Skip to main content

Numeration systems, linear recurrences, and regular sets

Extended abstract

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 623))

Included in the following conference series:

Abstract

A numeration system based on a strictly increasing sequence of positive integers u 0=1, u 1 u 2,... expresses a non-negative integer n as a sum n=∑ ij=0 ajuj. In this case we say the string a i a i −1 ...a1 a0 is a representation for n.

If the lexicographic ordering on the representations is the same as the usual ordering of the integers, we say the numeration system is orderpreserving. In particular, if u 0=1, then the greedy representation, obtained via the greedy algorithm, is order-preserving. We prove that, subject to some technical assumptions, if the set of all representations in an order-preserving numeration system is regular, then the sequence u=(u j ) j > 0 satisfies a linear recurrence. The converse, however, is not true.

The proof uses two lemmas about regular sets that may be of independent interest. The first shows that if L is regular, then the set of lexicographically greatest strings of every length in L is also regular. The second shows that the number of strings of length n in a regular language L is bounded by a constant (independent of n) iff L is the finite union of sets of the form xy * z.

Supported in part by a grant from NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Andraşiu, J. Dassow, G. Păun, and A. Salomaa. Language-theoretic problems arising from Richelieu cryptosystems. Theoret. Comput. Sci., to appear.

    Google Scholar 

  2. J. Berstel. Transductions and Context-Free Languages. Teubner, Stuttgart, 1979.

    Google Scholar 

  3. J. Berstel. Fibonacci words — a survey. In G. Rozenberg and A. Salomaa, editors, The Book of L, pp. 13–27. Springer-Verlag, 1986.

    Google Scholar 

  4. A. Brauer. On a problem of Frobenius. Amer. J. Math. 64 (1942), 299–312.

    Google Scholar 

  5. R. S. Cohen. Star height of certain families of regular events. J. Comput. System Sci. 4 (1970), 281–297.

    Google Scholar 

  6. P. Fatou. Séries trigonométriques et séries de Taylor. Acta Math. 30 (1906), 335–400.

    Google Scholar 

  7. A. S. Fraenkel. Systems of numeration. Amer. Math. Monthly 92 (1985), 105–114.

    Google Scholar 

  8. C. Frougny. Fibonacci numeration systems and rational functions. In Math. Found. Comp. Sci., Vol. 233 of Lecture Notes in Computer Science, pp. 350–359. Springer-Verlag, 1986.

    Google Scholar 

  9. C. Frougny. Linear numeration systems of order two. Inform, and Cornput 77 (1988), 233–259.

    Google Scholar 

  10. C. Frougny. Linear numeration systems, θ-developments and finite automata. In B. Monien and R. Cori, editors, STACS 89, Vol. 349 of Lecture Notes in Computer Science, pp. 144–155. Springer-Verlag, 1989.

    Google Scholar 

  11. C. Frougny. Systèmes de numération lineaires et automates finis (Thèse d'État). Technical Report 89-69, Laboratoire Informatique Théorique et Programmation, Université P. et M. Curie, Université Paris VII, September 1989.

    Google Scholar 

  12. C. Frougny. Fibonacci representations and finite automata. IEEE Trans. Inform. Theory 37 (1991), 393–399.

    Article  Google Scholar 

  13. C. Frougny. Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60.

    Article  Google Scholar 

  14. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

    Google Scholar 

  15. M. Lothaire. Combinatorics on Words, Vol. 17 of Encyclopedia of Mathematics and Its Applications. Addison-Wesley, 1983.

    Google Scholar 

  16. G. Păun and A. Salomaa. Closure properties of slender languages. Manuscript, 1991.

    Google Scholar 

  17. G. Păun and A. Salomaa. Thin and slender languages. Manuscript, 1991.

    Google Scholar 

  18. G. Pólya and G. Szegö. Problems and Theorems in Analysis, Vol. II. Springer-Verlag, Berlin, 1976.

    Google Scholar 

  19. J. Sakarovitch. Deux remarques sur un théorème de S. Eilenberg. RAIRO Informatique Théorique 17 (1983), 23–48.

    Google Scholar 

  20. J. Shallit. A generalization of automatic sequences. Theoret. Comput. Sci. 61 (1988), 1–16.

    Article  Google Scholar 

  21. T. H. M. Smits. Conditional recurrent sequences. Indag. Math. 2 (1991), 359–365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Kuich

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shallit, J. (1992). Numeration systems, linear recurrences, and regular sets. In: Kuich, W. (eds) Automata, Languages and Programming. ICALP 1992. Lecture Notes in Computer Science, vol 623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55719-9_66

Download citation

  • DOI: https://doi.org/10.1007/3-540-55719-9_66

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55719-7

  • Online ISBN: 978-3-540-47278-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics