Skip to main content

Two- and three- dimensional point location in rectangular subdivisions

Extended abstract

  • Conference paper
  • First Online:
Algorithm Theory — SWAT '92 (SWAT 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 621))

Included in the following conference series:

Abstract

We apply van Emde Boas-type stratified trees to point location problems in rectangular subdivisions in 2 and 3 dimensions. In a subdivision with n rectangles having integer coordinates from [1,U], we locate an integer query point in O((loglog U)d) query time using O(n) space when d≤ 2 or O(n log log U) space when d=3. Applications and extensions of this “fixed universe” approach include spatial point location using logarithmic time and linear space in rectilinear subdivisions having arbitrary coordinates, point location in c-oriented polygons or fat triangles in the plane, point location in subdivisions of space into “fat prisms,” and vertical ray shooting among horizontal “fat objects.” Like other results on stratified trees, our algorithms run on a BAM model and make use of perfect hashing.

This research was supported by the ESPRIT Basic Research Action No. 3075 (project ALCOM). The first author was also supported by the Dutch Organization for Scientific Research (N. W. O.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Approximate motion planning and the complexity of the boundary of the union of simple geometric figures. In Proc. 6th Ann. ACM Symp. Comp. Geom., pages 281–289, 1990.

    Google Scholar 

  2. B. Chazelle. Filtering search: A new approach to query-answering. SIAM J. Comp., 15(3):703–723, 1986.

    Google Scholar 

  3. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. In Proc. 29th FOCS, pages 524–531, 1988. Revised version: Bericht Nr. 77, Reihe Informatik, Paderborn, Januar 91.

    Google Scholar 

  4. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  5. H. Edelsbrunner, G. Haring, and D. Hilbert. Rectangular point location in d dimensions with applications. Computer Journal, 29:76–82, 1986.

    Google Scholar 

  6. H. Edelsbrunner and H. A. Maurer. A space-optimal solution of general region location. Theoretical Comp. Sci., 16:329–336, 1981.

    Google Scholar 

  7. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time. JACM, 31(3):538–544, 1984.

    Google Scholar 

  8. M. T. Goodrich and R. Tamassia. Dynamic trees and dynamic point location. In Proc. 23rd Ann. ACM STOC, pages 523–533, 1991.

    Google Scholar 

  9. D. Johnson. A priority queue in which initialization and queue operations take O(log log D) time. Math. Systems Theory, 15:295–309, 1982.

    Google Scholar 

  10. R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. In Proc. 18th FOCS, pages 162–170, 1977.

    Google Scholar 

  11. K. Mehlhorn and S. Näher. Bounded ordered dictionaries in O(log log N) time and O(n) space. Info. Proc. Let, 35:183–189, 1990.

    Google Scholar 

  12. H. Müller. Rasterized point location. In H. Noltemeier, editor, Proc. WG 85, pages 281–294. Trauner Verlag, 1985.

    Google Scholar 

  13. F. P. Preparata. Planar point location revisited. Int. J. Found. Comp. Sci., 1(1):71–86, 1990.

    Google Scholar 

  14. P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proc. 16th FOCS, pages 75–84, 1976.

    Google Scholar 

  15. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Info. Proc. Let, 6:80–82, 1977.

    Google Scholar 

  16. P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority queue. Math. Systems Theory, 10:99–127, 1977.

    Google Scholar 

  17. D. E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Info. Proc. Let, 17:81–89, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Otto Nurmi Esko Ukkonen

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Berg, M., van Kreveld, M., Snoeyink, J. (1992). Two- and three- dimensional point location in rectangular subdivisions. In: Nurmi, O., Ukkonen, E. (eds) Algorithm Theory — SWAT '92. SWAT 1992. Lecture Notes in Computer Science, vol 621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55706-7_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-55706-7_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55706-7

  • Online ISBN: 978-3-540-47275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics