Skip to main content

Non-interfering network flows

  • Conference paper
  • First Online:
Algorithm Theory — SWAT '92 (SWAT 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 621))

Included in the following conference series:

Abstract

We consider a generalization of the maximum flow problem where instead of bounding the amount of flow which passes through an arc, we bound the amount of flow passing “near” an arc. Nearness is specified by an extra distance parameter d. When d=0 we get the usual network flow and d=1 corresponds to bounding the flow through the nodes. A polynomial time algorithm is given to solve the max-flow and min-cost noninterfering flow problems for d=2 and it is shown that the problems become NP-hard for d≥3. A polynomial time algorithm is outlined for arbitrary d when the underlying network is planar and how an integral flow can be obtained from a fractional one. Finally, we describe relationships with induced circuits and perfect graphs, VLSI chip design and the Hilbert basis problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Baum, L.E. Trotter Jr., Integer rounding for polymatroid and branching optimization problems, SIAM Journal on Algebraic and Discrete Methods 2, (1981), 416–425.

    Google Scholar 

  2. M. R. Fellows, The Robertson-Seymour theorems: a survey of applications, Contemporary Mathematics, 89, 1989.

    Google Scholar 

  3. D.R. Fulkerson, Anti-blocking polyhedra, Journal of Combinatorial Theory, B 12, (1972), 50–71.

    Google Scholar 

  4. M. Fellows, J. Kratochvil, Personal communication, (1991).

    Google Scholar 

  5. R. Giles, J.B. Orlin, Verifying total dual integrality, manuscript (1981).

    Google Scholar 

  6. M. Grötschel, L. Lovasz, and A. Schrijver (1981), The ellipsoid method and its consequences in Combinatorial Optimization, Combinatorica 1, 169–197.

    Google Scholar 

  7. W.-L. Hsu, Recognizing planar perfect graphs, J. of the A.C.M. 34, (1987), 255–288.

    Google Scholar 

  8. M. Grötschel, L. Lovasz, and A. Schrijver (1988), Geometric algorithms and combinatorial optimization, Springer.

    Google Scholar 

  9. C. McDiarmid, B. Reed, A. Schrijver and B. Shepherd, Non-interfering dipaths in planar digraphs, Centrum voor Wiskunde en Informatica Technical Report (1991).

    Google Scholar 

  10. C. McDiarmid, B. Reed, A. Schrijver and B. Shepherd, Induced circuits planar graphs, submitted to Journal of Combinatorial Theory.

    Google Scholar 

  11. C. McDiarmid, B. Reed, A. Schrijver and B. Shepherd, Packing induced paths in planar graphs, University of Waterloo Technical Report (1990).

    Google Scholar 

  12. W.S. Massey, Algebraic Topology: An Introduction, Graduate texts in mathematics, 56, Springer-Verlag, (1967).

    Google Scholar 

  13. A. Schrijver, Theory of Integer and Linear Programming, Wiley, (1986).

    Google Scholar 

  14. A. Schrijver, Disjoint circuits of prescribed homotopies in a graph on a compact surface, J. Combinatorial Theory, Bs 51 (1991), 127–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Otto Nurmi Esko Ukkonen

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McDiarmid, C., Reed, B., Schrijver, A., Shepherd, B. (1992). Non-interfering network flows. In: Nurmi, O., Ukkonen, E. (eds) Algorithm Theory — SWAT '92. SWAT 1992. Lecture Notes in Computer Science, vol 621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55706-7_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-55706-7_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55706-7

  • Online ISBN: 978-3-540-47275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics