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Abstract. A database I? has some obvious and less obvious parameters
like the number of attributes, the size | %], the maximum size of a domain,
the number of some special functional dependencies (e.g. the minimal keys),
and so on. The main aim of the paper is to survey some ol the results giving
connections, inequalilies among these parameters. Resulls of this type give
tools to guess the structure of the database having little a prioriinformation.
The methods are of combinatorial nature.

1 Introduction

The simplest model of a database is a matrix. The entries in one column are the datas
of the same kind (name, date of birth, elc.), the enlries of one row are the datas of
one individual. Thus, actually, we are dealing with finite scts of homogencous finite
functions which can be illustrated by matrices.

Letl us introduce, however, the names of these concepts in the form as Lhey used
in the literature. One kind of datas (e.g. name) is called an attribuie. It can be
identified with a column of the above matrix. The sct of atlributes will be denoted
by U = {ay,...,a,}. The set of possible entrics in the ith column is the domain
of a;. It is denoted by D(a;). Thus, the data of one individual (row of the matrix)
can be viewed as an element r of the direct product D(a;) x D(az) x ... x D(ay).
Such an element is called a tuple. Therefore the whole database (or matrix) can be
described by the relation R C D(a)) x D(aj) % ... x D(a,), that is, by the set of
tuples. 1f r = (ey,e3,...,e,) € R then r(i) denotes the i component of », thal is, e;.
There might be some logical connections among the datas. For instance, the dale
of birth determines the age (in a given year). Let A and B be two sets of atiributes
(A, B CU). The datas in A might uniquely determine the datas in B. Formally we
say that B C U functionally dependson A C U if

T1(i) = ra(1) for allsuch i that a; € A

implies
ri(i) = rp(i) for all such i that  a; € B.

* The work was supported by the Hungarian National Foundation for Scientific Re-
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It is denoted by A — B ([2],12]). Less lormally, A — B if any two clements of
R having the same values in the attribules belonging to A must have the same
values also in B. Funclional dependencies have a very important role in practical
applicalions, in most of the present paper we will consider them and some natural
generalizations.

After this rough introduction of the concepts, let us be more precise. Two levels are
distinguished in the database theory. The set U with the sets D(a;) and the set of
logical connections (like functional dependencies) is called the database scheme. I
determines Lhe sel R* of possible Luples. The other level is the set R of actual tuples.
This is called the instance. The instance obviously has to salisfy the condilions of
the databasc scheme, that is, R C 1*. However, the inclusion is, in general, a proper
one.

The traditional investigations of relational databases supposec that the database
scheme is a priori given in some way. That is, e.g. some functional dependen-
cies can be deduced either by the logic of the data or by the analysis of (one of)
the instances. Then the determination of all functional dependencies is a question
of computation. The scheme is fully deterinined. This information is used then
to decompose and store the instances efliciently. Of course, this logical structure
of the database scheme can be much more complex, several other (non-lfunctional)
dependencies might be known and used.

There is, however a basically different way of considering a database. Knowing some
partial (sometimes very week) information on the instances, determine a scheme
compalible with the given instances. Or, more modeslly, delermine some parameters
of the scheme. The fihal goal is to obtain a simple scheme, since it is needed to
decompose and store the instances reliably. The more complex the scheme is, the
smaller storage space is needed. Ilowever it is more probable that the next instance
will not be compatible. So actually we should find the simplest scheme determined by
the informations on the instances where "simplest” can be defined in dilferent ways.
On the other hand, notice that the known information can be of very different nature
from the description of the scheme. Since we want Lo use certain types of conneclions
(which can be strongly used in the decomposition) like, for instance, functional
dependencies, but the information could be entirely different from a dependency.
Let us call this situalion a database relation with unknown structure. (Neither the
instance nor Lhe scheme is known [ully.)

Examples:

1) The number of attributes and the number of tuples are known. What can be
said aboul the system of funclional dependencies? In Section 3 some theorems of
the following type are collected. Given the number of attribules and the system of
functional dependencies, what is the minimum number of tuples? Obviously, if the
given number of Luples is smaller than this minimum then the considered system of
functional dependencies can be excluded.

2) The number of attributes and the number of tuples are known. Morcover, there
is an assumption on the distribution on each domain. Ilaving no more information
it is natural to suppose that the tuples are chosen with random components follow-
ing the given the distribution. What can be said about the system of functional

dependencies? In Section 4 there are some modest resulls on the expected size of
the functional dependencies.



The reality is (like almost always) between the two extremist models. Namely,
it 1s impossible to put the data into the computer without a preliminary scheme.
On the other hand, it migh turn out during the use of the database that there
are counterexamples for our assumptions causing inconvenient chaos. Or we might
observe new dependencies which escaped our attention before. (See, for instance,
the "design by example” in Thalheim’s book [41].) Thus the scheme might or should
be improved in more steps untill it achieves its best performance. In Section 5 it
will be supposed that the scheme conlains only funclional dependencies as logical
constrains. This situatlion suggests the study of the systemn of possible schemes.
Which systems of functional dependencies can be obtained by an elementary change
from another given systemn of dependencies? ITow many such schemes are there at
all? These and similar questions are treated in Seclion 5 using a partially oredered
set whose elements are the relational schemes on the same U, modelled with their
systems of fuctional dependencies.

The scheme might contain several other types of logical constrains, but we will con-
sider, almost exclusively, only functional dependencies in the present paper. This
fact justifies to study the functional dependencies in an introductory Section 2. In-
stead of the more common "system of functional dependencies” we use an equivalent
form, the closure operation. This malhematical structure is easier. This facl made
possible to characterize the numerical dependencies studied in [28]. (See Section 6.)
While the tools of the traditionals works in database theory were mathematical logic
and similar mathemalical disciplines, the works surveyed in the present paper needs
some other mathemalical areas, namely combinatorics (somelimes with a slight al-
gebraic flavour, like in Sections 2 and 6) and probability theory.

I am indebted to J. Biskup and B. Thalheim for their help in writing this paper and

to J. Demetrovics, my manifold co-author in the arca. Actually, the present paper
is based on the survey [20].

2  Different Characterizations of the Systems of Functional
Dependencies

It is easy to see that the following four properties hold for the functional dependencies
in any relation R. Let A, B,C and D be subsets of the set U of the atlributes of IR.

A=A, (2.1)
A—=DB and B—-C imply A-—C, (2.2)
ACC, DCB and A= B imply C — D, (2.3)
A—=DB and C—=D imply AUC — BUD. (2.4)

A system D of pairs (A, B) of subsets of U salislying (2.1)-(2.4) is called a defer-
mination. (To be precise, we should repeat here these conditions with some other
kind of arrows, like A < B in place of A — B but we will use the same notation for
functional dependencies in a relation and in a determination.)

The system of all functional dependencies in a relation R was called a Jull family by
Armstrong [2]. e also found the characterization of the possible full families.



Theorem 2.1 [2] A system of pairs A — B of sets is a full family for some relation
R ifT it is a determination.

In order to illustrate the difference in usec of the above and the forthcoming charac-
terizations an example will be used. It is a theorem which otherwise fits better to
Section 3. If X' — U, that is, the values in K determine all other values then K is
called a key. Il K{ is a key and contains no other key as a proper subset then it is a
minimal key. The following theorem determines the maximum number of minimal
keys in an instance of a databese wilth n attributes.

Theorem 3.0 [13] The number of minimal keys is at most
()
13)

'I‘ll(:; inequality easily follows from the well known theorem ol Sperner [38] which
slales that the size |S| of an inclusion-free family § (A, B € § implies A Z B) is at

and this estimate is sharp.

n ; g .
most 12]) To prove that the inequality cannot be iinproved one has to construct,
2
a relation % with n attributes and this many minimal keys. This can be done by
using Theorem 2.1. Define the determination D to contain the pairs A — B for all
n

BCACUand A — Bforall A,B C U such that I‘EJ < |A]. It is easy (but

somewhat tedious) to check that this is a delermination, therefore there is a relation

I in which the full family consists of these functional dependencies. The minimal
. . ; , n ,

keys in this relation are all the sets of size LEJ This proves the sharpness of the

statement of Theorem 3.0.
Given a determination D on U one can define

LA)={a: A—a} foral ACU. (2.5)

The following properties can easily be proved for all A,BCU.

A C L(A), (2.6)
ACB implies L(A)C L(B), (2.7)
L(£(A)) = £(A). (2.8)

A set-function satislying Lhese properlies is called a closiure operation or shorlly a
closure.

Proposition 2.2 The correspondence D —» L(D) defined by (2.5) gives a bijection
between the set of determinations and the set of closures.

Consider the follbwing closure

n _ [ A A< 3],



This closure defines the determination D /2] by Proposition 2.2. On the other
hand, there is such a relation R that its fu&l family is D[‘n/z . It is obvious that the
minimal keys in this relation are the [ % ]-element subsets of U. This gives an easicr
proof of the sharpness of Theorem 3.0.

The reader could see that it was somewhat easier to prove Theorem 3.0 by using
the closures. Moreover it is sell-clear that a closure is an easier structure than a
system of functional dependencies. To describe the closure, only some funclional
dependencies should be given, not all of them.

Given a closure £ on U, define the closed scts by B = £(13). The lamily ol closed
sels is denoted by Z = Z(L)). It is easy to sce that Z is closed under intersection,
that is, A, 0 € Z implies AN B € Z. Furthermore, U € Z. A lamily Z satisfying
these properties is called an intersection semi-lattice.

Proposition 2.3 The correspondence L — Z(L) is a bijection between the set of
closures and the set of intersection semi-lattices.

Denote by Dy the delermination containing the pairs A — B forall BC A C U
and A — B for all A, B C U such that k < |A]. The corresponding closure is

A A
{

n : kl
ck—ﬁ(v;)z{U Ak ACU

<
2
Note that Z}' = Z(L}) consists of U and all sets of size at most k — 1.
Given an inlerseclion semi-lattice 2 define

M=M2Z)=(M: MeZ andthere areno r>2 sclsin Z,

all different from M  such thal their intersection is M}.
(2.9)
It is easy Lo see that (i) no member M of M is an inlersection of other members (all

different from M) and (ii) U € M. Such familics of subsets are called intersection-
free families.

Proposition 2.4 The correspondence Z — M(Z2) is a bijection between the set
of intersection semi-lattices and the set of intersection-free families.

It is easy Lo sce that M} = M(Z!) consists of U and the sets of size k — 1.
Propositions 2.2, 2.3 and 2.4 give different equivalent notions describing the same
thing in different ways. The given goal determines which one of them should be
used. They more or less belong Lo the folklore but their proofs (and the inverse
mappings) can be found in [8] and [18]. In the rest of this section we show some
other equivalent notions which are/might be useful for some applications.

Let Z be an intersection semi-latlice on U and suppose that I C Uu Hé¢ZzZ
hold and Z U {17} is also closed under intersection. Consider the sels A satislying
A€ Z, I C A. The intersection of all of these sets is in Z therefore it is different
from 1. Denote it by L(H). (Il Z = Z(L) then L(I) is the closure of I according
to £.) H C L(H) is obvious. Let 7((Z) denote the set of all pairs (I, L(H)) where

HcUHG®EZbul ZU {H} is closed under intersection. The following theorem
characterizes the posssible sets 7{( Z):



Theorem 2.5 (8] The set {(Ai, B;)}™, is equal to M(Z) for some intersection
semi-lattice Z iff the following conditions are satisfied:

A, C B; CU, A; # B;, (2.10)
Ai CA;  implies either  B; CA; or  B; D Aj, (2.11)
Ai € B; implies  B; C Bj, (2.12)

for any i and  C CU satislying A; CC C Bi(Ai £ C # By)

there is a j such that either C=A; or A; CC,DB; ¢ C,B; 5 C all hold.
(2.13)

The set of pairs (A;, B;) salislying (2.10)-(2.13) is called an exfension. Its definition
is not really beautiful but it is needed in some applications (see Section 5). On the
other hand it is also an equivalent notion to the closures:

Theorem 2.6 (8] Z — H(Z) is a bijection between the set of intersection semi-
lattices and the set of extensions. ’

Let £ be a closure on U/. Define S; as the family of minimal sets A C U such that
a; € L(A). It is clear that no member of S; is a subset of another member of it.
Such families are called inclusion-free or Sperner families. So it is obvious that

Si (1 <i<n) isaSperner family (2.14)

and
cither  S5; = {0} or (a;) €. (2.15)

One more, essential property can be proved:
il ACU contains no subset belonging to ~ &;

then  {j: A contlains a subset belonging to S5}
contains no subset belonging to ;. (2.16)

Proposition 2.7 [25] The |U| Sperner families satislying (2.14)-(2.16) give an

equivalent description of the closures.
A function C salislying

C(A)C A (ACU) (2.17)
is a choice function. Given a closure L,

C(A) =U - L(U - A) (2.18)

is a choice function.



Theorem 2.8 [16] The correspondence defined by (2.18) is a bijection belween the
set of closures and the set of choice functions satisflying

C(A)C BC A implies C(A)=C(B) forall A,BCU

and
AC B implies C(A)CC(B) forall A B CU.

Given a delermination £ (or a closure D, etc.) it determines the family X = K(£)
(or K = K(D)) of minimal keys. It is a non-empty Sperner family. Conversely, if a
non-empty Sperner family K is given then

£(A) = A il there is no K € K such that I{ C A,
’ | U ifthereis a K € K such that I{ C A

is a closure and the set ol minimal keys in it is K. This, Theorem 2.1 and Proposition
2.2 prove the following proposilion.

Proposition 2.9 For any non-empty Sperner (amily K there is a relation IR in
which the family of minimal keys is K.

Of course, K does notl. always determine £ uniquely.

3  Inequalities for the Parameters of a Database

Let us go back to the first example in the introduction. A database (scheme or in-
stance) has some obvious or less obvious parameters like the nummber n of attributes,
the size m = |7 of the relations, the maximum size of a domain, the number of some
special functional dependencies (e.g. the number of minimal keys or the number of
functional dependencies A — b where |A] < k and bis an attribute), efe. If somne the-
orems ensure the validity of certain inequalitics are known among these parameters
and we have information on the actual values of these parameter of the instance then
some statement can be concluded for the other parameters of the scheme. So any
inequalities of this kind may help in the prediction of the structure of the scheme,
knowing a little about the instance.

We have shown an example of these kind of problems in Section 2. Theorem 3.0 de-
termined the maximum number of minimal keys. Knowing the number of attributes
we can upperestimate (somewhat less than 2") the number of minimum keys. Thal-
heim observed that this bound can be improved if the domains are bounded.

Theorem 3.1 [10] Suppose that D(a;) <k (1 <i < n) where k* < 2n+1. Then
the numoer of minimal keys cannot exceed

(i3,) - 151

Problom 3.2 Improve this bound for small k-s.



Another similar interesting question is the following. Theorem 3.0 determined the
maximum number of minimum keys. How small can it be? There is one minimum
key, always. It is obvous, that there are schemes with exactly one minimum key. (6]
determined all the schemes described by functional dependencies having exactly one
minimal key.

Let us show here an extension of Theorem 3.0. In many practical cases it is known
that a certain set of attribules cannot uniquely determine a too large set of attributes.
Formally, |B — A] < k (suppose k < n/2) must hold for any funclional dependency
A — B. 1t lollows thal the keys are of size at least n — k. As earlier, the minimal
keys form a Sperner family. Thus, we have to find Lhe largest. Sperner family with
members of size al least n—k. But this is an easy task knowing Lthe Y BLM-inequality

(Yamamoto [12], Bollobas [7], Lubell [32], Mecshalkin [34], it is often called LY M-
inequality): '

YBLM-inequality If the number of i-clement members in a Sperner family § of

n elements is f; then
n f
2oy Sl (3.1)
i=0 ) . .

In our case, if the Sperner family is the family of minimal keys then To = Fi5 g =
Ju—k—1 = 0 holds. Use the inequalily

V< ") it k<n/2m-k<i<
PHE-3 P i <n/2n-k<i<n

in (3.1):
= - fi
12 7wy 2 Thoy =
i:r;k (‘) i:.;k (nw-k)

Z?-_-n~k f‘ — 15‘
() ()

This proves the following statement.

Theorem 3.3 Suppose that all functional dependencies A — I} on an n-clement
set of attributes satisfly |B — A| < k where k < n/2. Then the number of minimal

keys is at most
n
r)

Thalheim ([39] and [40]) obtained interesting resulls for the same problems for the
case of null-values (some datas of some individuals are unknown).

The maximum number of functional dependencies is uninteresting, since tlie deter-
mination uniquely determined by the functional dependency @ — U serves as the
extremal one. (The number of functional dependencies is 22" here.) The situation
is rather different if we consider only those functional dependencies which aie non-
trivial and non-reducible. A functional dependency A —+ 1 is called nen-reducible
i

A+ DB,



there is no A" C A(A" # A) such that A" 7
thereisno  B' D B(B' # 13) such that A — [}’

Let N(n) denote the maximum number of non reducible functional dependencies in
a determination on n elements.

Theorem 3.4 ([3] and [31])

g (1 1log, log, n (1+o(1) < Ny <2 [ 1 ](agf‘;/? n
) e 4+ o n) < ——
log, elog, n = - 150/n

At first sight it might be surprising that this number is near o the obvious upper
bound 2. But in this case the real question is to determine the deviation from this
upper bound, that is, the second term. The above theorem gives only estimales.

A similar, bul perhaps more natural parameter of a determination D is the fol.
lowing one.  Lel £ be a set of functional dependencies on a set [/, nol neces-
sarily satislying the conditions (2.1) (24). We say that £ generates the determi-
nation D iff £ C D and D is the smallest such determination. The size |E] of
the smallest £ generating the deternmination D can be considered as Lhe design
complexity of D. It is denoted by C(P). Furthermore introduce the notation
Cln) = mae{Cf) : D 35a determinaiion on.sn ndlerent sel } for the design
complexity of the most complex determination in this sense. There is an obvious
upper estimate by Theorem 3.4 and C(n) < N{(n). (It is not known how far these
two paramelers can he.) The lower estimale can be obiained proving Lhat,

C(DYyay) = (l:s:J)

(See Thallicim [11].)

Theorem 3.5

2t o oy <o [ log; kY
Oz An) < - —
12)) = = 160/

A relation 12 in which the full family s 'D’l‘”/”) mist have exponentially many
rows (sce Lemma 3.10), that is, [R] must be very large. Mannila and Riili [33]
started to investigate the analogous question with bounded [R]. Let C(n,m) denote
max{C(P): D isarelation R on an n-element set I will) size [7?] at most mn}.
The following resull, surprisingly, stales that the minimum number of Minctional
dependencies generating the worst determination remains exponential even in the
case of linearly many rows.

Theorom 3.6 [3"!]
- C(21 41,31 2) > 2",

Problem 3.7  Find estimates for C(n,m), in general.
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Mannila and Raihi also investigated the algorithmns finding the smallest (that is, of
size |C(D)|) € generating D. They have shown in [33] that the number of steps is
at least emlogm for fixed n, where m is the number ol rows and ¢ is a constant
independent of m. The brute force algorithm needs O(n?2"mlogm) steps. On the
other hand as a function of n, the number ol steps must be exponential. In the prool
they use the number of different Ds on an n-element set. (See Seclion 4.)

Problem 3.8 Give estimates on Ni(n) and Ci(n) where these numbers are defined
analogously to N(n) and C(n) under the restriction |13 — A| < k for all functional
dependencies A — B.

It is known from the results surveyed in Section 2, that there is a relation It for any
determination D, closure £ or sct of minimal keys K such that R generates exaclly
this given D, £ or K. It is not clear, however, whal is the minimum of || satisfying
these goals. Let s(D), s(£) and s(K) denote these minimums.

Theorem 3.9 [13], [15]
s(K) <1+ (ng).

holds for any non-empty Sperner family K on n elements. On the other hand, there
is such a K satislying

1 n

— < 5(K).

(l%J) i)

The proof of the latter inequality is not constructive. We do not know Lhe (nearly)
worst Sperner families. A possible candidate is D"nfzj‘ This is one of the motivations

to study s(K%) where K}) denotes the lamily of all k-clement sels of an n-element,
set. The following easy lemma is surprisingly strong.

Lemma 3.10 ([17] and [14])

("‘ﬁ‘”) s (kj 1) (0 <k < n).

For k = 1,2 or n — 1 the lower estimale oblained by this letnina is sharp. It can be
shown by casy constructions. For k = n this inequalily is Loo weak, but the exact
result can be obtained by a small trick.

Theorem 3.11 ([17] and [14])

s(KY) =2, s(K3) = [1~+___J2’1TE}

sKp_) =n, s(K2)=n L.

The case k = 3 is very inleresling from the mathematical point of view. Lemma 3
leads to s(K3) > n. In [14] we proved the equalily for ns of form 12r 1 and 12r 44
and conjectured that the equality holds for all n > 7. We also staled a conjecture
for Steiner triple systems where n is of the form 3r+4 1. This conjecture would imply
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the equality s(K%) = n. Andrea Rausche [35] found a counterexample for n = 10,
but Ganter and Gronau [27] proved the second conjecture (therefore the first one,
as well) for the integers n = 3r -+ 1 > 13. Benncll and Wu (1] indpendently proved
the original conjecture for all n > 7 with the possible exeption n = 8. Somewhal
later, but independently Gronau and Mullin [29] also settled the general case. (Very
recently, Yeow Meng Chee [11] found a new proof for the second conjecture.)

Theorem 3.12

s(K3)=n n>7n 7 8.

Fork =45 ... ,n—-2,n-3,... onecannol expect a nice formula for s5(K}Y). Mowever,
it is asymplotically deterined for fixed k and large n. In facl, Lemmna 3.10 gives
an asymplotically correct lower estimate, the non-trivial construction given in [11]
ensures the validity of

Theorem 3.13 -

1
cn 2

k-
<s(KR)<ean 7
where ¢y and ey do not depend on n.

There is a similar result for large ks.

Theorem 3.14  [20)
| . |-
o < Kn & = ,)'
]2” = S( n—Z) . 2”

2k g1 ;
can 3 < s(K!

-

) < cqnt
where ¢z and ¢4 do not depend on n.

Theorem 3.9 gives some informalion on the worst, (in sense of minbmum number of

rows) key systems. It would be interesting Lo study smaller subelasses. We are able
Lo offer only open prohlems.

Problem 3.15  Determine maxs(K) for Sperner families on n elements mducing

a determination containing functional dependencies A — B satislying |[B — A| < k
where k is a fixed integer.

Iroblem 3.16  Determine max s(K) (and min 5(N)) for Sperner families on n cle-
ments, satislying |K| = k.

Practically nothing is known aboul this problem. However it has a connection lo
another, perhaps casier problem. Lel a subsel A C U be an anfikey if it is not a key

(= superset of a member of K). The sct of maximal antikeys is denoted by A1,
The following inequalities are known from [14]:

K < ("(2”)

s(K) < 14K,

nml

that is, there is a strong connection between K1 and s(K). ‘This leads to another
open problem.



12

Problem 3.17 Determine max |[K™'| and min |[K~| for Sperner families having
exactly |K| = k members.

We think that the minimum is attained for a family consisting of i and i |- l-clement,
subsels, where 7 is determined by

()=r< (i)

il k is not too large relative to n.

The reader probably has noticed that the last few theores do not fit perlectly into
the frames of the questions suggested at the beginning of this seclion. Indeed, here
we considered a more general ”parameter”, namely the Tamily X of minimal keys.
However their usc is similar. Il our information tells us the number of attributes,
as well as the size of the relation (instance) and it is smaller than the mininm in
the given theorem then the family of keys in question is excluded. For instance, if
the size of the inslance is smaller than the number of atlributes then we can be sure
that the family of minimal keys cannot. consist of all the n — l-clement. subsets (by
Theorem 11).

Very little is known about s(/7) for closures (or equivalently delerminations). Of
course,

s(L7) = s(K}) (3.2)

holds. Furthermore, there is a result on the s-function of direct products. It is not
true for key systems.

Let U = U, U, be a partititon of U and let. £, and £, be two closures defined on
Ui and Uy, resp. The direct product £1 x £ is defined by

(L1 X Lo)(A) = L1(ANTL) U Ly(A N ).

Theorem 3.18 [14]

S([_‘,l X [2) == S([q) {- S([p) _— ',

Theorems 3.11, 3.18 and (3.2) make us able to determine s(L£) for several closures.

4 Tunctional Dependencies in Random Instances

In this scetion we return to our second example in the introduction. Only the number
of attribules and the number of tuples are known and a distribution on each domain.
Il such a distribution is not given we nay consider the uniform distribution. Only
some probabilistic statements can be obtained for the Munctional dependencies of the
instance, but they induce some other probabilistic conse quences for the scheme, as
well. Biskup [5] suggested to study random databases.

There is only a very modest result. in this direction. Due to technical diflicultios we
were able to Lreat only the case when the elements of 1(a; ) are chosen with equal
probabilities and independently. First suppose that all the domains contain e <actly
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two elements, that is, |D(a;)| = 2 holds for all | <1 < n. We may also suppose Lhat
D(a;) = {0,1}. These values arc chosen with equal (— - —) probabilities. All the
entries (datas) are chosen tolally independently. Ilmrcfor(* the probability of the

choice of a given 0,1-sequence of length n as a tuple » € R is g,

The resull is of asymtolic nature. It will be supposed that the number n of attributes
(columms) tends to infinity and the number of individuals (rows) is a function of
n:m(n) where m(n) tends to infinity with n. The investigated quantity |A] is also
expressed as a funclion of n.,

Theorem 4.1  Suppose that entries of the (0,1 matrix of m = m(n) rows and
n columns are chosen randomly: independently and with equal probabilities. Let
A C U be of size r(n) = 2log, m(n) + d(n) and suppose that b € U — A. Then the
probability of the event that b functionally depends on A satisfics

il d(n) tends to oo
P(A = b) > ¢ exp(—53%3) il d(n) tends to a finite  d (1
1 il d(n) tends to —co.

Consequence 4.2 If the number of rows is a polynomial of n, ihat is, m(n) = n"
then (1) holds for v(n) = 2hlogyn -+ d(n). On the other hand, if m(n) = 2% +logan

then the probability of the event that there is any non-trivial functional dependency
tends to 0.

These resulls are generalized in [22] for the case when D(a;)-s are larger and of
distinct size.

The main moral of the above theorems is that there are functional dependencies
A — bbb ¢ A with small |[A] in a random relational instance if the number n of
attributes is large and the size of the database is a polynomial of 1. More precisely,
the size of the smallest such A is constant tines log, n. The scheme can never have
smaller functional dependencies than the instance has.

On the other hand, the size of I must be very large (more than 2%) to cease almost
all functional dependencies. This size is impossible for large databases.

Problem 4.3  Genecralize the above results for non-uniform distributions.

Problem 4.4 Investigate the finer structure of the functional dependencies in the
random instances. The above results determine the sizes of the (ypical dependencies
A —b. They are everywhere densely situated. However there are smaller depen-
dencies, their number is smaller, they are placed sparsely. It seems to be much more
diflicult to say something about their mutual relation, or structure.

5 Partially Ordered Set of Closures

In this section we will consider relations (databases) on a fixed attribute set U. More
precisely the closures gencrated by them will serve as models. That is, we forget
about other properties of the databases (like other types of dependencie s) only the
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functional dependencies are considered. A further very natural condition is added.
Namely, only the closures satislying

C(8) = 0 (5.1)

are considered. (For the determinations it mcans that § — A holds only for A = §.)
A database is constantly changing during its life. This statement can be understood
in two different ways. 1) The instance changes by adding a tuple or deleting one.
Then the closure generated by this instance is also changed. Then the closure of the
instances can be studied, knowing that it has an obvious consequence of the closure

of the scheme, too. 2) The change what is observed scems so regular, so important
that it forces the corresponding change in the scheme.

Both ways lead to the same mathematical model. The changes are in the matrix. A
typical change is to delete the data of some individuals. If A — {a} (AC U,a € {/)
is true then it remains true after the change. This implies

L(A) C La(A) (forall  ACI) (5.2)

where £, and £, denote the closures before and after the change. We write £y > £,
in this case. It is casy to see that this property is transitive, consequently the closures
on a fixed n-clement set U satislying (5.1) form a partially ordered set (poset) for
the ordering given in (5.2). The aim of the present section is to study this poset I,
In Section 2 we saw that the family of closed sets is an equivalent. form of a closure.
A closure satisfies (5.1) ifl

he Z(L) (5.3)

. On the other hand it is easy to see ([S]) that
Ly <Ly T Z(Ly) C Z(Ly).

Hence 1t follows that an equivalent form of 1I” consists of the intersection semi-latiices
containing W, ordered by inclusion as families.

It is easy lo sce that P has a rank function r(2) = |Z| — 2, that is, r is zero for

some element (namely, for Z = {®,U}) and if Zy < Z4 and there is no third element
between them, then v(23) =r(2)) + 1.

The first thing to study is the size of I’. Consider the intersection semi-lattices
consisting ol U/, some subsets of size [%] and all of their intesections. They are
distinet and their number is

2([‘;;[)_

It was shown in [9] that the exponent in the upper estimate is al most

2A(yy)

Recently Alekseyev [1] proved that 23/2 can be omitted.



Theorem 5.1 )
‘2(1‘,‘J) < “)' < 2([2])(” "(‘))'
Problem 5.2  Determine P asymptotically.

As the number of Sperner families is determined by Korshunov [30], asymptotically
(not only the asymptotics of the exponent!), there is some hope that the same can
be done using Proposition 2.7 and Korshunov's theorem.

There are some inilial results concerning the sizes of the lower levels of 1.

Theorem 5.3 [10] The number a(n, k) of the elements of rank k in > satisfics
a(n, k) ~ §(k)(k + 1)
where k is fixed and n tends to infinity.
The next theorem deals with the levels near to the top. (The top rank is 2" — 2.)
Theorem 5.4 [10]
a(n,2" — 2 — k) ~ p(k)n*
where k is lixed and n tends to infinity.

Comparing Theorems 5.3 and 5.4 one can sce that I” is very asymmelric, the low
levels are much wider than the top ones.

Problem 5.5 Determine approximately the widest level of .

Theorems 5.3 and 5.4 suggest that the widest level is much below the middle.

To continue our investigations to understand the structure of I, the next question
is to determine the minimum and maximum degrees at each level. Let deg o (£)
and deg 1, (£) denote the number of edges going upward and downward, resp., from
L in the Hasse-diagram of P. The folloing lunctions are defined:

Si(n, k) = max{deg 4 (£):  #(Z) = k),
J2(n, k) = min{deg o (£):  (Z) =k},
[3(n, k) = max{deg |, (£): r(Z) =k)
Ja(n, k) = min{deg |, (£): #(Z) = k).
(1<n,0<k<2"~2).

Ni(n, k) is fully determined, there are estimates on J2(n, k) and f4(n, k). However
we know practically nothig about f3(n, k)

Theorem 5.6 (8]

)

Hi(n, ) =2 -2 — k.
Theorem 5.7 (8]
fan, k) =0 il &k =2" -2,
f2n k) =1 i k=2"—-9" "1l _9

for some 0 < a < n. Ik > 2"V 4 2 then fo(n, k) < the number of bits 1 in the
binary expansion of 2" — k — 2. This is at most n — 1.

Let us mention that the proof is based on the somewhat strange notion of H(Z),
see Theorem 2.6.
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Theorem 5.8 (8]

[log,(k +1)] < fa(n, k) < |log,(k + 2)] — 1+

+ (the number of non-zero digits in the binary form of k4 2).

Problem 5.9 Give estimates on fa(n, k).

6 Branching and partial dependencies

Now we introduce a more general (weaker) dependency, than the functional depen-
dency. We do it first in a very parlicular case Lo show the usefulness of the concept.
Let AC U and b € U. Wesay that b (1,2)-depends on A if the values in A delermine
the values in a "two-valued” way. That is, there exist no Lhree rows, same in A but,
having three different values in b. We denole it by A — (1,2) — 1. Similarly,
A = (1,9) — b il there exist no q -+ 1 rows having the same values in cach colmn
in A, but containing g + 1 different values in the columm b.

As an example, suppose that the database consists of the trips of an international
transport truck, more precisely, the names of the countries the truck enters. For
the sake of simplicity, let. us suppose that truck goes through exactly four countries
in each trip (counting the start and endpoints, too) and does nol enter a country
twice during one trip. Suppose [urthermore, that there are 30 possible countries
and one country has at most five ncighbours. Let ay, ay, a4, ay denote the countries
as altributes. Il is easy Lo sec that a; — (1,5) — ay, {a;, a3} — (1,4) — ay and
{az, az} — (1,4) — a4. Now, we cannol decrease the size of the stored matrix, as in
the case of functional (that is, (1,1)-) dependencies, but we can decrease the range
ol the values in the new matrices. The domains D(g;) in the original dalabasc have
30 possible values, names of the countries or some codes of them (5 bits each, at
least). Lel us store a little table (30 x 5 x 5 = 750 bils) Lhat contains a nmbering
of the neighbours of each country, which assigns to them the numbers 0,1,2,3 4 in
some order. Now we can replace the attribule ay by these nuimbers (aj), because
the value in a; gives the starting country and the valuc in a} determines the second
country with the help of the little table. The same holds for the attribute ag, but
here the number of possible values can be even further decreased, if another table
is given containing the numbering of possible third countries for cach pair a;,ay. In
this case the attribute aj can take only 4 dilferent values. The same holds for ay,
too. 'That is, while each value of the original relation could be encoded by § bits,
now for the cost of two litlle auxiliary tables we could decrease the lenpgth of the
values in the the second column to 3 bits, and that of the elements in the third and
fourth columns to 2 bits.

It is casy Lo sce, that the same idea can be applied in cach case when the paths
of a graph arc stored, whose maximum degree is much less than the number of its
verlices.

After this long motivation let us give the general definition. Fix a relation 2 on
the set of attributes U. Let A C U, b € U and 1 < p < g inlegers. We say Lhat
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b (p,q)—depends on A if there are no q 1 rows of R such that they contain at
most p different values in each attribute in A, but ¢ + 1 different values in b,

In [23] these dependencies were called branching. llowever, Grant and Minker [28]
introduced the so called numerical dependencies which are identical Lo our (L, q)
dependencies. Their theorems are special cases of the forthcoming ones, supposing
that no emply set (1,9)-depends on the cinpty sel.

Define the mapping 7 = Trpg 2V 9V by

Z(A)={b: A —(p,q) b}
Proposition 6.1 7T has the following properties:
A CI(A), (6.1)

ACB implies T(A)C17(B), (6.2)
for any subsets A, B C U.

The set-functions satisfying conditions (6.1) and (6.2) are called tncreasing-monotone
Junctions. Nete that (6.1) is identical with (2.6) and (6.2) is identical with (2.7).
An increasing-monotone function, however, does not satisly the third property (2.8)
of closures, in general.

Are these two condilions enough? We have only partial answers Lo tLhis question.

We say that an increasing-monotone function A is (p,q)-representable ifl there is a
relation IR such that A = Trp,.

Theorem 6.2 [23] Let N be an increasing-monotone funcbion satislying N (@) = §.
Then N is (p,q)-representable if one of the following conditions hold:

p=1 and 1<gq

P=2 and 3 <q,
2<p and pz—p~1<q.
Problem 6.3 Is the statement of Theorem 6.2 true for any p < q? Is it possible

to drop the condition N'(#) = @7

The first undecided case is p = 2,¢ = 3. The situation is significantly different, if
p= q

Proposition 6.4 [23] Tp,, is a closurce for any 1 < p.

Thus, it is natural to ask if all closures arc (P, p)-representable for any given p. If
P < q then we know that Z, in general, is not a closure. But is it true at least thial,
all closures are (p, q)-representable? The answer, in general, is negative.

Theorem 6.5 [23]Ifp > 2,n> 6 then Ly is not (p, p)-representable.

The situation is better if p=g=2or p < q.
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Theorem 6.6 (23] Every closure is (p, q)-representable if one of the following con-
ditions hold:

p=1 and 1<y,
r=2 and 2<gq,

» 1)
2<p and (Lj——) < q.

Ilence we can sce that any closure is (1, 1)-representable (we new it a lot ecarlier!)
and (2,2)-representable. However it is not true for (3, 3)-representation.

Problem 6.7 Characterize the (3,3)-representable closures.

One might think that this characterization, if found, is good for all (p,p). 'This is
nol. true, as we will see using the following theorem.

Theorem 6.8 [37] L} is (p,p)-representable for p = 1,2,3,4,2k — 3,2k — 2, if
3 ;

k > 2 and is not (p, p)-representable for Ek -1 <p<2k—4andfor2k 1 < pafl
n>ng(k), k> 1.
For instance, £} is (p,p)-representable for large n iff p = 1,2,3,4,5,6. This is a
closure which is (6,6)-representable bul not (7,7)-representable.
In the cases when a representation is found one can define s,,(N) as the mininum
of || for relations representing A7, In this part we do not pose open problems since
they are obvious, the results are very modest.
Theorem 6.9 [24]

s1g(N) < 2qn2”

holds for any integer ¢ > 1 and increasing-monotone function N

Lenima 3.10 can be easily gencralized for Lhis case. This generalization helps Lo
prove the flollowing statement’
Theorem 6.10  [24]

Spa(LY) =q +1,

SQQ(CZ_;) =2n il n > 3,

Theorem 6.11  [36]
n . ’U -1
Spp(L3) = min{w : ( 7 ) > n).

Finally, let us only briefly mention the partial dependencics.  The veclor
o = (aj,,...,a;,;71,...,r%) is called a partial function where the a-s are clements
of /'and ry € D(a;,). We say that g = (bj,,...,bj;51,...,%) depends on o in
I il each row containing r in the column of the attribute a;, (for all 1 < h < k)
il contains sp in the attribute bj, (for all 1 < h < I). The paper [21] contains
investigations concerning this dependency.
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