Abstract
The major problem in three-dimensional geometric applications such as the computation of arbitrary polyhedra intersections is the great diversity of possible configurations of geometric objects. Thus, even seemingly straightforward operations often require an enormous number of floating-point computations. This problem can be alleviated by an appropriate preprocessing of the objects involved. For this purpose, we suggest tetrahedronizing geometric objects and organizing the tetrahedra in a topological B *- Tree. The topological B*-Tree can function both as an index and as an object data structure and is thus ideally suited for a wide spectrum of geometric applications. Furthermore, it can easily be used to support parallel algorithms. Parallel search algorithms can only be efficient if the data is very evenly distributed among the available parallel resources. For this purpose, we have developed a geometric hashing method extended by a special control mechanism. Using the topological B*-Tree to support preprocessing of geometric objects leads to a significant reduction in the number of required floating-point operations and therefore in execution lime.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bayer, R. and McCreight, E., Organization and maintenance of large ordered indexes, Acta Informatica, 1 (1972), pp. 173–189.
Fuchs, T., On visible surface generation by a priori tree structures. Computer Graphics, 14, pp. 124–133.
Guttman, A., R-trees: A dynamic data structure for spatial searching, ACM SIGMOD, 1984, pp. 47–57.
Klingspor, F. and Rottke, T., Realzeitzugriff auf ausgedehnte geometrische Objekte in einem Transputernetz, Proc. of the TAT '91, Informatik-Fachberichte, Springer, (1991).
Klingspor, F.and Rottke, T., Realzeilzugriff auf ausgedehnte geometrische Objekte mit parallelen topologischen B*-Bäumen, Proc. of the PEARL 91, Informalik-Fachberichte, Springer, (1991).
Klingspor, F., Luhofer, D., Rottke, T., Intersection and Minimal Distance of 3d-Objects, Computer Animation, 1992, to appear.
Kriegel, H.P., Seeger, B., PLOP-Hashing: A Grid File without Directory, Proc. 4th Int. Conf. on Data Engineering, 1988, pp. 369–376.
Nicvergelt, J.H. et al., The grid file: An adaptable, symmetric multikeyfile structure, ACM TODS 9, 1984, pp. 38–71.
Rottke, T., Parallele Suchprozesse in der geometrischen Datenverarbeitung, Technischer Bericht, Fachbereich Informatik, FernUniversität Hagen, to appear.
Rottke, T. et al., On the Analysis of Grid Structures for Spatial Objects of Non-Zero Size, Graph-Theorei Concepts in Computer Science, 1987.
Samet, H., The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys, 1984, pp. 187–260.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klingspor, F., Luhofer, D., Rottke, T. (1992). Parallel searching for 3D-objects. In: Bougé, L., Cosnard, M., Robert, Y., Trystram, D. (eds) Parallel Processing: CONPAR 92—VAPP V. VAPP CONPAR 1992 1992. Lecture Notes in Computer Science, vol 634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55895-0_454
Download citation
DOI: https://doi.org/10.1007/3-540-55895-0_454
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55895-8
Online ISBN: 978-3-540-47306-0
eBook Packages: Springer Book Archive