
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-92-54

A Direct
Semantic Characterization of RELFUN

Harold Boley

November 1992

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which
was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, and Siemens. Research projects
conducted at the DFKI are funded by the German Ministry for Research and Technology, by the share-
holder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical knowledge
and common sense which - by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces
Computer Linguistics
Programming Systems
Deduction and Multiagent Systems
Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about the
current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of
the building-up phase.

Dr. Dr. D. Ruland
Director

A Direct Semantic Characterization of RELFUN�

Harold Boley

DFKI-RR-92-54

To appear in:
Proc. 3rd International Workshop on Extensions of Logic Programming. ELP’92,
DEIS, Univ. Bologna, Italy, February 1992,
Springer, Lecture Notes in Artificial Intelligence, LNAI 660, 1993.

This work has been supported ba a grant from The Federal Ministry for Research and
Technology (FKZ ITWM-8902 C4).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1992

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy in whole
or part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole
or partial copies include the following: a notice that such copying is by permission of the Deutsche Forschungszen-
trum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledgement of the authors
and individual contributors to the work; all applicable portions of this copyright notice. Copying, reproducing, or
republishing for any other purpose shall require a licence with payment of fee to Deutsches Forschungszentrum für
Künstliche Intelligenz.

A Direct Semantic Characterization of RELFUNy

Harold Boley

Deutsches Forschungszentrum f�ur K�unstliche Intelligenz

Box ����� D��	
� Kaiserslautern� F� R� Germany

boley�informatik�uni�kl�de

Abstract

This paper attempts a direct semantic formalization of �rst�order relational�
functional languages �the characteristic RELFUN subset� in terms of a generalized
model concept� Function�de�ning conditional equations �or� footed clauses� and
active call�by�value expressions �in clause premises� are integrated into �rst�order
theories� Herbrand models are accomodated to relational�functional programs by
not only containing ground atoms but also ground molecules� i�e� speci�c func�
tion applications paired with values� Extending SLD�resolution toward innermost
conditional narrowing of relational�functional clauses� SLV�resolution is introduced�
which� e�g�� �attens active expressions� The TP �operator is generalized analogously�
e�g� by unnesting ground�clause premises� Soundness and completeness proofs for
SLV�resolution naturally extend the corresponding results in logic programming�

� Introduction

RELFUN is a logic language primarily extended by call�by�value �eager� functions that
may be non�ground� non�deterministic� varying�arity� and higher�order� These functions
are de�ned by extended Horn clauses having a �foot	 premise for value returning� This ex�
tension can also be viewed as �directed� conditional equations permitting �extra	 variables
in conditions� which may accumulate partial results� It entails the following syntactic
changes of PROLOG

Footed clauses� Starting with DATALOG� �����rules may be augmented by an am�
persand in�x� ���� between the normal body premises and the foot premise
 facts
�empty bodies�� by a joined in�x� ������

Active expressions� Proceeding to PROLOG� passive structures are rewritten using
square brackets� �������� reserving round parentheses� �������� for RELFUN	s
active call�by�value expressions �permitted in premises��

�This research was supported by the BMFT under Grant ITW ���� C��
yThis research was supported by the BMFT under Grant ITW ���� C��

As shown by the Fibonacci programs in example �� RELFUN	s function�de�ning footed
clauses �e�g� for fibfun� can be developed from PROLOG�like relation�de�ning Horn
clauses �e�g� for fibrel� via an intermediate footed�clause form using a generalized re�
lational is�primitive in a functional� let�like manner �e�g� for fibfis�� When reading
such clauses we extend PROLOG	s ���� if ���� for ���� �� ���� to ���� if ��� returns ����
for ���� �� ��� � ���� �or just ���� returns ���� for ���� ��� ������ �

Example � Recursive Fibonacci relations and functions in RELFUN�

fibris�N�F� �� F is fibfun�N��

fibrel���s	�
��

fibrel�s	�
�s	�
��

fibrel�s	s	N

�F� �� fibrel�N�X�� fibrel�s	N
�Y�� plusrel�X�Y�F��

fibfis��� ��� s	�
�

fibfis�s	�
� ��� s	�
�

fibfis�s	s	N

� �� X is fibfis�N�� Y is fibfis�s	N
� � plusfun�X�Y��

fibfun��� ��� s	�
�

fibfun�s	�
� ��� s	�
�

fibfun�s	s	N

� ��� plusfun�fibfun�N��fibfun�s	N
���

plusrel���N�N��

plusrel�s	M
�N�P� �� plusrel�M�s	N
�P��

plusfun���N� ��� N�

plusfun�s	M
�N� ��� plusfun�M�s	N
��

Relation de�nitions in RELFUN employ generalized Horn clauses� namely �hornish	
clauses� which may again call arbitrary functions� either within any argument of a relation
call or the right�hand side �rhs� of the is�primitive �e�g� in fibris�� So the body premises
of hornish clauses are relational on the top�level �just binding variables� like Horn�clause
premises�� but may contain functional applications �also returning values�� Conversely�
the head and foot of footed clauses can be regarded as the two sides of an equation� giving
these clauses a principal functional �avor� although their body conditions are exactly like
the relational top�level premises of hornish clauses� Altogether� RELFUN	s clauses tightly
integrate relational and functional characteristics� �

�While the in�x 	���
 corresponds to a �directed� unconditional
 	

� the mix�x 	�� ��� �

corresponds to a �directed� conditional
 	

���

� However� we will not formalize functions using a logic

with a distinguished �directed
 equality predicate� but will �build in� 	���
 and 	�� ��� �
 even more
deeply� as new connectives�

�Still� rather than indiscriminately speaking of �relational�functional� language constructs� we will di�
dactically distinguish �relational� and �functional� constructs on the basis of their principal characteristics�

�

The following functional version of J�W� Lloyd	s relational slowsort example ��� shows
the use of non�ground and non�deterministic subfunction calls for de�ning a deterministic
main function�

Example � A functional slowsort program in RELFUN�

� Sort filters non�deterministic permutations through sorted�

sort�X� ��� sorted�perm�X���

� Return sorted lists unchanged� fail for unsorted ones�

sorted�	
� ��� 	
�

sorted�	X
� ��� 	X
�

sorted�	X�Y
Z
� �� lesseq�X�Y� � cons�X�sorted�	Y
Z
���

� Permute by a non�ground delete call returning U�less lists

� and binding U for a cons call enclosing the perm recursion�

perm�	
� ��� 	
�

perm�	X
Y
� ��� cons�U�perm�delete�U�	X
Y
����

� Non�deterministically delete X elements from list argument�

delete�X�	X
Y
� ��� Y�

delete�X�	Y
Z
� ��� cons�Y�delete�X�Z���

� A less�or�equal relation over s�terms�

lesseq���X��

lesseq�s	X
�s	Y
� �� lesseq�X�Y��

� cons�h�t� calls h and t by value� 	h
t
 only instantiates h and t�

cons�X�Y� ��� 	X
Y
�

Since programs for Fibonacci numbers� list sorting� and many other purposes are nor�
mally used in a deterministicmode� we think they should be formulated as functions rather
than relations� indicating the preferred direction of computation� However� in RELFUN
such functions still permit inverse calls �e�g� s�	� is fibfun�W� non�deterministically
binds W to 	 or s�	�� and can make natural internal use of relations �e�g� lesseq� and
non�deterministic functions �e�g� perm and delete��

A comprehensive overview of RELFUN and related work as well as pointers to its appli�
cations and to its original operational �interpretative�� LISP�implemented semantics can
be found in ���� Among the tools of the RELFUN implementation there is a term�rewriting
algorithm relationalize for transforming footed and hornish clauses into Horn clauses�
thus indirectly characterizing their model�theoretic semantics� However� this semantic in�
directness makes our understanding of functions totally dependent on our understanding
of relations �inverting the dependency incurred by the LISP�based interpreter�� whereas
we work towards �equal declarative depth� for both of them�

�

The present paper thus attempts to directly characterize the semantics of �basic	 REL�
FUN� the pure�RELFUN subset exemplifying �xed�arity �rst�order relational�functional
languages� in terms of a generalized model concept
 RELFUNmodels contain both atoms
�relations� and directed unconditional equations �functions�� This would permit a
common foundation of logic and functional programming� reducing the gap between these
declarative paradigms� Through a model�theoretic foundation of relational�functional
languages� the semantic characteristics available or lacking in either of these declarative�
programming paradigms can be assessed in a way more neutral than via the indirection of
mutual implementions of� and cross�translations between these paradigms� For instance�
on the basis of our characterization we can study such questions as �How will functional
call�by�value expressions enrich �and complicate� the semantics of relational languages��
or �How will the relational meaning of non�ground arguments carry over to the functional
meaning of arguments and returned values�� Another important motivation of the present
work is to make the many alternative relational�functional integration proposals �see� e�g��
��� and ���� comparable on a common ground� revealing their deeper� non�syntactic di�er�
ences� Finally� we think the model�theoretic treatment can provide us with a long�term
yardstick for developing a �minimal	 integration of the essential concepts of relational and
functional languages
 in the multitude of integration proposals� only �Occam	s razor� can
help sorting out the proper integration constructs from other �nice features��

In fact� with basic RELFUN we have attempted to operationally explore a tight� min�
imum integration of the concepts of a relation and a function themselves� Among other
things� the classical eager functional expressions �innermost reduction� have been ex�
tended to non�deterministic function nestings to accomodate relational non�determinism�
Then� the semantic interpretation of functions just uses mappings to sets of domain in�
dividuals� and expressions are semantically evaluated using expression assignments� a
natural� set�valued extension of relational term assignments� These semantic extensions
are less complicated than the semantics of lazy expressions �outermost reduction� as a
relational�functional integration concept� as introduced by other recent proposals �e�g��
K�LEAF ��� and BABEL ����
 eagerness keeps the semantics strict and simple� whereas
laziness accepts the non�strictness overhead to give a meaning to uni�cations involving
non�terminating expressions� While basic RELFUN	s operational integration concepts
may be close to a minimum� its current model�theoretic characterization is still quite
preliminary and will certainly need further simpli�cation and improvement�

On the other hand� pure�RELFUN extensions of the present treatment could directly
incorporate the semantics of varying�arity operations� which can also be reduced to unary
ones over lists� Similarly� RELFUN	s higher�order operations should not be too di�cult
to add� as they are restricted to those reducible to �rst�order operations using an apply

dummy as introduced for corresponding PROLOG extensions by D� H� D� Warren �����
While these two extensions have long existed in the implementedRELFUN system� further
extensions such as �nite domains will �rst require their own operational test phase before
we can think of including them in the formal semantics� Finally� some aspects of our
RELFUN extensions of SLD�resolution� Herbrand models� and TP �operators will probably
be transferable to other languages�

�

Our basic semantic treatment draws heavily on chapters � and � of J� W� Lloyd	s
book ���� construing a parallel between �rst�order relations and �rst�order functions� en�
abled by suitably generalizing the latter in a non�ground� non�deterministic fashion� This
relational�functional parallel in the formal de�nitions given here derived from consid�
erations in language design such as expressive power� orthogonality� and uniformity of
constructs� But it also simpli�es transferring foundation theorems of logic programming
�as found� e�g�� in J� W� Lloyd	s book� to eager� non�ground� non�deterministic �rst�order
functional programming and to uni�ed relational�functional programming� We think that
a fundament for functional programming should be �grounded	 on a level as deep as
the �Herbrand��model�theoretic fundament of relational programming� Speci�cally this
means that we will try to establish function de�nitions as subsets ff�a�� ���� an� ��� b� � � �g
of so�called ground �molecules	 �directed unconditional equations� from the Herbrand
�cross	 just like relation de�nitions are established as subsets fr�a�� ���� an�� � � �g of ground
atoms from the Herbrand base� Intuitively� Herbrand cross models employ molecules
for the �pointwise	 de�nition of a �discrete� function� akin to the familiar notion of the
�graph	 �or �extension	� of a function as a set of pairs� Avoiding dependencies between
the molecules of such a model which correspond to the usual �functionality	 restriction
f�a�� ���� an� ��� b � f�a�� ���� an� ��� c �� b � c� it will simplify this semantics that we
permit b �� c i�e�� non�deterministic functions� � Una�ected by non�determinism� the
directedness of functional computation is expressed by the �f�a�� ���� an��to�b	 order of
each molecule f�a�� ���� an� ��� b in an Herbrand cross model�

On the basis of the uni�ed pure�RELFUN constructs� the impure relational�functional
features can also be introduced in a uniform manner� For instance� after proving results
corresponding to the �independence of the computation rule� in ���� we could proceed from
�and�parallel	 to �and�sequential	 relational�functional premise evaluation� which is the op�
erational semantics actually implemented for RELFUN �just as for PROLOG�� Similarly�
the resolution�model�theoretic �or�parallelism	 of relational�functional clauses could be
weakened toward the operational �but implementation�incomplete�� �or�sequentialism	
of backtracking� Finally� functions and relations can be forced to operate �more� de�
terministically using the same cut� commit� or substitute constructs
 however� adapting
our model�theoretic approach to such optional determinism speci�cations may be di�cult
because of the semantic problems with cut�like notions�

� Extending First�Order Theories to First�Order

Relational�Functional Theories

We now begin with the formal development of �rst�order relational�functional program�
ming by �functionally	 extending the �Foundations of Logic Programming� ���� which
should also be consulted for references to classical work�

��Re
specializing RELFUN to a sublanguage with only deterministic functions would cause semantic
changes starting o� from the interpretation concept� �While our non�deterministic function symbols
are assigned mappings to the powerset of the domain� deterministic function symbols could be assigned
constructor�like mappings to the domain itself�
 Within models the �deterministic�function� restriction
could then be introduced as an axiom� but this would change Herbrand�s sets to �non�free
 algebras�

�

A �rst�order relational�functional theory consists of

�� An alphabet�

�� A �rst�order relational�functional language �the well�formed formulas of the theory��

�� A set of axioms �a designated subset of the well�formed formulas��

�� A set of inference rules�

De�nition � The alphabet of a �rst�order relational�functional theory consists of nine
classes of symbols �some notational conventions are given in parentheses� where all letters
used may be subscripted��

�� Variables �normally denoted by the letters x� y� and z�� �

	� Constants �normally denoted by the letters a� b� and c��

� Constructors� �normally denoted by the letters j� k� and l��

�� Function symbols �normally denoted by the letters f� g� and h��

�� Relation symbols� �normally denoted by the letters p� q� and r��

� Functional connectives �two binary in�xes denoted by is and ��� and a ternary
mix�x denoted by �� together with ���

�� Relational connectives �a unary pre�x denoted by � and binary in�xes denoted by
�� �� �� � and ����

�� Quanti�ers �denoted by � and 	��

�� Punctuation symbols �� ��� � ��� � ��� � ��� and � ����

The union of the classes of function and relation symbols will be referred to as operation
symbols or� brie�y� operators�

Note that RELFUN	s implemented operational semantics does not di�erentiate sub�
classes for constructor� function� and relation symbols but contextually distinguishes uses
of symbols from a united class� even permitting a given symbol to have occurrences in
more than one subclass �e�g�� the main operator symbol of a body premise will act as a
relation but may re�occur in a foot premise� where it will act as a function
 also� meta�calls
make operators from constructors��

�In larger examples we will capitalize variable names and use digit su�xes instead of subscripts� e�g�
x� becoming X�� to conform to RELFUN�s actual PROLOG�like naming conventions�

�Often called 	functors
 or even 	function symbols
 in the literature�
�Often called 	predicate symbols
 in the literature�
�Much like in PROLOG�s program clauses� 	��
 without a consecutive 	�
 plays the role of 	�
�

�

De�nition � A term is de�ned inductively�

�� A variable is a term�

	� A constant is a term�

� If k is an n�ary constructor and t�� � � � � tn are terms� then k�t�� � � � � tn� is a term�
called a structure�

The above use of square brackets for applying a constructor to arguments clearly sets
o� �passive	 structures from �active	 operator applications as de�ned below with the more
usual round parentheses� In our semantic treatment of relational�functional languages
the bracketing type serves readability but provides no information beyond that already
implicit in the symbol classes� �constructor	 vs� �operator	� In the implemented version of
RELFUN� not distinguishing symbol classes� this information is exclusively conveyed by
������� vs� ��������

In RELFUN cns is employed as the binary list constructor �LISP	s cons or ����� and
nil� as usual� as the constant denoting the empty list� Externally� a list term having the
right�recursively nested form cns�t�� cns�t�� cns�� � � � cns�tn� t� � � ���� is written �PROLOG�
like� as the linearized varying�arity term �t�� t�� � � � � tn� for t � nil or� �t�� t�� � � � � tnjt� for t
being a variable� However� we regard the varying�arity form as �passive� applications of
a constructor tup� understood to precede unpre�xed ��������terms�

De�nition � An expression is de�ned inductively�

�� A term is an expression�

	� If f is an n�ary function symbol and E�� � � � � En are expressions� then f�E�� � � � � En�
is an expression� called an application� if all of E�� � � � � En are terms� f�E�� � � � � En�
is called a �at application�

Such a notion of expressions is essential in functional programming� but lacks in non�
extended logic programming �in ���� �expression� is given a di�erent� peripheral meaning��

De�nition � A �well�formed� formula is de�ned inductively�

�� If r is an n�ary relation symbol and E�� � � � � En are expressions� then r�E�� � � � � En�
is a formula� called a relationship� if all of E�� � � � � En are terms� r�E�� � � � � En� is
called a �at relationship or� since this is the most basic kind of formula� an atomic
formula or� simply� an atom�

	� If E is an expression and t is a term� then �t is E� is a formula� called a setting
formula or� simply� a setter� if E is a �at application� �t is E� is called a �at setter�
if E is a term� �t is E� is called a term setter�

�

� If e is a �at application and E is an expression� then �e ��� E� is a formula� if E
is a term� �e ��� E� is called a molecular formula or� simply� a molecule�

�� If e is a �at application� E is an expression� and W is a formula� then �e �� W � E�
is a formula�

�� If W� and W� are formulas� then so are ��W��� �W��W��� �W��W��� �W� �� W���
and �W� � W���

� If W is a formula and x is a variable� then ��xW � and �	xW � are formulas�

The restriction of e being a �at application in items
� and �� re�ects the �construc�
tor discipline� � � of RELFUN	s footed clauses� It could be dropped in a more general
equational treatment of �rst�order relational�functional languages� Conversely� instead of
letting W� be an arbitrary formula in �W� �� W�� of item ��� it could be immediately
restricted to an atomic formula ��at relationship�� as required for RELFUN	s hornish
clauses�

Note that the parentheses employed to build applications and relationships are in�
dispensible parts of the syntax� The parentheses around entire formulas� however� are
just used for grouping and will frequently be omitted if no ambiguities arise under the
following partial precedence order
 ���� �	�� ��� precede �is� precedes ��� precedes
��� precedes ������ ��� ��� ��� ����� ����

There is a close kinship between �at setters and molecules� which will be con�rmed
in de�nition ��� Thus� an operation that switches between both formula types will be
convenient�

De�nition 	 The self�inverse setter�molecule swapping operation ��� is de�ned as an
exponentiation operator over sets of molecules� �at setters� and relationships �the ui must
be terms���

r�u�� � � � � um�
� � r�u�� � � � � um�

�t is g�u�� � � � � um��
� � g�u�� � � � � um� ��� t

�g�u�� � � � � um� ��� t�� � t is g�u�� � � � � um�

fF�� � � � � Fng
� � fF�

� � � � � � F
�

n g

Example � a� b� c� x� y� k�a� x� b�� l�y� y�� and k�a� l�y� y�� b� are
terms� f�y� k�a� l�y� y�� b�� c� l�y� y�� is a �at application� r�b� f�y� k�a� l�y� y�� b�� c� l�y� y���
is a �non��at� relationship� f�y� k�a� l�y� y�� b�� c� l�y� y�� ��� k�a� x� b� is a molecule�
�f�y� k�a� l�y� y�� b�� c� l�y� y�� ��� k�a� x� b��� � k�a� x� b� is f�y� k�a� l�y� y�� b�� c� l�y� y�� is
a �at setter�

De�nition
 The �rst�order relational�functional language given by an alphabet consists
of the set of all formulas built from the symbols of the alphabet�

�If 	�
 is applicable to a formula F � then �F�
� � F �

�

In the following we will focus special kinds of formulas� namely RELFUN	s clauses�
Una�ected by their Horn�clause extensions �expressions� setters� and foot premises�� they
are closed formulas by assuming all variables to have a prenex universal quanti�er�

De�nition � A �program� clause is a hornish �program� clause or a footed �program�
clause� If w is an atomic formula� e is a �at application� V�� � � � � Vn are relationships or
setters� and E is an expression� then w �� V�� � � � � Vn� abbreviating w �� �V�� � � ��Vn�� is
a hornish �program� clause and e �� V�� � � � � Vn � E� abbreviating e �� �V�� � � ��Vn� � E�
is a footed �program� clause� w or e is the head� V�� � � � � Vn is the body� and E is the foot
of the clause� If V�� � � � � Vn are all atoms� the hornish �program� clause w �� V�� � � � � Vn
is also called a Horn �program� clause� For n � �� i�e� with an empty body� a hornish
�program� clause w �� � abbreviating w �� true� is written as w� while a footed �program�
clause e �� � E� abbreviating e �� true � E� is written as e ��� E�

De�nition � A ���rst�order� relational�functional� program P is a �nite set of program
clauses fc�� � � � � cng� P is usually written �with ����terminators� as�
c��
� � �
cn�

A program will play the role of the set of axioms of a �rst�order relational�functional
theory�

De�nition
 The empty �hornish� clause� denoted � is the hornish clause of the form
�� � which abbreviates false �� true� A terminal ��t��footed� clause� denoted
�t�� t a
term� is a footed clause of the form ��� t� which abbreviates � t� The trivial �hornish�
clause� denoted �� is the hornish clause of the form true �� true�

De�nition �� A relational goal is a hornish clause of the form

�� V�� � � � � Vn

that is� it has an empty head� A functional goal is a footed clause of the form

�� V�� � � � � Vn � E

that is� it has an empty head�

It should be kept in mind that a relational goal is �relational	 in the usual sense only
on the top�level
 the Vi	s need not be atoms but may be nested relationships or setters�
Conversely� a functional goal may of course contain Vi	s that are atoms�	

	Thus� 	relational goal
 should perhaps be renamed into 	hornish goal
� and 	functional goal
 into
	footed goal
� However� this would entail new words in the later de�nitions for 	relational
�	functional

derivation� answer� etc�

� Relational�Functional Interpretations and Models

First� we will consider general interpretations of full �rst�order relational�functional lan�
guages� Then� these will be restricted to Herbrand�like interpretations of RELFUN	s
clause programs� Since the basic RELFUN formalized here does not contain a negation
construct� we will neglect RELFUN	s three�valued open�world semantics and its di�eren�
tiation of the truth values false and unknown ����

De�nition �� A pre�interpretation J of a �rst�order relational�functional language L
consists of�

�� A non�empty set D� called the domain of the pre�interpretation�

	� For each constant in L� the assignment of an element in D�

� For each n�ary constructor in L� the assignment of a mapping from Dn to D�

De�nition �� An interpretation I of a �rst�order relational�functional language L con�
sists of a pre�interpretation J with domain D of L together with�

�� For each n�ary relation symbol in L� the assignment of a mapping from Dn into
ftrue� falseg �or� equivalently� a relation on Dn��

	� For each n�ary function symbol in L� the assignment of a mapping from Dn to �D�
the powerset of D�

We say I is based on J �

De�nition �� Let J be a pre�interpretation of a �rst�order relational�functional language
L� A variable assignment �wrt J� is an assignment to each variable in L of an element
in the domain of J �

De�nition �� Let J be a pre�interpretation with domain D of a �rst�order relational�
functional language L and let V be a variable assignment� The term assignment �wrt J
and V � of the terms in L is de�ned as follows�

�� Each variable is given its assignment according to V �

	� Each constant is given its assignment according to J �

� If k� is the assignment of the n�ary constructor k according to J and t��� � � � � t
�

n are
the term assignments of t�� � � � � tn� then k��t��� � � � � t

�

n� � D is the term assignment of
k�t�� � � � � tn��

De�nition �	 Let I be an interpretation with domain D of a �rst�order relational�
functional language L and let V be a variable assignment� The expression assignment
�wrt I and V � of the expressions in L is de�ned as follows�

��

�� If t� is the term assignment of the term t wrt I and V � then ft�g is the expression
assignment of t�

	� If f � is the mapping assigned to the n�ary function symbol f by I and E�

�� � � � � E
�

n are
the expression assignments of E�� � � � � En� then the union of all f ��t��� � � � � t

�

n� � �D

for each t�� � E�

�� � � �� t
�

n � E�

n is the expression assignment of f�E�� � � � � En��

De�nition �
 Let I be an interpretation with domain D of a �rst�order relational�
functional language L and let V be a variable assignment� Then a formula in L can
be given a truth value� true or false� �wrt I and V � as follows �we let �a possibly em�
bellished version of� t denote a term� of e� denote a �at application� of E� denote an
expression� and of W � denote a formula��

�� If the formula has the form r�E�� � � � � En�� then the truth value of the formula is true
if there exist t�� � E�

�� � � �� t
�

n � E�

n such that r��t��� � � � � t
�

n� has truth value true� where
r� is the mapping assigned to r by I and E�

�� � � � � E
�
n are the expression assignments

of E�� � � � � En wrt I and V � otherwise� the formula�s truth value is false�

	� If the formula has the form f�t�� � � � � tn� ��� E� then the truth value of the formula
is true if the expression assignment of E wrt I and V is E� and E�
 f ��t��� � � � � t

�
n��

where f � is the mapping assigned to f by I� and t��� � � � � t
�
n are the term assignments

of t�� � � � � tn wrt I and V � otherwise� the formula�s truth value is false�

� If the formula has the form t is E� then its truth value is true if the expression
assignment of E wrt I and V is E� and t� � E�� where t� is the term assignment of
t wrt I and V � otherwise� its truth value is false� �

�� If the formula has the form e �� false � E� then its truth value is true� If the
formula has the form e �� true � E� then the truth value is that of e ��� E� ��

�� If the formula has the form �W � W��W�� W��W�� W� �� W�� or W� � W�� then
the truth value is given by the usual truth tables�

� If the formula has the form 	xW � then the truth value of the formula is true if for
all d � D the subformula W has truth value true wrt I and V �x�d�� where V �x�d�
is V except that x is assigned d� otherwise� the formula�s truth value is false�

�
Thus the instance t is f�t�� � � � � tn
 has the same truth value as the instance f�t�� � � � � tn
 ��� t�
de�ned through item �� The di�erent syntaxes are maintained even in these special cases for marking
o� the body�goal use of the former from the clause�de�nition use of the latter� Also� in RELFUN�s
implemented operational semantics� successful setters return their evaluated rhs� rather than just true�

��For formalizing RELFUN�s 	valued conjunctions
� de�nition � could introduce a third class of ex�
pressions� co�inductively with the formulas of de�nition �� making the symbol 	�
 a binary in�x instead
of its actual use as part of a ternary mix�x� If W is a formula and E is an expression� then �W � E

is an expression� This enables simulating formulas of the form e �� W � E by nestings of the form
e ��� �W � E
� For this� the expression �true � E
 can be assigned the value of E� However� assigning
false to �false � E
� blurring the distinction between ��D�valued
 expressions and �ftrue� falseg�valued

formulas� would� e�g�� cause fac�N
 ��� �zerop�N
 � �
 to return false for fac��
 instead of signalling
inapplicability� Therefore� in RELFUN �false � E
 is actually assigned the failure�signalling truth value
unknown� which can be regarded as the empty expression value fg � �D�

��

�� If the formula has the form �xW � then its truth value is true if there exists d � D
such that W has truth value true wrt I and V �x�d�� otherwise� its truth value is
false�

This functionally extended truth concept directly transfers to the classical de�nitions
of� e�g�� model� validity� and logical consequence� for which we refer to ����

Example � Consider the formula 	x�x is f�g�x�� g�x��� and the following interpretation
I� Let D � f�� �� � � �g be the natural numbers� let f be assigned the function that maps
two naturals to the singleton set of their product� and let g be assigned the function that
maps a natural to the set of its divisors� Then I is a model of the formula because all
naturals have at least themselves and � as divisors�

The de�nitions of groundness and Herbrand universes and bases adapt the correspond�
ing classical notions
 the de�nitions of Herbrand crosses and crossbases extend the notion
of Herbrand bases in order to de�ne models of� respectively� functional and relational�
functional programs� as motivated in section ��

De�nition �� A ground term� ground atom� or ground molecule is� respectively� a term�
atom� or molecule not containing variables�

De�nition �� The Herbrand universe UP of a program P is the set of all ground terms
that can be formed out of the constants and constructors appearing in P �

De�nition �
 The Herbrand base BP of a program P is the set of all ground atoms that
can be formed by using the relation symbols from P with ground terms from the Herbrand
universe UP as arguments�

De�nition �� The Herbrand cross CP of a program P is the set of all ground molecules
that can be formed by using the function symbols from P with ground terms from the
Herbrand universe UP as arguments and using ground terms from UP as foots�

De�nition �� The Herbrand crossbase XP of a program P is the union BP � CP of its
Herbrand base BP and its Herbrand cross CP �

Example 	 The �deterministic� extra�variables� is�less� program P�

f�X� �� p�X�� q�Y � � g�g�X�Y �� Y ��
g�a� a� ��� k�X��
g�k�X�� l�X�� ��� g�X�X��
p�k�X���
q�l�X���

��

uses the constructors k and l� and employs the operators f and g �as functions� as well as
p and q �as relations��

The Herbrand universe UP� of P� is
fa� k�a�� l�a�� k�k�a��� k�l�a��� l�k�a��� l�l�a��� � � �g�

The Herbrand base BP� of P� is
fp�a�� q�a�� p�k�a��� p�l�a��� q�k�a��� q�l�a��� � � �g�

The Herbrand cross CP� of P� is
ff�a� ��� a� f�a� ��� k�a�� f�a� ��� l�a�� � � � �
g�a� a� ��� a� g�a� a� ��� k�a�� g�a� a� ��� l�a�� � � � �
� � �g�

The Herbrand crossbase XP� � BP� � CP� of P� is
fp�a�� q�a�� p�k�a��� p�l�a��� q�k�a��� q�l�a��� � � � �
f�a� ��� a� f�a� ��� k�a�� f�a� ��� l�a�� � � � �
g�a� a� ��� a� g�a� a� ��� k�a�� g�a� a� ��� l�a�� � � � �
� � �g�

Two generalized model concepts can now be de�ned� extending the usual Herbrand
models for relational programs to models for functional and relational�functional pro�
grams�

De�nition �� An Herbrand �base�� Herbrand cross� or Herbrand crossbase interpreta�
tion is a subset of the Herbrand base� Herbrand cross� or Herbrand crossbase� respectively�

De�nition �� Let I be an Herbrand �base�� Herbrand cross� or Herbrand crossbase inter�
pretation and let P be a program� Then I is� respectively� an Herbrand �base�� Herbrand
cross� or Herbrand crossbase model for P if P is true wrt I�

We concentrate the further development on relational�functional Herbrand crossbase
models� which� however� constitute disjoint unions of Herbrand cross models and Herbrand
�base� models�

The �model intersection� proposition ��� of ��� obviously also holds for the crossbase
extension�

Proposition � �Model intersection property� Let P be a relational�functional pro�
gram and fMigi�I be a non�empty set of Herbrand crossbase models for P � Then

T
i�IMi

is an Herbrand crossbase model for P �

Since every relational�functional program P has XP as an Herbrand crossbase model�
the set of all Herbrand crossbase models for P is non�empty� and proposition � permits
the following de�nition�

��

De�nition �� The least Herbrand crossbase model MP for a relational�functional pro�
gram P is the intersection of all Herbrand crossbase models for P �

Example
 For u assuming all values from UP� � the following Herbrand crossbase in�
terpretation I� contained in XP� � is an �the least� Herbrand crossbase model of P� �cf�
example ���

ff�k�a�� ��� k�u�� g�a� a� ��� k�u�� g�k�a�� l�a�� ��� k�u��
p�k�u��� q�l�u��g�

Thus� while P� deterministically returns the non�ground term k�X� for certain arguments
of the functions f and g �failing for other ones�� the model of P� contains in�nitely non�
deterministic molecules that let f and g return the ground terms k�a�� k�k�a��� k�l�a��� � � �
for the same argument combinations�

Proposition � Let P be a relational�functional program and I an Herbrand crossbase
model of P �in particular� the least one�� Then there exist a Horn program !P and an
Herbrand model !I of !P �in particular� the least one� such that there is a bijection between
I and !I�

Example � The relational�functional program P� of example � can be transformed into
the following Horn program !P� by �attening the g nesting and introducing result parame�
ters for f and g �note that the g�molecule becomes an atom��

!f�X�R� �� p�X�� q�Y �� !g�X�Y� S�� !g�S� Y�R��
!g�a� a� k�X���
!g�k�X�� l�X�� R� �� !g�X�X�R��
p�k�X���
q�l�X���

An �the least� Herbrand model !I of !P� is �where u � U �P�
� UP���

f !f�k�a�� k�u��� !g�a� a� k�u��� !g�k�a�� l�a�� k�u���
p�k�u��� q�l�u��g�

The bijection between I and !I is obvious� untilded �functional� molecules correspond to
tilded �relational� atoms� untilded atoms remain unchanged�

While the above bijection� call it bLAST � introduces the new parameter in position n " ��
there is another bijection� bFIRST � introducing it in position �� as actually done by REL�
FUN�s relationalize algorithm �
�� That is� an Herbrand model such as !I alone does
not carry the entire information of the original Herbrand crossbase model such as I� the
type of bijection must be speci�ed along with the Herbrand model in order to preserve in
the relations the computation direction ��mode�� of the original functions� For instance�
while �bLAST ��� � bLAST �I� � I� the composition �bFIRST ��� � bLAST would transform I to

��

the Herbrand crossbase model

ff�k�u�� ��� k�a�� g�a� k�u�� ��� a� g�l�a�� k�u�� ��� k�a��
p�k�u��� q�l�u��g

which is not equivalent to I�

Let us now proceed to the generalized notions of relational�functional answers and
their correctness�

De�nition �	 Let P be a relational�functional program and Gr and Gf be a relational
and a functional goal� respectively� A relational answer for P � fGrg is a substitution for
variables of Gr� A functional answer for P � fGfg is a term paired with a substitution
for variables of Gf �

It should be understood that the substitution does not necessarily contain a binding for
every variable in Gr or Gf � Since RELFUN	s operational semantics considers relations as
true�valued functions� a relational answer operationally returns the term true along with
yielding a substitution�

De�nition �
 Let P be a relational�functional program� Gr a relational goal
�� B�� � � � � Bk with � an answer for P �fGrg� and Gf a functional goal �� B�� � � � � Bk � F
with �t� �� an answer for P � fGfg� We say that � is a correct �relational� answer for
P � fGrg if 	��B� � � � � � Bk��� is a logical consequence of P � We say that �t� �� is a
correct �functional� answer for P � fGfg if 	��B� � � � � � Bk � �t is F ���� is a logical
consequence of P �

The following lemma shows that functional answers� i�e� �value returning to the top�
level�� can be simulated by relational answers binding top�level return values to a special
variable�

Lemma � Let P be a relational�functional program� Gf a
functional goal �� B�� � � � � Bk � F � and Gr a relational goal �� B�� � � � � Bk� �x is F �
with x a new variable� Then the following statements are equivalent�

�� �t� �� is a correct functional answer for P � fGfg�

	� �fx�tg is a correct relational answer for P � fGrg�

Proof
�t� �� is a correct functional answer for P � fGfg
i�
	��B� � � � � �Bk � �t is F ���� is a logical consequence of P
i�
	��B� � � � � �Bk � �x is F ���fx�tg� is a logical consequence of P
i�
�fx�tg is a correct relational answer for P � fGrg�

��

� SLV�Resolution

We now extend SLD�resolution to �rst�order relational�functional clauses� where the SLD�
case will be called body resolution� The extended resolution method� similar to innermost
conditional narrowing ���� will be called SLV�resolution �SL�resolution for �Valued clauses�
i�e�� RELFUN	s de�nite�clause extension�� It provides the set of inference rules of a �rst�
order relational�functional theory� The detailed example � at the end of this section will
illustrate most SLV�resolution concepts�

De�nition �� Let Gr be the relational goal �� B�� � � � � Bm� � � � � Bk� further let C be the
hornish clause d �� V�� � � � � Vv or the footed clause e �� W�� � � � �Ww � E or the trivial
clause �� Then G�

r is �relationally� derived from Gr and C using mgu � if one of the
following �ve inference rules applies �we let t�s or u�s denote terms��

Body resolution

�� Bm is an atom� called the selected atom� in Gr�

	� C is the hornish clause d �� V�� � � � � Vv and � is the mgu of Bm and d�

� G�

r is the relational goal �� �B�� � � � � Bm��� V�� � � � � Vv� Bm��� � � � � Bk���

is�rhs resolution

�� Bm is a formula of the form t is g�u�� � � � � um�� called the selected �at setter�
in Gr�

	� C is the footed clause e �� W�� � � � �Ww � E and � is the mgu of g�u�� � � � � um�
and e�

� G�
r is the relational goal

�� �B�� � � � � Bm���W�� � � � �Ww� t is E�Bm��� � � � � Bk���

Body �attening

�� Bm in Gr is a formula of the form
r�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� called the selected nested re�
lationship� and h�Ei��� � � � � Ei�ni� is an embedded application� called the selected
�relationship��embedded application�

	� C is the trivial clause � and � is the identity substitution �hence� trivially� an
mgu��

� x is a new variable�

�� G�

r is the relational goal �� B�� � � � � Bm���
x is h�Ei��� � � � � Ei�ni�� r�E�� � � � � Ei��� x�Ei��� � � � � Em�� Bm��� � � � � Bk�

is�rhs �attening

�� Bm in Gr is a for�
mula of the form t is g�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� called
the selected nested setter� and h�Ei��� � � � � Ei�ni� is an embedded application�
called the selected �is��embedded application�

��

	� C is the trivial clause � and � is the identity substitution �hence� trivially� an
mgu��

� x is a new variable�

�� G�

r is the relational goal �� B�� � � � � Bm���
x is h�Ei��� � � � � Ei�ni�� t is g�E�� � � � � Ei��� x�Ei��� � � � � Em�� Bm��� � � � � Bk�

Term uni�cation

�� Bm is a formula of the form t� is t�� called the selected term setter� in Gr�

	� C is the trivial clause � and � is the mgu of t� and t��

� G�
r is the relational goal �� �B�� � � � � Bm��� Bm��� � � � � Bk���

De�nition �� Let Gf be the functional goal �� B�� � � � � Bk � F � further let C be the
hornish clause d �� V�� � � � � Vv or the footed clause e �� W�� � � � �Ww � E or the trivial
clause �� Then G�

f is �functionally� derived from Gf and C using mgu � if one of the
following three inference rules applies �we let u�s denote terms��

Relational subderivation �using one of the �ve rules of de�nition ���

�� Gr is �� B�� � � � � Bk� called the selected relational subgoal of Gf �

	� G�

r is relationally derived from Gr and C using mgu ��

� G�

f is the functional goal �� G�

r � F��

Foot resolution

�� F is a formula of the form g�u�� � � � � um�� called the selected �at application�
in Gf �

	� C is the footed clause e �� W�� � � � �Ww � E and � is the mgu of g�u�� � � � � um�
and e�

� G�

f is the functional goal �� �B�� � � � � Bk�W�� � � � �Ww � E���

Foot �attening

�� F in Gf is a formula of the form
g�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� called the selected nested ap�
plication� and h�Ei��� � � � � Ei�ni� is an embedded application� called the selected
�application��embedded application�

	� C is the trivial clause � and � is the identity substitution �hence� trivially� an
mgu��

� x is a new variable�

�� G�
f is the functional goal

�� B�� � � � � Bk� x is h�Ei��� � � � � Ei�ni� � g�E�� � � � � Ei��� x�Ei��� � � � � Em��

��

Although we �rst presented relational goals �in de�nition ��� and then extended them
to functional goals �in de�nition ���� the inference rules would not have to distinguish
body and foot premises for their �selection function� �or� item �� of each rule�� and
they do not in the actual implementation
 �relational� body resolution and �functional�
foot resolution� as well as body and foot �attening� could be treated together� Similarly�
inference rules operating in the top�level of premises and in is�rhs	s have a common
realization
 �relational� body resolution and �functional� is�rhs resolution� as well as body
�attening and is�rhs �attening� could be identi�ed� However� our more discriminative
presentation will clarify the case analysis of the soundness proof�

De�nition �
 Let P be a relational�functional program and G be a �relational or func�
tional� goal� A �relational resp� functional� SLV�derivation of P �fGg consists of a �nite
or in�nite sequence G
 � G�G�� G�� � � � of �relational resp� functional� goals� a sequence
C�� C�� � � � of variants of program clauses of P �f�g� � the trivial clause� and a sequence
��� ��� � � � of mgu�s such that each Gi�� is derived from Gi and Ci�� using �i���

De�nition �� A �relational� SLV�refutation of P �fGrg� Gr a relational goal� is a �nite
SLV�derivation of P � fGrg that has the empty hornish clause as the last goal in the
derivation� A �functional� SLV�refutation of P � fGfg� Gf a functional goal� is a �nite
SLV�derivation of P � fGfg that has the terminal footed clause
�t� as the last goal in
the derivation� If Gn � or Gn �
�t�� we say the refutation has length n�

De�nition �� An unrestricted �relational or functional� SLV�refutation is a �relational
or functional� SLV�refutation� except that the substitutions �i are not required to be most
general uni�ers� They are only required to be uni�ers�

De�nition �� Let P be a relational�functional program� The relational success set of P
is the set of all ground atoms a � BP such that P �f �� ag has a relational SLV�refutation�
The functional success set of P is the set of all ground molecules �e ��� t� � CP such
that P � f ��� eg has a functional SLV�refutation with last goal
�t�� The success set of
P is the union of the relational and functional success sets of P �

Proposition � Let P be a relational�functional program� The functional success set of
P is the set of all ground molecules �e ��� t� � CP such that P � f �� �t is e�g has a
relational SLV�refutation�

Proof
The ground �at setter �t is e� � �e ��� t�� leads to a relational SLV�refutation i� e�
also being the corresponding molecule�s ground �at application� leads to a functional SLV�
refutation with last goal
�t��

De�nition �� Let P be a relational�functional program� further� let Gr be a relational
goal� Suppose there is an SLV�refutation of P � fGrg and let ��� � � � � �n be its sequence
of mgu�s� A computed �relational� answer for P � fGrg is the substitution � obtained by
restricting the composition �� � � � �n to the variables of Gr�

��

De�nition �� Let P be a relational�functional program� further� let Gf be a functional
goal� Suppose there is an SLV�refutation of P � fGfg and let ��� � � � � �n be its sequence of
mgu�s and let
�t� be its last goal� A computed �functional� answer for P � fGfg is the
pair �t�� � � � �n� ��� with the term t extracted from
�t� and the substitution � obtained by
restricting the composition �� � � � �n to the variables of Gf �

Lemma � Let P be a relational�functional program� Gf a
functional goal �� B�� � � � � Bk � F � and Gr a relational goal �� B�� � � � � Bk� �x is F �
with x a new variable� Then the following statements are equivalent�

�� �t� �� is a computed functional answer for P � fGfg�

	� �fx�tg is a computed relational answer for P � fGrg�

Proof
�t� �� is a computed functional answer for P � fGfg
i�
there is an SLV�refutation of P � fGfg with a sequence of mgu�s ��� � � � � �n and last goal

�u� such that t is u�� � � � �n and � restricts the composition �� � � � �n to the variables of
Gf

i�
there is an SLV�refutation of P � fGrg with a sequence of mgu�s ��� � � � � �n� fx�tg such
that �fx�tg restricts the composition �� � � � �nfx�tg to the variables of Gr

i�
�fx�tg is a computed relational answer for P � fGrg�

Example � The �non�deterministic� no�extra�variables� is�using� program P�

f�X� �� p�g�a�� g�X�� � h�g�X���
g�a� ��� c�
g�a� ��� h�c��
h�X� ��� b�
p�X� c� �� X is h�a�� q�h�X���
q�b��

uses no constructors� hence belongs to the DATALOG�extending DATAFUN subset of
RELFUN� it has the �nite Herbrand universe fa� b� cg� hence a �nite Herbrand crossbase�

A functional SLV�refutation of P� � f ��� f�Y �g is�

G
 � G � ��� f�Y �
Foot resolution of f�Y � with C� � f�X�� �� p�g�a�� g�X��� � h�g�X���� �� � fY�X�g�
G� � �� p�g�a�� g�X��� � h�g�X���
Body �attening of p�g�a�� � � �� with C� � �� �� � fg�
G� � �� Z� is g�a�� p�Z�� g�X��� � h�g�X���
is�rhs resolution of Z� is g�a� with C� � g�a� ��� h�c�� �� � fg�

�

G� � �� Z� is h�c�� p�Z�� g�X��� � h�g�X���
is�rhs resolution of Z� is h�c� with C� � h�X�� ��� b� �� � fX��cg�
G� � �� Z� is b� p�Z�� g�X��� � h�g�X���
Term uni�cation of Z� is b with C� � �� �� � fZ��bg�
G� � �� p�b� g�X��� � h�g�X���
Body �attening of p�� � � � g�X��� with C� � �� �� � fg�
G� � �� Z� is g�X��� p�b� Z�� � h�g�X���
is�rhs resolution of Z� is g�X�� with C� � g�a� ��� c� �� � fX��ag�
G� � �� Z� is c� p�b� Z�� � h�g�X���
Term uni�cation of Z� is c with C� � �� �� � fZ��cg�
G� � �� p�b� c� � h�g�X���
Body resolution of p�b� c� with C	 � p�X�� c� �� X� is h�a�� q�h�X���� �	 � fX��bg�
G	 � �� b is h�a�� q�h�b�� � h�g�X���
is�rhs resolution of b is h�a� with C�
 � h�X�� ��� b� ��
 � fX��ag�
G�
 � �� b is b� q�h�b�� � h�g�X���
Term uni�cation of b is b with C�� � �� ��� � fg�
G�� � �� q�h�b�� � h�g�X���
Body �attening of q�h�b�� with C�� � �� ��� � fg�
G�� � �� Z� is h�b�� q�Z�� � h�g�X���
is�rhs resolution of Z� is h�b� with C�� � h�X�� ��� b� ��� � fX��bg�
G�� � �� Z� is b� q�Z�� � h�g�X���
Term uni�cation of Z� is b with C�� � �� ��� � fZ��bg�
G�� � �� q�b� � h�g�X���
Body resolution of q�b� with C�� � q�b�� ��� � fg�
G�� � ��� h�g�a����

Foot �attening of h�g�a�� with C�� � �� ��� � fg�
G�� � �� Z� is g�a� � h�Z��
is�rhs resolution of Z� is g�a� with C�� � g�a� ��� c� ��� � fg�
G�� � �� Z� is c � h�Z��
Term uni�cation of Z� is c with C�� � �� ��� � fZ��cg�
G�� � ��� h�c�
Foot resolution of h�c� with C�	 � h�X�� ��� b� ��	 � fX��bg�
G�	 � ��� b

This length��� refutation happens to use RELFUN�s implemented PROLOG�like �leftmost�
computation rule �however� RELFUN implements �attening in a condensed �and�parallel�
fashion�� Operationally speaking� �f�Y � returns b and binds Y to a�� The refutation has
last goal G�	 �
�b�� and �� � � � ��	 restricted to Y is fY�ag� hence the computed func�
tional answer is �b� fY�ag��

The equivalent computed relational answer for P� � f �� Z is f�Y �g is fY�a� Z�bg�
Here� the refutation uses is�rhs resolutions and performs an is�rhs �attening instead of
the corresponding rules operating on the foot� and it needs a �nal term uni�cation� Func�
tional computation is somewhat hidden in the auxiliary setter�s rhs� However� the kernel

��The binding �� � fX��ag from the relational subderivation G�� � � � � G�� is applied here�

��

subderivations of the functional and relational refutations are essentially the same�

The success set of P� is �functional and relational partitions displayed in separate lines����

ff�a� ��� b� g�a� ��� b� g�a� ��� c� h�a� ��� b� h�b� ��� b� h�c� ��� b�
q�b�� p�b� c�g

� Soundness of SLV�Resolution

While the following result addresses relational goals� only the �rst of the �ve SLV�
resolution rules to be considered corresponds to the classical case of logic programming
as proved by K� L� Clark�

Theorem � �Soundness of relational SLV�resolution� Let P be
a relational�functional program and Gr a relational goal� Then every computed answer
for P � fGrg is a correct answer for P � fGrg�

Proof
Let Gr be the relational goal �� B�� � � � � Bk and ��� � � � � �n be the sequence of mgu�s used
in an SLV�refutation of P � fGrg� We have to show that 	��B� � � � � � Bk��� � � � �n� is a
logical consequence of P � The result is proved by induction on the length of the refutation�

Suppose �rst that n � �� This means that Gr is a goal of the form �� B�� to which
either of two of the �ve SLV�resolution rules applies�

Body resolution B� is an atom� the program has a unit clause of the form d �� � and
B��� � d��� Since B��� �� is an instance of a unit clause of P � it follows that
	�B���� is a logical consequence of P �

is�rhs resolution Cannot derive in one step�

Body �attening Cannot derive in one step�

is�rhs �attening Cannot derive in one step�

Term uni�cation B� is a formula of the form t� is t� and �� is the mgu of t� and
t�� Since t��� � t���� it follows that 	�B���� is valid� hence� trivially� is a logical
consequence of P �

Next suppose that the result holds for computed answers that come from SLV�
refutations of length n��� Suppose ��� � � � � �n is the sequence of mgu�s used in a refutation
of P � fGrg of length n� One of the �ve SLV�resolution rules applies�

��In higher�order RELFUN� this can be obtained from the computed answers of an operator�variable�
varying�arity goal ��� such as ��� Op�jArgs
�

��

Body resolution Let Bm be the selected atom of Gr and the hornish clause
d �� V�� � � � � Vv �v � �� be the �rst input clause� By the induction hypothesis�
	��B�� � � ��Bm�� �V� � � � ��Vv �Bm�� � � � ��Bk��� � � � �n� is a logical consequence
of P � Thus� if v � �� 	��V�� � � ��Vv��� � � � �n� is a logical consequence of P � In this
case� as well as for v � �� 	�Bm�� � � � �n�� which is the same as 	�d�� � � � �n�� is a
logical consequence of P � Hence 	��B� � � � � � Bk��� � � � �n� is a logical consequence
of P �

is�rhs resolution Let Bm be the selected �at setter t is g�u�� � � � � um� of Gr and the
footed clause e ��W�� � � � �Ww � E �w � �� be the �rst input clause� By the induction
hypothesis� 	��B�� � � ��Bm�� �W� � � � ��Ww � t is E �Bm�� � � � ��Bk��� � � � �n�
is a logical consequence of P � Thus� for w � �� 	��W�� � � ��Ww � t is E��� � � � �n�
is a logical consequence of P � Consequently� 	�Bm�� � � � �n�� which is the same as
	��t is e��� � � � �n�� is a logical consequence of P � Hence 	��B� � � � � �Bk��� � � � �n�
is a logical consequence of P �

Body �attening Let Bm be the selected nested rela�
tionship r�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em� with the selected embedded
application h�Ei��� � � � � Ei�ni� of Gr� By the induction hypothesis� 	��B��� � ��Bm���
�x is h�Ei��� � � � � Ei�ni���r�E�� � � � � Ei��� x�Ei��� � � � � Em��Bm���� � ��Bk��� � � � �n��
x the new variable chosen by the SLV�refutation� is a logical consequence of P � Thus�
	��x is h�Ei��� � � � � Ei�ni���� � � � �n� and 	�r�E�� � � � � Ei��� x�Ei��� � � � � Em��� � � � �n�
are logical consequences of P � Consequently� 	�Bm�� � � � �n� is a logical consequence
of P � Hence 	��B� � � � � �Bk��� � � � �n� is a logical consequence of P �

is�rhs �attening Let Bm be the
selected nested setter t is g�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em� with the
selected embedded application h�Ei��� � � � � Ei�ni� of Gr� By the induction hypothesis�
	��B��� � ��Bm����x is h�Ei��� � � � � Ei�ni����t is g�E�� � � � � Ei��� x�Ei��� � � � � Em���
Bm�� � � � � � Bk��� � � � �n�� x the new variable chosen by the SLV�refutation�
is a logical consequence of P � Thus� 	��x is h�Ei��� � � � � Ei�ni���� � � � �n� and
	��t is g�E�� � � � � Ei��� x�Ei��� � � � � Em���� � � � �n� are logical consequences of P �
Consequently� 	�Bm�� � � � �n� is a logical consequence of P � Hence 	��B� � � � � �
Bk��� � � � �n� is a logical consequence of P �

Term uni�cation Let Bm be the selected term setter t� is t� of Gr� By the induction
hypothesis� 	��B� � � � � � Bm�� �Bm�� � � � � � Bk��� � � � �n� is a logical consequence
of P � Since t��� � � � �n � t��� � � � �n� it follows that 	�Bm�� � � � �n� is valid� hence�
trivially� is a logical consequence of P � Hence 	��B� � � � ��Bk��� � � � �n� is a logical
consequence of P �

The result for relational goals naturally carries over to functional goals�

Corollary � �Soundness of functional SLV�resolution� Let P be a relational�
functional program and Gf a functional goal� Then every computed answer for P � fGfg
is a correct answer for P � fGfg�

��

Proof
By lemmas 	 and � there is an equivalent relational goal with computed and correct answers
for which the soundness result of theorem � holds�

Corollary � The success set of a relational�functional program is contained in its least
Herbrand crossbase model�

Proof
Let the program be P and suppose F � XP is in the success set of P � By proposition
�
the success set of P is the set of all F � XP such that P � f �� F�g has a relational
refutation� By theorem �� F�� hence F � is a logical consequence of P � Thus� F is true
wrt all Herbrand crossbase models of P � hence is in P �s least Herbrand crossbase model�

� Least Herbrand Crossbase Models as Fixpoints

We now de�ne TP �like immediate�consequence operators on Herbrand crossbase interpre�
tations� For this we employ unnesting of clause premises� a �xpoint�semantics� ground�
formula analogue to �attening in SLV�resolution� Instead of introducing new variables�
unnesting chooses any ground terms from the Herbrand universe� as �returned values��
to link the subformulas generated from the original formula�

De�nition �	 A set of unnested setters unnestisP �t is E� of a ground setter t is E
for a program P is de�ned recursively as the non�deterministic mapping

unnestisP �t is g�u�� � � � � um�� �

ft is g�u�� � � � � um�g if fu�� � � � � umg
 UP

unnestisP �t is g�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� �

unnestisP �u is h�Ei��� � � � � Ei�ni�� � unnestisP �t is g�E�� � � � � Ei��� u�Ei��� � � � � Em��

for some u � UP

De�nition �
 A set of unnested formulas unnestP �V � of a ground relationship or setter
V for a program P is de�ned as the non�deterministic mapping

unnestP �r�u�� � � � � um�� �

fr�u�� � � � � um�g if fu�� � � � � umg
 UP

unnestP �r�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� �

unnestisP �u is h�Ei��� � � � � Ei�ni�� � unnestP �r�E�� � � � � Ei��� u�Ei��� � � � � Em��

for some u � UP

unnestP �t is t� �

fg if t � UP

unnestP �t is g�E�� � � � � Em�� �

unnestisP �t is g�E�� � � � � Em��

��

A �rst auxiliary immediate�consequence operator� TBP � generates atoms from atoms
and molecules�

De�nition �� Let P be a relational�functional program� The mapping TBP
 �XP � �BP

is de�ned as follows� Let I � �XP be an Herbrand crossbase interpretation� Then�

TBP �I� � fw � BP j w �� V�� � � � � Vn is a ground instance of a clause in P�
unnestP �Vk�

�
 I for � � k � ng

If each Vk has the Horn�premise form r�u�� � � � � un� of an atom� unnestP �Vk�� just
denotes the unit set fVkg� hence TBP becomes the TP operator of M� H� van Emden and
R� Kowalski�

Proposition � Let P be a relational�functional program containing Horn clauses only
and I � �BP be an Herbrand interpretation� Then the mapping TBP restricted to �BP

�XP specializes to the mapping TP
 �BP � �BP de�ned as�

TP �I� � fw � BP j w �� V�� � � � � Vn is a ground instance of a clause in P�
Vk � I for � � k � ng

Note how the intuitive understanding of TP is extended by TBP
 as TP �I� �guesses	 a
ground clause of P and then checks whether its premise atoms are members of I� TBP �I�
�guesses	 a ground clause of P � then �guesses	 an unnesting �zero�one atoms and one�zero
or more setters� from each of its premises� and then checks whether the ����corresponding
atoms and molecules constitute subsets of I�

A second auxiliary immediate�consequence operator� TCP � generates molecules from
atoms and molecules�

De�nition �� Let P be a relational�functional program� The mapping TCP
 �XP � �CP

is de�ned as follows� Let I � �XP be an Herbrand crossbase interpretation� Then�

TCP �I� � fe ��� t � CP j e �� V�� � � � � Vn � E is a ground instance of a clause in P�
unnestP �Vk�

�
 I for � � k � n�
unnestP �t is E��
 Ig

Example
 The program P� �cf� example �� with UP� � fa� b� cg contains the footed
clause f�X� �� p�g�a�� g�X�� � h�g�X��� Suppose a TCP� application selects the
ground instance f�a� �� p�g�a�� g�a�� � h�g�a��� i�e� V� � p�g�a�� g�a�� and E �
h�g�a��� Then unnestP��V�� can select fp�b� c�� b is g�a�� c is g�a�g� so that
unnestP��V��

� � fp�b� c�� g�a� ��� b� g�a� ��� cg� Further suppose TCP��s set for�
mation selects t � b and unnestP��t is E� selects fb is h�c�� c is g�a�g� so that
unnestP��t is E�� � fh�c� ��� b� g�a� ��� cg� Now� if some interpretation I has
fp�b� c�� g�a� ��� b� g�a� ��� c� h�c� ��� bg as a subset� TCP��I� will contain the
element f�a� ��� b�

��

Since the sets produced by unnesting are always �nite� the atoms and setters resulting
from unnestP �Vk� and unnestP �t is E� can be regarded as premises of a �virtual	 ground
clause e �� unnestP �V���� � � � � unnestP �Vn��� unnestP �t is E�� � t� ��f���g�� denotes the
sequence of elements of �f���g��� The corresponding non�ground clause can be obtained by
transforming the original program P via static �attening and denotative normalization
���� Therefore� each application of TCP can be regarded as a condensed form of the
application of a less powerful operator indexed by the more lengthy transformed program
�TP 	s extension would be con�ned to clauses with atomic and �at�setter bodies and term
foots��

Example �� A virtual ground clause of f�a� �� p�g�a�� g�a�� � h�g�a�� from example �
is f�a� �� b is g�a�� c is g�a�� p�b� c�� c is g�a�� b is h�c� � b� Its non�ground abstraction
f�X� �� Y � is g�a�� Y � is g�X�� p�Y �� Y ��� Y � is g�X�� Y � is h�Y �� � Y � is the
�attened� denotative normalization of f�X� �� p�g�a�� g�X�� � h�g�X��� the original non�
ground clause�

The main immediate�consequence operator� TXP � just unites the two auxiliary ones�

De�nition �
 Let P be a relational�functional program� The mapping TXP
 �XP � �XP

is de�ned as follows� Let I � �XP be an Herbrand crossbase interpretation� Then�

TXP �I� � TBP �I� � TCP �I�

Example �� Let P� be the relational�functional program of example � and I
the interpretation fg�k�a��l�a�� ��� k�a�� p�k�a��� q�l�a��g � �XP� � Since
unnestP��k�a� is g�g�k�a�� l�a��� l�a���� can select fg�k�a�� l�a�� ��� k�a�g� we obtain
TXP��I� � ff�k�a�� ��� k�a�� g�a�a� ��� k�u�� p�k�u��� q�l�u��g for u � UP� �

Clearly� TXP is monotonic on the complete lattice �XP under the partial order �
��
Like TP in ���� it can be shown to be continuous�

Proposition 	 Let P be a relational�functional program� Then the mapping TXP is
continuous�

Proof
Let S be a directed subset of �XP � Vk be a ground relationship or setter� for � � k � n� and
t is E be a ground setter� Each unnestP �Vk�

� being a �nite set� we can �rst note that
Sn
k
� unnestP �Vk�

�
 lub�S� i�
Sn
k
� unnestP �Vk�

�
 I for some I � S� furthermore�
unnestP �t is E�� being a �nite set�

Sn
k
� unnestP �Vk�

� � unnestP �t is E��
 lub�S� i�
Sn
k
� unnestP �Vk�

� � unnestP �t is E��
 I for some I � S� In order to show that TXP

is continuous we have to show TXP �lub�S�� � lub�TXP �S�� for each directed subset S�
Since TXP denotes the disjoint union of TBP �s and TCP �s values we show the equality
of both subsets individually�

��

w � TBP �lub�S��
i�
w �� V�� � � � � Vn is a ground instance of a clause in P and

Sn
k
� unnestP �Vk�

�
 lub�S�
i�
w �� V�� � � � � Vn is a ground instance of a clause in P and

Sn
k
� unnestP �Vk�

�
 I for
some I � S
i�
w � TBP �I� for some I � S
i�
w � lub�TBP �S��

e ��� t � TCP �lub�S��
i�
e �� V�� � � � � Vn � E is a ground instance of a clause in P and

Sn
k
� unnestP �Vk�

� �
unnestP �t is E��
 lub�S�
i�
e �� V�� � � � � Vn � E is a ground instance of a clause in P and

Sn
k
� unnestP �Vk�

� �
unnestP �t is E��
 I for some I � S
i�
e ��� t � TCP �I� for some I � S
i�
e ��� t � lub�TCP �S��

Herbrand crossbase models can be characterized in terms of TXP �

Proposition
 Let P be a relational�functional program and I be an Herbrand crossbase
interpretation of P � Then I is a crossbase model for P i� TXP �I�
 I�

Proof
I is a crossbase model for P
i�
for each ground instance w �� V�� � � � � Vn or e �� V�� � � � � Vn � E of each clause in P
we have� respectively�

Sn
k
� unnestP �Vk�

�
 I implies w � I or
Sn
k
� unnestP �Vk�

� �
unnestP �t is E��
 I implies e ��� t � I
i�
TXP �I�
 I

Using these propositions and general �xpoint results� we can extend the �xpoint char�
acterization of the least Herbrand model of logic programs by M� H� van Emden and
R� Kowalski to a characterization of the least Herbrand crossbase model of relational�
functional programs �for the ����notation see �����

Theorem � �Fixpoint characterization of the least Herbrand crossbase model�
Let P be a relational�functional program� Then MP � lfp�TXP � � TXP � ��

��

Proof

MP � glbfI j I is an Herbrand crossbase model for Pg

� glbfI j TXP �I�
 Ig� by proposition �

� lfp�TXP �� by proposition ��� in ���

� TXP � �� by proposition ��� in ��� and proposition �

Example �� The ��element least Herbrand crossbase model of the program P� of example
� �in section �� can be computed bottom�up by the following TXP� iterations �details of
the last step were shown in example ���

TXP� � � �
fg

TXP� � � � TXP� � � �
fg�a� ��� c� h�a� ��� b� h�b� ��� b� h�c� ��� b�
q�b�g

TXP� � � � TXP� � � �
fg�a� ��� b�
p�b� c�g

MP� � lfp�TXP�� � TXP� � � � TXP� � � � TXP� � � �
ff�a� ��� bg

This is equal to the success set of P� given in example ��

	 Completeness of SLV�Resolution

Like for soundness� we will again use proposition � as well as lemmas � and �
 hence the
following mgu and lifting lemmas will only be needed for relational goals� The symbol

�
G
� � will denote equality between substitutions after restriction of the rhs substitution

to the variables of the goal G�

Lemma � �Mgu lemma� Let P be a relational�functional program and Gr a relational
goal� Suppose that P � fGrg has an unrestricted SLV�refutation� Then P � fGrg has an
SLV�refutation of the same length such that� if ��� � � � � �n are the uni�ers from the unre�
stricted SLV�refutation and ���� � � � � �

�

n are the mgu�s from the SLV�refutation� then there

exists a substitution � such that �� � � � �n
Gr� ��� � � � �

�
n��

Proof
The induction proof is as for lemma ��� in ��� except that uni�ers and mgu�s need not de�
rive from �body� resolution but can derive from the other rules of SLV�resolution ��attening
in unrestricted SLV�refutations� like in SLV�refutations� produces identity substitutions��

��

Lemma � �Lifting lemma� Let P be a relational�functional program� Gr a relational
goal� and � a substitution� Suppose there exists an SLV�refutation of P � fGr�g� Then
there exists an SLV�refutation of P � fGrg of the same length such that� if ��� � � � � �n are
the mgu�s from the SLV�refutation of P�fGr�g and ���� � � � � �

�

n are the mgu�s from the SLV�

refutation of P � fGrg� then there exists a substitution � such that ��� � � � �n
Gr� ��� � � � �

�

n��

Proof
The proof is as for lemma ��	 in ��� with the quali�cation already noted for lemma
�
which is crucially applied here�

The converse of corrollary � extends the logic�programming completeness result of K�
R� Apt and M� H� van Emden to relational�functional programming�

Theorem � The success set of a relational�functional program is equal to its least Her�
brand crossbase model�

Proof
Let the program be P � By corrollary 	 it su�ces to show that the least Herbrand cross�
base model of P is contained in the success set of P � Let F denote the ground atom
d or molecule f ��� t� By proposition
 we need only consider the relational goals de�
noted by F�� Suppose F is in the least Herbrand crossbase model of P � By theorem 	�
F � TXP � n for some n � �� We prove by induction on n that F � TXP � n implies
that P � f �� F�g has a refutation �i�e�� d � TXP � n implies that P � f �� dg has a
refutation and f ��� t � TXP � n implies that P �f �� t is fg has a refutation�� Hence
F will be in the success set�
Suppose �rst that n � �� Then F � TXP � � means that F is a ground instance of an
atom or molecule from P � Clearly� P � f �� dg and P � f �� t is fg have a refutation
�a body resolution and an is�rhs resolution followed by a term uni�cation� respectively��
Now suppose that the result holds for n� �� We distinguish the two cases for F �
First� let d � TXP � n� By the de�nition of TXP there exists a ground instance
of a clause w �� V�� � � � � Vm and an unnesting of its premises such that d � w� and
Sm
k
� unnestP �Vk��

�
 TXP � �n � �� for some uni�er �� By the induction hypothesis�
for each formula A in the selected unnestP �Vk��� for � � k � m� P � f �� Ag has a
refutation� Hence� P � f �� Vk�g has a refutation� mimicking unnesting by �attening�
Because each Vk� is ground and �attening only introduces new variables� these refuta�
tions can be combined into a refutation of P � f �� �V�� � � � � Vm��g� Thus P � f �� dg
has an unrestricted refutation and we can apply the mgu lemma to obtain a refutation of
P � f �� dg�
Second� let f ��� t � TXP � n� By the de�nition of TXP there exists a ground instance
of a clause e �� V�� � � � � Vm � E and an unnesting of its premises such that f � e� and
Sm
k
� unnestP �Vk��

��unnestP �t is E���
 TXP � �n��� for some uni�er �� By the in�
duction hypothesis� for each formula A in the selected unnestP �Vk��� for � � k � m�
and unnestP �t is E��� P � f �� Ag has a refutation� Hence� P � f �� Vk�g and
P �f �� t is E�g have a refutation� mimicking unnesting by �attening� Because each Vk�
and t is E� are ground and �attening only introduces new variables� these refutations can
be combined into a refutation of P � f �� �V�� � � � � Vm� t is E��g� Thus P � f �� t is fg

��

has an unrestricted refutation and we can apply the mgu lemma to obtain a refutation of
P � f �� t is fg�

For proving that every correct �relational or functional� answer is an instance of a
computed �relational or functional� answer we �rst transfer lemma ��� from ����

Lemma 	 Let P be a relational�functional program and F a relationship or setter� Sup�
pose that 	�F � is a logical consequence of P � Then there exists an SLV�refutation of
P � f �� Fg with the identity substitution as the computed answer�

Proof
Suppose F has variables x�� � � � � xn� anywhere in the relationship or on both sides of the
setter� Let a�� � � � � an be distinct constants not appearing in P or F and let � be the
substitution fx��a�� � � � � xn�ang� Then it is clear that F� is a logical consequence of P �
Also� F� being ground� each formula A in some unnestP �F�� is a logical consequence of
P � Since each A is ground� theorem
 shows that P � f �� Ag has a refutation� Thus�
P � f �� F�g has a refutation� mimicking unnesting by �attening� Since �attening only
introduces new variables and the ai do not appear in P or F � by replacing ai by xi� for
� � i � n� in this refutation� we obtain a refutation of P � f �� Fg with the identity
substitution as the computed answer�

Now� K� L� Clark	s completeness result can be extended from logic to relational�
functional programming� For relational goals we can adapt the formulation for de�nite
goals in ����

Theorem � �Completeness of relational SLV�resolution� Let P be a relational�
functional program and Gr a relational goal� For every correct answer � for P � fGrg

there exists a computed answer 	 for P � fGrg and a substitution � such that �
Gr� 	��

Proof
Let the relational goal Gr be �� B�� � � � � Bk� Since � is correct� 	��B� � � � � � Bk��� is a
logical consequence of P � By lemma � there exists a refutation of P �f �� Bi�g such that
the computed answer is the identity� for � � i � k� We can combine these refutations
into a refutation of P � f �� Gr�g such that the computed answer is the identity�
Suppose the sequence of mgu�s of the refutation of P � f �� Gr�g is ��� � � � � �n� Then
Gr��� � � � �n � Gr�� By the lifting lemma there exists a refutation of P � f �� Grg

with mgu�s ���� � � � � �
�

n such that ��� � � � �n
Gr� ��� � � � �

�

n�
�� for some substitution ��� Let 	

be ��� � � � �
�
n restricted to the variables in Gr� Then �

Gr� 	�� where � is an appropriate
restriction of ���

Again� the result for relational goals naturally carries over to functional goals�

�

Corollary � �Completeness of functional SLV�resolution� Let P be a relational�
functional program and Gf a functional goal� For every correct answer �t� �� for P �fGfg

there exists a computed answer �s� 	� for P �fGfg and a substitution � such that �
Gf
� 	�

and t � s��

Proof
By lemmas � and 	 there is an equivalent relational goal with correct and computed answers
for which the completeness result of theorem � holds�

References

��� M� Bellia and G� Levi� The relation between logic and functional languages
 A survey�
Journal of Logic Programming� �
���#���� � ���

��� Harold Boley� A relational�functional language and its compilation into the WAM�
Technical Report SEKI SR� ����� University of Kaiserslautern� Department of Com�
puter Science� April � ��

��� Harold Boley� Extended Logic�plus�Functional Programming� In Workshop on Ex�
tensions of Logic Programming� ELP ���� Stockholm����� LNAI� Springer� � ��

��� D� DeGroot and G� Lindstrom� editors� Logic Programming� Functions� Relations�
and Equations� Prentice�Hall� � ���

��� Laurent Fribourg� SLOG
 A logic programming language interpreter based on clausal
superposition and rewriting� In ���� Symposium on Logic Programming� pages ���#
���� IEEE Computer Society Press� � ���

��� E� Giovannetti� G� Levi� C� Moiso� and C� Palamidessi� Kernel�LEAF
 A logic plus
functional language� Journal of Computer and System Sciences� ��
�� #���� � ��

��� John W� Lloyd� Foundations of Logic Programming� Springer�Verlag� Berlin� Heidel�
berg� New York� � ���

��� J�J� Moreno�Navarro and M� Rodriguez�Artalejo� Logic programming with functions
and predicates
 The language BABEL� Journal of Logic Programming� ��
� �#����
� ��

� � M� J� O	Donnell� Equational Logic as a Programming Language� MIT Press� Cam�
bridge� Mass�� � ���

���� David H� D� Warren� Higher�order extensions to PROLOG
 Are they needed� Ma�
chine Intelligence� ��
���#���� � ���

��

Contents

� Introduction �

� Extending First�Order Theories to First�Order Relational�Functional
Theories �

� Relational�Functional Interpretations and Models ��

� SLV�Resolution ��

	 Soundness of SLV�Resolution ��

 Least Herbrand Crossbase Models as Fixpoints ��

� Completeness of SLV�Resolution ��

