources are implemented in memory on the ActionMedia adapter and there is
insufficient space for four digitize buffers.

The root of the problem is that the true deadline of the buffer free operation is not a function of
the interarrival time of CC interrupts and hence cannot be directly supported with a YARTOS
task. The solution we have adopted is to associate an eventcount [Reed & Kanodia 79] with
each message port in the system. Whenever a message is sent to a task the eventcount is
incremented. The eventcount is then used for producer/consumer synchronization on events
as described in [Reed & Kanodia 79]. In the case of the digitize buffer-free operation, this
operation can now be performed when it is needed as a side effect of the resource call to
remove a free digitize buffer. When this call is made, the kernel is invoked to check the
eventcount for the Transmit task. The value of this event count indicates the number of CC
interrupts that have occurred and this corresponds to the number of times digitize buffers have
been freed. If the CC eventcount differs from the VBI1 eventcount (indicating the number of
times free digitize buffers have been removed) by less than the number of digitize buffers in
the system there is indeed a free digitize buffer.

In general, the eventcount mechanism must be a kernel provided function because the
recognition of the event and the increment of the eventcount must be indivisible in order to
preserve the semantics of eventcounts.

Future Direct ions

In the near term we will be experimenting with alternate conference application designs and
measuring their performance. The goal is to characterize the cost of an "acceptable" quality
conference in terms of the observed rate of frame incidents, the latencies induced by (a generic
model of) the video hardware, the operating system and the network, and to demonstrate how
fluctuations in the values of one component affect the others and the conference itself.

With regard to the conferencing application itself, of particular interest is the separation of
audio and video into independent network packets. In the ActionMedia system, compressed
audio data for a flame is available 33 ms. before the corresponding compressed video data and
hence could be transmitted significantly earlier than the video data. Given that the quality of
the audio in a conference is the primary indicator of overall conference quality, by transmitting
audio as soon as it is available we should be able to tolerate substantial network delays (e.g.,
delays on the order of 80 ms.). This is, of course, an artifact of the 200 ms. end-to-end
latency for video data in our system.

Given that our emphasis on workstation-based conferencing arises from an interest in using
such systems to facilitate collaboration among scientific and technical professionals, we are
striving to integrate our kernel and conferencing applications into a computing environment
that includes UNIX workstations. To this end, we are currently adding ethemet support and
porting a TCP/IP implementation to the YARTOS kernel. The token ring network (and
hopefully its FDDI successor) will remain primarily a private network for experiments with
real-time communications protocols. In addition we are working on porting an X server to
YARTOS. In essence we hope to construct a real-time multimedia workstation that provides a

19

window onto existing computing environments while providing new, real-time
communications and continuous media services.

Summary and Conclusions

The YARTOS programming model provides response time guarantees to tasks based on their
minimum inter-invocation time. While this basic mechanism has not supported the
conferencing application seamlessly, it has been sufficient to construct the system. In
particular, the accuracy of the YARTOS schedulability analysis has been most useful as it has
allowed us to concentrate on issues of logical correctness while ignoring efficiency
considerations. (For example, we have constructed, and received the desired performance
guarantees, for conferencing applications that utilize close to 80% of the CPU.)

Concerning our experiments, we have empirically determined that when the delay in the
network exceeds 16 ms. then the perceived quality of the conference falls off sharply (more
than 4 dropped/replayed frames per 1000). Therefore, for our system we posit that if
P(network delay < 16 ms.) > .996, no reservation or priority mechanisms are required to
ensure good fidelity conferences on our (token ring) network.

References

Anderson, D.P., Tzou, S.-Y., Wahbe, Ro, Govindan, R., Andrews, M., 1990. Support for
Continuous Media in the DASH System, Proc. Tenth Intl. Conf. on Distributed
Computing Systems, Paris, France, May 1990, pp. 54-61.

Bux, W., 1989. Token-Ring Local-Area Networks and Their Performance, Proc. of the
IEEE, Vol. 77, No. 2, (August), pp. 238-256.

Govindan, R., Anderson, D.P., 1991. Scheduling and IPC Mechanisms for Continuous
Media, Proc. ACM Symp. on Operating Systems Principles, ACM Operating Systems
Review, Vol. 25, No. 5, (October), pp. 68-80.

Harney, K., Keith, M., Lavelle, G., Ryan, L.D., Stark, D.J., 1991. The i750 Video
Processor: A Total Multimedia Solution, Comm. of the ACM, Vol. 34, No. 4 (April),
pp. 64-79.

Hopper, A., 1990. Pandora - - An Experimental System For Multimedia Application, ACM
Operating Systems Review, Vol. 24, No. 2, (April), pp. 19-34.

Jeffay, K., 1989. The Real-Time Producer~Consumer Paradigm: Towards Verifiable Real-
Time Computations, Ph.D. Thesis, University of Washington, Department of
Computer Science, Technical Report #89-09-15.

Jeffay, K., 1990. Scheduling Sporadic Tasks With Shared Resources in Hard-Real-Time
Systems, University of North Carolina at Chapel Hill, Department of Computer
Science, Technical Report TR90-038, August 1990. (In submission.)

Jeffay, K., Smith, F.D., 1991. System Design for Workstation-Based Conferencing With
Digital Audio and Video, Proc. IEEE Conference on Communication Software:
Communications for Distributed Applications and Systems, Chapel Hill, NC, April
1991, pp.169-178.

20

Jeffay, K., Stone, D., Poirier, D., 1991. YARTOS: Kernel support for efficient, predictable
real-time systems, to appear: Proc. IFAC Workshop on Real-Time Programming,
Pergamon Press.

Lederberg, J., Uncapher, K., (eds.), 1989. Towards a National Collaboratory: Report of an
Invitational Workshop at the Rockefeller University, March, 1989. Distributed by the
National Science Foundation.

Luther, A.C., 1990. "Digital Video in the PC Environment," McGraw-Hill, Second Ed.

Rangan, P.V., Vin, H.M., 1991. Designing File Systems for Digital Video and Audio, Proc.
ACM Syrup. on Operating Systems Principles, ACM Operating Systems Review, Vol.
25, No. 5, (October), pp. 81-94.

Reed, D.P., Kanodia, R.K., 1979. Synchronization with eventcounts and sequencers,
Comm. of the ACM, Vol. 22, No. 2, (February), pp. 115-123.

Sha, L., Rajkumar, R., Lehoczky, J.P., 1990. Priority Inheritance Protocols: An Approach
to Real-Time Synchronization, IEEE Trans. on Computers, Vol. 39, No. 9,
(September), pp. 1175-1185.

Smith, J.B., Smith, F.D., Calingaert, P., Hayes, J.R., Holland, D., Jeffay, K., Lansman,
L., 1990. UNC Collaboratory Project: Overview, University of North Carolina at
Chapel Hill, Department of Computer Science, Technical Report TR90-042.

Terry, D.B., Swinehart, D.C., 1988. Managing Stored Voice in the Etherphone System,
ACM Trans. on Computer Systems, Vol. 6, No. 1, (February), pp. 3-27.

Wirth, N., 1977. Toward a discipline of real-time programming, Comm. of the ACM, Vol.
20, No. 8 (August), 577-583.

21

Figure 1: Conference origination application.

Figure 2: Execution of the conference origination application for the
processing of three frames of video.

