Skip to main content

Infinitary logic for computer science

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 623))

Included in the following conference series:

Abstract

Infinitary logic L ω∞ω , extends first-order logic by allowing infinitary conjunctions and disjunctions (i.e., conjunctions with an infinite number of conjuncts and disjunctions with an infinite number of disjuncts). One usually thinks of infinitary logic as a fairly esoteric logic, which is not of much interest in computer science. Surprisingly, a certain fragment L ω∞ω of L ω∞ω turns out to be of great interest in computer science. This fragment is obtained by restricting formulas to contain a finite number of distinct variables, though the formulas can be of infinite length, The advantage of dealing with L ω∞ω is that its the expressive power can be completely characterized in game-theoretic terms. We will describe applications of this logic to the study of 0–1 laws and the expressive power of database query languages.

During the preparation of this paper this author was partially supported by NSF Grant CCR-9108631

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul, K. Compton, and V. Vianu. Queries are easier than you thought (probably). In Proc. 11th ACM Symp. on Principles of Database Systems, 1992. To appear.

    Google Scholar 

  2. F. Afrati, S. S. Cosmadakis, and M. Yannakakis. On Datalog vs. polynomial time. In Proc. 10th ACM Symp. on Principles of Database Systems, 1991.

    Google Scholar 

  3. M. Ajtai and Y. Gurevich. DATALOG vs. first-order logic. In Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 142–146, 1989.

    Google Scholar 

  4. M. Ajtai. Σ 11 formulae on finite structures. Ann. of Pure and Applied Logic, 24:1–48, 1983.

    Article  Google Scholar 

  5. A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Proc. 6th ACM Symp. on Principles of Programming Languages, pages 110–117, 1979.

    Google Scholar 

  6. S. Abiteboul and V. Vianu. Fixpoint extensions of first-order logic and Datalog-like languages. In Proc. 4th IEEE Symp. on Logic in Computer Science, pages 71–79, 1989.

    Google Scholar 

  7. S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proc. 23rd ACM Symp. on Theory of Computing, pages 209–219, 1991.

    Google Scholar 

  8. S. Abiteboul, Moshe Y. Vardi, and V. Vianu. Fixpoint logics, relational machines, and computational complexity. In Proc. 7th IEEE Symp. on Structure in Complexity Theory, 1992. To appear.

    Google Scholar 

  9. J. Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42:292–296, 1977.

    Google Scholar 

  10. J. Barwise and S. Feferman, editors. Model-Theoretic Logics. Springer-Verlag, 1985.

    Google Scholar 

  11. A. Blass and Y. Gurevich. Existential fixed-point logic. In E. Börger, editor, Computation Theory and Logic. Lecture Notes in Computer Science 270, pages 20–36, 1987.

    Google Scholar 

  12. A. Blass, Y. Gurevich, and D. Kozen. A zero-one law for logic with a fixed point operator. Information and Control, 67:70–90, 1985.

    Google Scholar 

  13. B. Bollobas. Graph Theory. Springer-Verlag, 1979.

    Google Scholar 

  14. B. Bollobas. Random Graphs. Academic Press, 1985.

    Google Scholar 

  15. J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for graph identification. In Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 612–617, 1989.

    Google Scholar 

  16. A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer and System Sciences, 25:99–128, 1982.

    Article  Google Scholar 

  17. A. Chandra and D. Harel. Horn clause queries and generalizations. Journal of Logic Programming, 1:1–15, 1985.

    Article  Google Scholar 

  18. A. Chandra. Theory of database queries. In Proc. 7th ACM Symp. on Principles of Database Systems, pages 1–9, 1988.

    Google Scholar 

  19. K. J. Compton. 0–1 laws in logic and combinatorics. In I. Rival, editor, NATO Adv. Study Inst. on Algorithms and Order, pages 353–383. D. Reidel, 1988.

    Google Scholar 

  20. S. A. Cook. An observation of time-storage trade-off. Journal of Computer and System Sciences, 9:308–316, 1974.

    Google Scholar 

  21. A. Dawar, S. Lindell, and S. Weinstein. Infinitary logic and inductive definability over finite structures. Research report, Univ. of Pennsylvania, 1991.

    Google Scholar 

  22. M. de Rougemont. Second-order and inductive definability on finite structures. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 33:47–63, 1987.

    Google Scholar 

  23. P. Erdös and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci., 7:17–61, 1960

    Google Scholar 

  24. R. Fagin. Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 21:89–96, 1975.

    Google Scholar 

  25. R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41:50–58, 1976.

    Google Scholar 

  26. R. Fagin. Finite-model theory—a personal perspective. In S. Abiteboul and P. Kanellakis, editors, Proc. 1990 International Conference on Database Theory, pages 3–24. Springer-Verlag Lecture Notes in Computer Science 470, 1990. To appear in Theoretical Computer Science.

    Google Scholar 

  27. S. Fortune, J. Hopcroft, and J. Wyllie. The directed homeomorphism problem. Theoretical Computer Science, 10:111–121, 1980.

    Article  Google Scholar 

  28. H. Gaifman. Concerning measures in first-order calculi. Israel Journal of Mathematics, 2:1–18, 1964.

    Google Scholar 

  29. H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium '81, pages 105–135. North Holland, 1982.

    Google Scholar 

  30. Y. V. Glebskii, D. I. Kogan, M. I. Liogonki, and V. A. Talanov. Range and degree of realizability of formulas in the restricted predicate calculus. Cybernetics, 5:142–154, 1969.

    Article  Google Scholar 

  31. H. Gaifman, H. Mairson, Y. Sagiv, and M. Y. Vardi. Undecidable optimization problems for database logic programs. In Proc. 2nd IEEE Symp. on Logic in Computer Science, pages 106–115, 1987.

    Google Scholar 

  32. Y. Gurevich. Toward logic tailored for computational complexity. In M. M. Ricther et al., editor, Computation and Proof Theory, Lecture Notes in Mathematics 1104, pages 175–216. Springer-Verlag, 1984.

    Google Scholar 

  33. Y. Gurevich. Zero-one laws: The logic in computer science column. Bulletin of the European Association for Theoretical Computer Science, 1992.

    Google Scholar 

  34. N. Immerman. Upper and lower bounds for first-order expressibility. Journal of Computer and System Sciences, 25:76–98, 1982.

    Article  Google Scholar 

  35. N. Immerman. Relational queries computable in polynomial time. Information and Control, 68:86–104, 1986.

    Article  Google Scholar 

  36. V. V. Knyazev. Iterative extensions of first-order logic. Mathematical Problems in Cybernetics, pages 123–130, 1989. MR 91a:03062.

    Google Scholar 

  37. Ph. G. Kolaitis and M. Y. Vardi. The decision problem for the probabilities of higher-order properties. In Proc. 19th ACM Symp. on Theory of Computing, pages 425–435, 1987.

    Google Scholar 

  38. Ph. G. Kolaitis and M. Y. Vardi. 0–1 laws for infinitary logics. In Proc. 5th IEEE Symp. on Logic in Computer Science, pages 156–167, 1990.

    Google Scholar 

  39. Ph. G. Kolaitis and M. Y. Vardi. On the expressive power of Datalog: tools and a case study. In Proc. 9th ACM Symp. on Principles of Database Systems, pages 61–71, 1990. Full version appeared in IBM Research Report RJ8010, March 1991.

    Google Scholar 

  40. Ph. G. Kolaitis and M. Y. Vardi. Fixpoint logic vs. infinitary logic in finite-model theory. In Proc. 7th IEEE Symp. on Logic in Computer Science, 1992. To appear.

    Google Scholar 

  41. V. S. Lakshmanan and A. O. Mendelzon. Inductive pebble games and the expressive power of DATALOG. In Proc. 8th ACM Symposium on Principles of Database Systems, pages 301–310, 1989.

    Google Scholar 

  42. Y. N. Moschovakis. Elementary Induction on Abstract Structures. North Holland, 1974.

    Google Scholar 

  43. C. H. Papadimitriou. A note on the expressive power of Prolog. Bulletin of the EATCS, 26:21–23, 1985.

    Google Scholar 

  44. O. Shmueli. Decidability and expressiveness aspects of logic queries. In Proc. 6th ACM Symposium on Principles of Database Systems, pages 237–249, 1987.

    Google Scholar 

  45. V. A. Talanov. Asymptotic solvability of logical formulas. Combinatorial-Algebraic Methods in Applied Mathematics, pages 118–126, 1981. MR 85i:03081, ZBL 538.03007.

    Google Scholar 

  46. V. A. Talanov and V. V. Knyazev. The asymptotic truth of infinite formulas. In Proceedings of All-Union Seminar on Discrete and Applied Mathematics and it Applications, pages 56–61, 1986. MR 89g:03054.

    Google Scholar 

  47. J. D. Ullman. Database and Knowledge-Base Systems, Volumes I and II. Computer Science Press, 1989.

    Google Scholar 

  48. M. Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM Symp. on Theory of Computing, pages 137–146, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Kuich

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolaitis, P.G., Vardi, M.Y. (1992). Infinitary logic for computer science. In: Kuich, W. (eds) Automata, Languages and Programming. ICALP 1992. Lecture Notes in Computer Science, vol 623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55719-9_96

Download citation

  • DOI: https://doi.org/10.1007/3-540-55719-9_96

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55719-7

  • Online ISBN: 978-3-540-47278-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics