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Harold Boley
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Abstract

This paper attempts a direct semantic formalization of �rst�order relational�
functional languages �the characteristic RELFUN subset� in terms of a generalized
model concept� Function�de�ning conditional equations �or� footed clauses� and
active call�by�value expressions �in clause premises� are integrated into �rst�order
theories� Herbrand models are accomodated to relational�functional programs by
not only containing ground atoms but also ground molecules� i�e� speci�c func�
tion applications paired with values� Extending SLD�resolution toward innermost
conditional narrowing of relational�functional clauses� SLV�resolution is introduced�
which� e�g�� �attens active expressions� The TP �operator is generalized analogously�
e�g� by unnesting ground�clause premises� Soundness and completeness proofs for
SLV�resolution naturally extend the corresponding results in logic programming�

� Introduction

RELFUN is a logic language primarily extended by call�by�value �eager� functions that
may be non�ground� non�deterministic� varying�arity� and higher�order� These functions
are de�ned by extended Horn clauses having a �foot	 premise for value returning� This ex�
tension can also be viewed as �directed� conditional equations permitting �extra	 variables
in conditions� which may accumulate partial results� It entails the following syntactic
changes of PROLOG


Footed clauses� Starting with DATALOG� �����rules may be augmented by an am�
persand in�x� ���� between the normal body premises and the foot premise
 facts
�empty bodies�� by a joined in�x� ������

Active expressions� Proceeding to PROLOG� passive structures are rewritten using
square brackets� �������� reserving round parentheses� �������� for RELFUN	s
active call�by�value expressions �permitted in premises��
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As shown by the Fibonacci programs in example �� RELFUN	s function�de�ning footed
clauses �e�g� for fibfun� can be developed from PROLOG�like relation�de�ning Horn
clauses �e�g� for fibrel� via an intermediate footed�clause form using a generalized re�
lational is�primitive in a functional� let�like manner �e�g� for fibfis�� When reading
such clauses we extend PROLOG	s ���� if ���� for ���� �� ���� to ���� if ��� returns ����
for ���� �� ��� � ���� �or just ���� returns ���� for ���� ��� ������ �

Example � Recursive Fibonacci relations and functions in RELFUN�

fibris�N�F� �� F is fibfun�N��

fibrel���s	�
��

fibrel�s	�
�s	�
��

fibrel�s	s	N

�F� �� fibrel�N�X�� fibrel�s	N
�Y�� plusrel�X�Y�F��

fibfis��� ��� s	�
�

fibfis�s	�
� ��� s	�
�

fibfis�s	s	N

� �� X is fibfis�N�� Y is fibfis�s	N
� � plusfun�X�Y��

fibfun��� ��� s	�
�

fibfun�s	�
� ��� s	�
�

fibfun�s	s	N

� ��� plusfun�fibfun�N��fibfun�s	N
���

plusrel���N�N��

plusrel�s	M
�N�P� �� plusrel�M�s	N
�P��

plusfun���N� ��� N�

plusfun�s	M
�N� ��� plusfun�M�s	N
��

Relation de�nitions in RELFUN employ generalized Horn clauses� namely �hornish	
clauses� which may again call arbitrary functions� either within any argument of a relation
call or the right�hand side �rhs� of the is�primitive �e�g� in fibris�� So the body premises
of hornish clauses are relational on the top�level �just binding variables� like Horn�clause
premises�� but may contain functional applications �also returning values�� Conversely�
the head and foot of footed clauses can be regarded as the two sides of an equation� giving
these clauses a principal functional �avor� although their body conditions are exactly like
the relational top�level premises of hornish clauses� Altogether� RELFUN	s clauses tightly
integrate relational and functional characteristics� �

�While the in�x 	���
 corresponds to a �directed� unconditional
 	 
 
� the mix�x 	�� ��� �

corresponds to a �directed� conditional
 	

���

 
� However� we will not formalize functions using a logic

with a distinguished �directed
 equality predicate� but will �build in� 	���
 and 	�� ��� �
 even more
deeply� as new connectives�

�Still� rather than indiscriminately speaking of �relational�functional� language constructs� we will di�
dactically distinguish �relational� and �functional� constructs on the basis of their principal characteristics�

�



The following functional version of J�W� Lloyd	s relational slowsort example ��� shows
the use of non�ground and non�deterministic subfunction calls for de�ning a deterministic
main function�

Example � A functional slowsort program in RELFUN�

� Sort filters non�deterministic permutations through sorted�

sort�X� ��� sorted�perm�X���

� Return sorted lists unchanged� fail for unsorted ones�

sorted�	
� ��� 	
�

sorted�	X
� ��� 	X
�

sorted�	X�Y
Z
� �� lesseq�X�Y� � cons�X�sorted�	Y
Z
���

� Permute by a non�ground delete call returning U�less lists

� and binding U for a cons call enclosing the perm recursion�

perm�	
� ��� 	
�

perm�	X
Y
� ��� cons�U�perm�delete�U�	X
Y
����

� Non�deterministically delete X elements from list argument�

delete�X�	X
Y
� ��� Y�

delete�X�	Y
Z
� ��� cons�Y�delete�X�Z���

� A less�or�equal relation over s�terms�

lesseq���X��

lesseq�s	X
�s	Y
� �� lesseq�X�Y��

� cons�h�t� calls h and t by value� 	h
t
 only instantiates h and t�

cons�X�Y� ��� 	X
Y
�

Since programs for Fibonacci numbers� list sorting� and many other purposes are nor�
mally used in a deterministicmode� we think they should be formulated as functions rather
than relations� indicating the preferred direction of computation� However� in RELFUN
such functions still permit inverse calls �e�g� s�	� is fibfun�W� non�deterministically
binds W to 	 or s�	�� and can make natural internal use of relations �e�g� lesseq� and
non�deterministic functions �e�g� perm and delete��

A comprehensive overview of RELFUN and related work as well as pointers to its appli�
cations and to its original operational �interpretative�� LISP�implemented semantics can
be found in ���� Among the tools of the RELFUN implementation there is a term�rewriting
algorithm relationalize for transforming footed and hornish clauses into Horn clauses�
thus indirectly characterizing their model�theoretic semantics� However� this semantic in�
directness makes our understanding of functions totally dependent on our understanding
of relations �inverting the dependency incurred by the LISP�based interpreter�� whereas
we work towards �equal declarative depth� for both of them�

�



The present paper thus attempts to directly characterize the semantics of �basic	 REL�
FUN� the pure�RELFUN subset exemplifying �xed�arity �rst�order relational�functional
languages� in terms of a generalized model concept
 RELFUNmodels contain both atoms
�relations� and directed unconditional equations �functions�� This would permit a
common foundation of logic and functional programming� reducing the gap between these
declarative paradigms� Through a model�theoretic foundation of relational�functional
languages� the semantic characteristics available or lacking in either of these declarative�
programming paradigms can be assessed in a way more neutral than via the indirection of
mutual implementions of� and cross�translations between these paradigms� For instance�
on the basis of our characterization we can study such questions as �How will functional
call�by�value expressions enrich �and complicate� the semantics of relational languages��
or �How will the relational meaning of non�ground arguments carry over to the functional
meaning of arguments and returned values�� Another important motivation of the present
work is to make the many alternative relational�functional integration proposals �see� e�g��
��� and ���� comparable on a common ground� revealing their deeper� non�syntactic di�er�
ences� Finally� we think the model�theoretic treatment can provide us with a long�term
yardstick for developing a �minimal	 integration of the essential concepts of relational and
functional languages
 in the multitude of integration proposals� only �Occam	s razor� can
help sorting out the proper integration constructs from other �nice features��

In fact� with basic RELFUN we have attempted to operationally explore a tight� min�
imum integration of the concepts of a relation and a function themselves� Among other
things� the classical eager functional expressions �innermost reduction� have been ex�
tended to non�deterministic function nestings to accomodate relational non�determinism�
Then� the semantic interpretation of functions just uses mappings to sets of domain in�
dividuals� and expressions are semantically evaluated using expression assignments� a
natural� set�valued extension of relational term assignments� These semantic extensions
are less complicated than the semantics of lazy expressions �outermost reduction� as a
relational�functional integration concept� as introduced by other recent proposals �e�g��
K�LEAF ��� and BABEL ����
 eagerness keeps the semantics strict and simple� whereas
laziness accepts the non�strictness overhead to give a meaning to uni�cations involving
non�terminating expressions� While basic RELFUN	s operational integration concepts
may be close to a minimum� its current model�theoretic characterization is still quite
preliminary and will certainly need further simpli�cation and improvement�

On the other hand� pure�RELFUN extensions of the present treatment could directly
incorporate the semantics of varying�arity operations� which can also be reduced to unary
ones over lists� Similarly� RELFUN	s higher�order operations should not be too di�cult
to add� as they are restricted to those reducible to �rst�order operations using an apply

dummy as introduced for corresponding PROLOG extensions by D� H� D� Warren �����
While these two extensions have long existed in the implementedRELFUN system� further
extensions such as �nite domains will �rst require their own operational test phase before
we can think of including them in the formal semantics� Finally� some aspects of our
RELFUN extensions of SLD�resolution� Herbrand models� and TP �operators will probably
be transferable to other languages�
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Our basic semantic treatment draws heavily on chapters � and � of J� W� Lloyd	s
book ���� construing a parallel between �rst�order relations and �rst�order functions� en�
abled by suitably generalizing the latter in a non�ground� non�deterministic fashion� This
relational�functional parallel in the formal de�nitions given here derived from consid�
erations in language design such as expressive power� orthogonality� and uniformity of
constructs� But it also simpli�es transferring foundation theorems of logic programming
�as found� e�g�� in J� W� Lloyd	s book� to eager� non�ground� non�deterministic �rst�order
functional programming and to uni�ed relational�functional programming� We think that
a fundament for functional programming should be �grounded	 on a level as deep as
the �Herbrand��model�theoretic fundament of relational programming� Speci�cally this
means that we will try to establish function de�nitions as subsets ff�a�� ���� an� ��� b� � � �g
of so�called ground �molecules	 �directed unconditional equations� from the Herbrand
�cross	 just like relation de�nitions are established as subsets fr�a�� ���� an�� � � �g of ground
atoms from the Herbrand base� Intuitively� Herbrand cross models employ molecules
for the �pointwise	 de�nition of a �discrete� function� akin to the familiar notion of the
�graph	 �or �extension	� of a function as a set of pairs� Avoiding dependencies between
the molecules of such a model which correspond to the usual �functionality	 restriction
f�a�� ���� an� ��� b � f�a�� ���� an� ��� c �� b � c� it will simplify this semantics that we
permit b �� c i�e�� non�deterministic functions� � Una�ected by non�determinism� the
directedness of functional computation is expressed by the �f�a�� ���� an��to�b	 order of
each molecule f�a�� ���� an� ��� b in an Herbrand cross model�

On the basis of the uni�ed pure�RELFUN constructs� the impure relational�functional
features can also be introduced in a uniform manner� For instance� after proving results
corresponding to the �independence of the computation rule� in ���� we could proceed from
�and�parallel	 to �and�sequential	 relational�functional premise evaluation� which is the op�
erational semantics actually implemented for RELFUN �just as for PROLOG�� Similarly�
the resolution�model�theoretic �or�parallelism	 of relational�functional clauses could be
weakened toward the operational �but implementation�incomplete�� �or�sequentialism	
of backtracking� Finally� functions and relations can be forced to operate �more� de�
terministically using the same cut� commit� or substitute constructs
 however� adapting
our model�theoretic approach to such optional determinism speci�cations may be di�cult
because of the semantic problems with cut�like notions�

� Extending First�Order Theories to First�Order

Relational�Functional Theories

We now begin with the formal development of �rst�order relational�functional program�
ming by �functionally	 extending the �Foundations of Logic Programming� ���� which
should also be consulted for references to classical work�

��Re
specializing RELFUN to a sublanguage with only deterministic functions would cause semantic
changes starting o� from the interpretation concept� �While our non�deterministic function symbols
are assigned mappings to the powerset of the domain� deterministic function symbols could be assigned
constructor�like mappings to the domain itself�
 Within models the �deterministic�function� restriction
could then be introduced as an axiom� but this would change Herbrand�s sets to �non�free
 algebras�

�



A �rst�order relational�functional theory consists of


�� An alphabet�

�� A �rst�order relational�functional language �the well�formed formulas of the theory��

�� A set of axioms �a designated subset of the well�formed formulas��

�� A set of inference rules�

De�nition � The alphabet of a �rst�order relational�functional theory consists of nine
classes of symbols �some notational conventions are given in parentheses� where all letters
used may be subscripted��

�� Variables �normally denoted by the letters x� y� and z�� �

	� Constants �normally denoted by the letters a� b� and c��


� Constructors� �normally denoted by the letters j� k� and l��

�� Function symbols �normally denoted by the letters f� g� and h��

�� Relation symbols� �normally denoted by the letters p� q� and r��


� Functional connectives �two binary in�xes denoted by is and ��� and a ternary
mix�x denoted by �� together with ���

�� Relational connectives �a unary pre�x denoted by � and binary in�xes denoted by
�� �� �� � and ����

�� Quanti�ers �denoted by � and 	��

�� Punctuation symbols �� ��� � ��� � ��� � ��� and � ����

The union of the classes of function and relation symbols will be referred to as operation
symbols or� brie�y� operators�

Note that RELFUN	s implemented operational semantics does not di�erentiate sub�
classes for constructor� function� and relation symbols but contextually distinguishes uses
of symbols from a united class� even permitting a given symbol to have occurrences in
more than one subclass �e�g�� the main operator symbol of a body premise will act as a
relation but may re�occur in a foot premise� where it will act as a function
 also� meta�calls
make operators from constructors��

�In larger examples we will capitalize variable names and use digit su�xes instead of subscripts� e�g�
x� becoming X�� to conform to RELFUN�s actual PROLOG�like naming conventions�

�Often called 	functors
 or even 	function symbols
 in the literature�
�Often called 	predicate symbols
 in the literature�
�Much like in PROLOG�s program clauses� 	��
 without a consecutive 	�
 plays the role of 	�
�

�



De�nition � A term is de�ned inductively�

�� A variable is a term�

	� A constant is a term�


� If k is an n�ary constructor and t�� � � � � tn are terms� then k�t�� � � � � tn� is a term�
called a structure�

The above use of square brackets for applying a constructor to arguments clearly sets
o� �passive	 structures from �active	 operator applications as de�ned below with the more
usual round parentheses� In our semantic treatment of relational�functional languages
the bracketing type serves readability but provides no information beyond that already
implicit in the symbol classes� �constructor	 vs� �operator	� In the implemented version of
RELFUN� not distinguishing symbol classes� this information is exclusively conveyed by
������� vs� ��������

In RELFUN cns is employed as the binary list constructor �LISP	s cons or ����� and
nil� as usual� as the constant denoting the empty list� Externally� a list term having the
right�recursively nested form cns�t�� cns�t�� cns�� � � � cns�tn� t� � � ���� is written �PROLOG�
like� as the linearized varying�arity term �t�� t�� � � � � tn� for t � nil or� �t�� t�� � � � � tnjt� for t
being a variable� However� we regard the varying�arity form as �passive� applications of
a constructor tup� understood to precede unpre�xed ��������terms�

De�nition � An expression is de�ned inductively�

�� A term is an expression�

	� If f is an n�ary function symbol and E�� � � � � En are expressions� then f�E�� � � � � En�
is an expression� called an application� if all of E�� � � � � En are terms� f�E�� � � � � En�
is called a �at application�

Such a notion of expressions is essential in functional programming� but lacks in non�
extended logic programming �in ���� �expression� is given a di�erent� peripheral meaning��

De�nition � A �well�formed� formula is de�ned inductively�

�� If r is an n�ary relation symbol and E�� � � � � En are expressions� then r�E�� � � � � En�
is a formula� called a relationship� if all of E�� � � � � En are terms� r�E�� � � � � En� is
called a �at relationship or� since this is the most basic kind of formula� an atomic
formula or� simply� an atom�

	� If E is an expression and t is a term� then �t is E� is a formula� called a setting
formula or� simply� a setter� if E is a �at application� �t is E� is called a �at setter�
if E is a term� �t is E� is called a term setter�

�




� If e is a �at application and E is an expression� then �e ��� E� is a formula� if E
is a term� �e ��� E� is called a molecular formula or� simply� a molecule�

�� If e is a �at application� E is an expression� and W is a formula� then �e �� W � E�
is a formula�

�� If W� and W� are formulas� then so are ��W��� �W��W��� �W��W��� �W� �� W���
and �W� � W���


� If W is a formula and x is a variable� then ��xW � and �	xW � are formulas�

The restriction of e being a �at application in items 
� and �� re�ects the �construc�
tor discipline� � � of RELFUN	s footed clauses� It could be dropped in a more general
equational treatment of �rst�order relational�functional languages� Conversely� instead of
letting W� be an arbitrary formula in �W� �� W�� of item ��� it could be immediately
restricted to an atomic formula ��at relationship�� as required for RELFUN	s hornish
clauses�

Note that the parentheses employed to build applications and relationships are in�
dispensible parts of the syntax� The parentheses around entire formulas� however� are
just used for grouping and will frequently be omitted if no ambiguities arise under the
following partial precedence order
 ���� �	�� ��� precede �is� precedes ��� precedes
��� precedes ������ ��� ��� ��� ����� ����

There is a close kinship between �at setters and molecules� which will be con�rmed
in de�nition ��� Thus� an operation that switches between both formula types will be
convenient�

De�nition 	 The self�inverse setter�molecule swapping operation ��� is de�ned as an
exponentiation operator over sets of molecules� �at setters� and relationships �the ui must
be terms���

r�u�� � � � � um�
� � r�u�� � � � � um�

�t is g�u�� � � � � um��
� � g�u�� � � � � um� ��� t

�g�u�� � � � � um� ��� t�� � t is g�u�� � � � � um�

fF�� � � � � Fng
� � fF�

� � � � � � F
�

n g

Example � a� b� c� x� y� k�a� x� b�� l�y� y�� and k�a� l�y� y�� b� are
terms� f�y� k�a� l�y� y�� b�� c� l�y� y�� is a �at application� r�b� f�y� k�a� l�y� y�� b�� c� l�y� y���
is a �non��at� relationship� f�y� k�a� l�y� y�� b�� c� l�y� y�� ��� k�a� x� b� is a molecule�
�f�y� k�a� l�y� y�� b�� c� l�y� y�� ��� k�a� x� b��� � k�a� x� b� is f�y� k�a� l�y� y�� b�� c� l�y� y�� is
a �at setter�

De�nition 
 The �rst�order relational�functional language given by an alphabet consists
of the set of all formulas built from the symbols of the alphabet�

�If 	�
 is applicable to a formula F � then �F�
� � F �

�



In the following we will focus special kinds of formulas� namely RELFUN	s clauses�
Una�ected by their Horn�clause extensions �expressions� setters� and foot premises�� they
are closed formulas by assuming all variables to have a prenex universal quanti�er�

De�nition � A �program� clause is a hornish �program� clause or a footed �program�
clause� If w is an atomic formula� e is a �at application� V�� � � � � Vn are relationships or
setters� and E is an expression� then w �� V�� � � � � Vn� abbreviating w �� �V�� � � ��Vn�� is
a hornish �program� clause and e �� V�� � � � � Vn � E� abbreviating e �� �V�� � � ��Vn� � E�
is a footed �program� clause� w or e is the head� V�� � � � � Vn is the body� and E is the foot
of the clause� If V�� � � � � Vn are all atoms� the hornish �program� clause w �� V�� � � � � Vn
is also called a Horn �program� clause� For n � �� i�e� with an empty body� a hornish
�program� clause w �� � abbreviating w �� true� is written as w� while a footed �program�
clause e �� � E� abbreviating e �� true � E� is written as e ��� E�

De�nition � A ���rst�order� relational�functional� program P is a �nite set of program
clauses fc�� � � � � cng� P is usually written �with ����terminators� as�
c��
� � �
cn�

A program will play the role of the set of axioms of a �rst�order relational�functional
theory�

De�nition 
 The empty �hornish� clause� denoted � is the hornish clause of the form
�� � which abbreviates false �� true� A terminal ��t��footed� clause� denoted 
�t�� t a
term� is a footed clause of the form ��� t� which abbreviates � t� The trivial �hornish�
clause� denoted �� is the hornish clause of the form true �� true�

De�nition �� A relational goal is a hornish clause of the form

�� V�� � � � � Vn

that is� it has an empty head� A functional goal is a footed clause of the form

�� V�� � � � � Vn � E

that is� it has an empty head�

It should be kept in mind that a relational goal is �relational	 in the usual sense only
on the top�level
 the Vi	s need not be atoms but may be nested relationships or setters�
Conversely� a functional goal may of course contain Vi	s that are atoms�	

	Thus� 	relational goal
 should perhaps be renamed into 	hornish goal
� and 	functional goal
 into
	footed goal
� However� this would entail new words in the later de�nitions for 	relational
�	functional

derivation� answer� etc�

 



� Relational�Functional Interpretations and Models

First� we will consider general interpretations of full �rst�order relational�functional lan�
guages� Then� these will be restricted to Herbrand�like interpretations of RELFUN	s
clause programs� Since the basic RELFUN formalized here does not contain a negation
construct� we will neglect RELFUN	s three�valued open�world semantics and its di�eren�
tiation of the truth values false and unknown ����

De�nition �� A pre�interpretation J of a �rst�order relational�functional language L
consists of�

�� A non�empty set D� called the domain of the pre�interpretation�

	� For each constant in L� the assignment of an element in D�


� For each n�ary constructor in L� the assignment of a mapping from Dn to D�

De�nition �� An interpretation I of a �rst�order relational�functional language L con�
sists of a pre�interpretation J with domain D of L together with�

�� For each n�ary relation symbol in L� the assignment of a mapping from Dn into
ftrue� falseg �or� equivalently� a relation on Dn��

	� For each n�ary function symbol in L� the assignment of a mapping from Dn to �D�
the powerset of D�

We say I is based on J �

De�nition �� Let J be a pre�interpretation of a �rst�order relational�functional language
L� A variable assignment �wrt J� is an assignment to each variable in L of an element
in the domain of J �

De�nition �� Let J be a pre�interpretation with domain D of a �rst�order relational�
functional language L and let V be a variable assignment� The term assignment �wrt J
and V � of the terms in L is de�ned as follows�

�� Each variable is given its assignment according to V �

	� Each constant is given its assignment according to J �


� If k� is the assignment of the n�ary constructor k according to J and t��� � � � � t
�

n are
the term assignments of t�� � � � � tn� then k��t��� � � � � t

�

n� � D is the term assignment of
k�t�� � � � � tn��

De�nition �	 Let I be an interpretation with domain D of a �rst�order relational�
functional language L and let V be a variable assignment� The expression assignment
�wrt I and V � of the expressions in L is de�ned as follows�

��



�� If t� is the term assignment of the term t wrt I and V � then ft�g is the expression
assignment of t�

	� If f � is the mapping assigned to the n�ary function symbol f by I and E�

�� � � � � E
�

n are
the expression assignments of E�� � � � � En� then the union of all f ��t��� � � � � t

�

n� � �D

for each t�� � E�

�� � � �� t
�

n � E�

n is the expression assignment of f�E�� � � � � En��

De�nition �
 Let I be an interpretation with domain D of a �rst�order relational�
functional language L and let V be a variable assignment� Then a formula in L can
be given a truth value� true or false� �wrt I and V � as follows �we let �a possibly em�
bellished version of� t denote a term� of e� denote a �at application� of E� denote an
expression� and of W � denote a formula��

�� If the formula has the form r�E�� � � � � En�� then the truth value of the formula is true
if there exist t�� � E�

�� � � �� t
�

n � E�

n such that r��t��� � � � � t
�

n� has truth value true� where
r� is the mapping assigned to r by I and E�

�� � � � � E
�
n are the expression assignments

of E�� � � � � En wrt I and V � otherwise� the formula�s truth value is false�

	� If the formula has the form f�t�� � � � � tn� ��� E� then the truth value of the formula
is true if the expression assignment of E wrt I and V is E� and E� 
 f ��t��� � � � � t

�
n��

where f � is the mapping assigned to f by I� and t��� � � � � t
�
n are the term assignments

of t�� � � � � tn wrt I and V � otherwise� the formula�s truth value is false�


� If the formula has the form t is E� then its truth value is true if the expression
assignment of E wrt I and V is E� and t� � E�� where t� is the term assignment of
t wrt I and V � otherwise� its truth value is false� �


�� If the formula has the form e �� false � E� then its truth value is true� If the
formula has the form e �� true � E� then the truth value is that of e ��� E� ��

�� If the formula has the form �W � W��W�� W��W�� W� �� W�� or W� � W�� then
the truth value is given by the usual truth tables�


� If the formula has the form 	xW � then the truth value of the formula is true if for
all d � D the subformula W has truth value true wrt I and V �x�d�� where V �x�d�
is V except that x is assigned d� otherwise� the formula�s truth value is false�

�
Thus the instance t is f�t�� � � � � tn
 has the same truth value as the instance f�t�� � � � � tn
 ��� t�
de�ned through item �� The di�erent syntaxes are maintained even in these special cases for marking
o� the body�goal use of the former from the clause�de�nition use of the latter� Also� in RELFUN�s
implemented operational semantics� successful setters return their evaluated rhs� rather than just true�

��For formalizing RELFUN�s 	valued conjunctions
� de�nition � could introduce a third class of ex�
pressions� co�inductively with the formulas of de�nition �� making the symbol 	�
 a binary in�x instead
of its actual use as part of a ternary mix�x� If W is a formula and E is an expression� then �W � E

is an expression� This enables simulating formulas of the form e �� W � E by nestings of the form
e ��� �W � E
� For this� the expression �true � E
 can be assigned the value of E� However� assigning
false to �false � E
� blurring the distinction between ��D�valued
 expressions and �ftrue� falseg�valued

formulas� would� e�g�� cause fac�N 
 ��� �zerop�N 
 � �
 to return false for fac��
 instead of signalling
inapplicability� Therefore� in RELFUN �false � E
 is actually assigned the failure�signalling truth value
unknown� which can be regarded as the empty expression value fg � �D�

��



�� If the formula has the form �xW � then its truth value is true if there exists d � D
such that W has truth value true wrt I and V �x�d�� otherwise� its truth value is
false�

This functionally extended truth concept directly transfers to the classical de�nitions
of� e�g�� model� validity� and logical consequence� for which we refer to ����

Example � Consider the formula 	x�x is f�g�x�� g�x��� and the following interpretation
I� Let D � f�� �� � � �g be the natural numbers� let f be assigned the function that maps
two naturals to the singleton set of their product� and let g be assigned the function that
maps a natural to the set of its divisors� Then I is a model of the formula because all
naturals have at least themselves and � as divisors�

The de�nitions of groundness and Herbrand universes and bases adapt the correspond�
ing classical notions
 the de�nitions of Herbrand crosses and crossbases extend the notion
of Herbrand bases in order to de�ne models of� respectively� functional and relational�
functional programs� as motivated in section ��

De�nition �� A ground term� ground atom� or ground molecule is� respectively� a term�
atom� or molecule not containing variables�

De�nition �� The Herbrand universe UP of a program P is the set of all ground terms
that can be formed out of the constants and constructors appearing in P �

De�nition �
 The Herbrand base BP of a program P is the set of all ground atoms that
can be formed by using the relation symbols from P with ground terms from the Herbrand
universe UP as arguments�

De�nition �� The Herbrand cross CP of a program P is the set of all ground molecules
that can be formed by using the function symbols from P with ground terms from the
Herbrand universe UP as arguments and using ground terms from UP as foots�

De�nition �� The Herbrand crossbase XP of a program P is the union BP � CP of its
Herbrand base BP and its Herbrand cross CP �

Example 	 The �deterministic� extra�variables� is�less� program P�

f�X� �� p�X�� q�Y � � g�g�X�Y �� Y ��
g�a� a� ��� k�X��
g�k�X�� l�X�� ��� g�X�X��
p�k�X���
q�l�X���

��



uses the constructors k and l� and employs the operators f and g �as functions� as well as
p and q �as relations��

The Herbrand universe UP� of P� is
fa� k�a�� l�a�� k�k�a��� k�l�a��� l�k�a��� l�l�a��� � � �g�

The Herbrand base BP� of P� is
fp�a�� q�a�� p�k�a��� p�l�a��� q�k�a��� q�l�a��� � � �g�

The Herbrand cross CP� of P� is
ff�a� ��� a� f�a� ��� k�a�� f�a� ��� l�a�� � � � �
g�a� a� ��� a� g�a� a� ��� k�a�� g�a� a� ��� l�a�� � � � �
� � �g�

The Herbrand crossbase XP� � BP� � CP� of P� is
fp�a�� q�a�� p�k�a��� p�l�a��� q�k�a��� q�l�a��� � � � �
f�a� ��� a� f�a� ��� k�a�� f�a� ��� l�a�� � � � �
g�a� a� ��� a� g�a� a� ��� k�a�� g�a� a� ��� l�a�� � � � �
� � �g�

Two generalized model concepts can now be de�ned� extending the usual Herbrand
models for relational programs to models for functional and relational�functional pro�
grams�

De�nition �� An Herbrand �base�� Herbrand cross� or Herbrand crossbase interpreta�
tion is a subset of the Herbrand base� Herbrand cross� or Herbrand crossbase� respectively�

De�nition �� Let I be an Herbrand �base�� Herbrand cross� or Herbrand crossbase inter�
pretation and let P be a program� Then I is� respectively� an Herbrand �base�� Herbrand
cross� or Herbrand crossbase model for P if P is true wrt I�

We concentrate the further development on relational�functional Herbrand crossbase
models� which� however� constitute disjoint unions of Herbrand cross models and Herbrand
�base� models�

The �model intersection� proposition ��� of ��� obviously also holds for the crossbase
extension�

Proposition � �Model intersection property� Let P be a relational�functional pro�
gram and fMigi�I be a non�empty set of Herbrand crossbase models for P � Then

T
i�IMi

is an Herbrand crossbase model for P �

Since every relational�functional program P has XP as an Herbrand crossbase model�
the set of all Herbrand crossbase models for P is non�empty� and proposition � permits
the following de�nition�

��



De�nition �� The least Herbrand crossbase model MP for a relational�functional pro�
gram P is the intersection of all Herbrand crossbase models for P �

Example 
 For u assuming all values from UP� � the following Herbrand crossbase in�
terpretation I� contained in XP� � is an �the least� Herbrand crossbase model of P� �cf�
example ���

ff�k�a�� ��� k�u�� g�a� a� ��� k�u�� g�k�a�� l�a�� ��� k�u��
p�k�u��� q�l�u��g�

Thus� while P� deterministically returns the non�ground term k�X� for certain arguments
of the functions f and g �failing for other ones�� the model of P� contains in�nitely non�
deterministic molecules that let f and g return the ground terms k�a�� k�k�a��� k�l�a��� � � �
for the same argument combinations�

Proposition � Let P be a relational�functional program and I an Herbrand crossbase
model of P �in particular� the least one�� Then there exist a Horn program !P and an
Herbrand model !I of !P �in particular� the least one� such that there is a bijection between
I and !I�

Example � The relational�functional program P� of example � can be transformed into
the following Horn program !P� by �attening the g nesting and introducing result parame�
ters for f and g �note that the g�molecule becomes an atom��

!f�X�R� �� p�X�� q�Y �� !g�X�Y� S�� !g�S� Y�R��
!g�a� a� k�X���
!g�k�X�� l�X�� R� �� !g�X�X�R��
p�k�X���
q�l�X���

An �the least� Herbrand model !I of !P� is �where u � U �P�
� UP���

f !f�k�a�� k�u��� !g�a� a� k�u��� !g�k�a�� l�a�� k�u���
p�k�u��� q�l�u��g�

The bijection between I and !I is obvious� untilded �functional� molecules correspond to
tilded �relational� atoms� untilded atoms remain unchanged�

While the above bijection� call it bLAST � introduces the new parameter in position n " ��
there is another bijection� bFIRST � introducing it in position �� as actually done by REL�
FUN�s relationalize algorithm �
�� That is� an Herbrand model such as !I alone does
not carry the entire information of the original Herbrand crossbase model such as I� the
type of bijection must be speci�ed along with the Herbrand model in order to preserve in
the relations the computation direction ��mode�� of the original functions� For instance�
while �bLAST ��� � bLAST �I� � I� the composition �bFIRST ��� � bLAST would transform I to

��



the Herbrand crossbase model

ff�k�u�� ��� k�a�� g�a� k�u�� ��� a� g�l�a�� k�u�� ��� k�a��
p�k�u��� q�l�u��g

which is not equivalent to I�

Let us now proceed to the generalized notions of relational�functional answers and
their correctness�

De�nition �	 Let P be a relational�functional program and Gr and Gf be a relational
and a functional goal� respectively� A relational answer for P � fGrg is a substitution for
variables of Gr� A functional answer for P � fGfg is a term paired with a substitution
for variables of Gf �

It should be understood that the substitution does not necessarily contain a binding for
every variable in Gr or Gf � Since RELFUN	s operational semantics considers relations as
true�valued functions� a relational answer operationally returns the term true along with
yielding a substitution�

De�nition �
 Let P be a relational�functional program� Gr a relational goal
�� B�� � � � � Bk with � an answer for P �fGrg� and Gf a functional goal �� B�� � � � � Bk � F
with �t� �� an answer for P � fGfg� We say that � is a correct �relational� answer for
P � fGrg if 	��B� � � � � � Bk��� is a logical consequence of P � We say that �t� �� is a
correct �functional� answer for P � fGfg if 	��B� � � � � � Bk � �t is F ���� is a logical
consequence of P �

The following lemma shows that functional answers� i�e� �value returning to the top�
level�� can be simulated by relational answers binding top�level return values to a special
variable�

Lemma � Let P be a relational�functional program� Gf a
functional goal �� B�� � � � � Bk � F � and Gr a relational goal �� B�� � � � � Bk� �x is F �
with x a new variable� Then the following statements are equivalent�

�� �t� �� is a correct functional answer for P � fGfg�

	� �fx�tg is a correct relational answer for P � fGrg�

Proof
�t� �� is a correct functional answer for P � fGfg
i�
	��B� � � � � �Bk � �t is F ���� is a logical consequence of P
i�
	��B� � � � � �Bk � �x is F ���fx�tg� is a logical consequence of P
i�
�fx�tg is a correct relational answer for P � fGrg�

��



� SLV�Resolution

We now extend SLD�resolution to �rst�order relational�functional clauses� where the SLD�
case will be called body resolution� The extended resolution method� similar to innermost
conditional narrowing ���� will be called SLV�resolution �SL�resolution for �Valued clauses�
i�e�� RELFUN	s de�nite�clause extension�� It provides the set of inference rules of a �rst�
order relational�functional theory� The detailed example � at the end of this section will
illustrate most SLV�resolution concepts�

De�nition �� Let Gr be the relational goal �� B�� � � � � Bm� � � � � Bk� further let C be the
hornish clause d �� V�� � � � � Vv or the footed clause e �� W�� � � � �Ww � E or the trivial
clause �� Then G�

r is �relationally� derived from Gr and C using mgu � if one of the
following �ve inference rules applies �we let t�s or u�s denote terms��

Body resolution

�� Bm is an atom� called the selected atom� in Gr�

	� C is the hornish clause d �� V�� � � � � Vv and � is the mgu of Bm and d�


� G�

r is the relational goal �� �B�� � � � � Bm��� V�� � � � � Vv� Bm��� � � � � Bk���

is�rhs resolution

�� Bm is a formula of the form t is g�u�� � � � � um�� called the selected �at setter�
in Gr�

	� C is the footed clause e �� W�� � � � �Ww � E and � is the mgu of g�u�� � � � � um�
and e�


� G�
r is the relational goal

�� �B�� � � � � Bm���W�� � � � �Ww� t is E�Bm��� � � � � Bk���

Body �attening

�� Bm in Gr is a formula of the form
r�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� called the selected nested re�
lationship� and h�Ei��� � � � � Ei�ni� is an embedded application� called the selected
�relationship��embedded application�

	� C is the trivial clause � and � is the identity substitution �hence� trivially� an
mgu��


� x is a new variable�

�� G�

r is the relational goal �� B�� � � � � Bm���
x is h�Ei��� � � � � Ei�ni�� r�E�� � � � � Ei��� x�Ei��� � � � � Em�� Bm��� � � � � Bk�

is�rhs �attening

�� Bm in Gr is a for�
mula of the form t is g�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� called
the selected nested setter� and h�Ei��� � � � � Ei�ni� is an embedded application�
called the selected �is��embedded application�

��



	� C is the trivial clause � and � is the identity substitution �hence� trivially� an
mgu��


� x is a new variable�

�� G�

r is the relational goal �� B�� � � � � Bm���
x is h�Ei��� � � � � Ei�ni�� t is g�E�� � � � � Ei��� x�Ei��� � � � � Em�� Bm��� � � � � Bk�

Term uni�cation

�� Bm is a formula of the form t� is t�� called the selected term setter� in Gr�

	� C is the trivial clause � and � is the mgu of t� and t��


� G�
r is the relational goal �� �B�� � � � � Bm��� Bm��� � � � � Bk���

De�nition �� Let Gf be the functional goal �� B�� � � � � Bk � F � further let C be the
hornish clause d �� V�� � � � � Vv or the footed clause e �� W�� � � � �Ww � E or the trivial
clause �� Then G�

f is �functionally� derived from Gf and C using mgu � if one of the
following three inference rules applies �we let u�s denote terms��

Relational subderivation �using one of the �ve rules of de�nition ���

�� Gr is �� B�� � � � � Bk� called the selected relational subgoal of Gf �

	� G�

r is relationally derived from Gr and C using mgu ��


� G�

f is the functional goal �� G�

r � F��

Foot resolution

�� F is a formula of the form g�u�� � � � � um�� called the selected �at application�
in Gf �

	� C is the footed clause e �� W�� � � � �Ww � E and � is the mgu of g�u�� � � � � um�
and e�


� G�

f is the functional goal �� �B�� � � � � Bk�W�� � � � �Ww � E���

Foot �attening

�� F in Gf is a formula of the form
g�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� called the selected nested ap�
plication� and h�Ei��� � � � � Ei�ni� is an embedded application� called the selected
�application��embedded application�

	� C is the trivial clause � and � is the identity substitution �hence� trivially� an
mgu��


� x is a new variable�

�� G�
f is the functional goal

�� B�� � � � � Bk� x is h�Ei��� � � � � Ei�ni� � g�E�� � � � � Ei��� x�Ei��� � � � � Em��

��



Although we �rst presented relational goals �in de�nition ��� and then extended them
to functional goals �in de�nition ���� the inference rules would not have to distinguish
body and foot premises for their �selection function� �or� item �� of each rule�� and
they do not in the actual implementation
 �relational� body resolution and �functional�
foot resolution� as well as body and foot �attening� could be treated together� Similarly�
inference rules operating in the top�level of premises and in is�rhs	s have a common
realization
 �relational� body resolution and �functional� is�rhs resolution� as well as body
�attening and is�rhs �attening� could be identi�ed� However� our more discriminative
presentation will clarify the case analysis of the soundness proof�

De�nition �
 Let P be a relational�functional program and G be a �relational or func�
tional� goal� A �relational resp� functional� SLV�derivation of P �fGg consists of a �nite
or in�nite sequence G
 � G�G�� G�� � � � of �relational resp� functional� goals� a sequence
C�� C�� � � � of variants of program clauses of P �f�g� � the trivial clause� and a sequence
��� ��� � � � of mgu�s such that each Gi�� is derived from Gi and Ci�� using �i���

De�nition �� A �relational� SLV�refutation of P �fGrg� Gr a relational goal� is a �nite
SLV�derivation of P � fGrg that has the empty hornish clause as the last goal in the
derivation� A �functional� SLV�refutation of P � fGfg� Gf a functional goal� is a �nite
SLV�derivation of P � fGfg that has the terminal footed clause 
�t� as the last goal in
the derivation� If Gn � or Gn �
�t�� we say the refutation has length n�

De�nition �� An unrestricted �relational or functional� SLV�refutation is a �relational
or functional� SLV�refutation� except that the substitutions �i are not required to be most
general uni�ers� They are only required to be uni�ers�

De�nition �� Let P be a relational�functional program� The relational success set of P
is the set of all ground atoms a � BP such that P �f �� ag has a relational SLV�refutation�
The functional success set of P is the set of all ground molecules �e ��� t� � CP such
that P � f ��� eg has a functional SLV�refutation with last goal 
�t�� The success set of
P is the union of the relational and functional success sets of P �

Proposition � Let P be a relational�functional program� The functional success set of
P is the set of all ground molecules �e ��� t� � CP such that P � f �� �t is e�g has a
relational SLV�refutation�

Proof
The ground �at setter �t is e� � �e ��� t�� leads to a relational SLV�refutation i� e�
also being the corresponding molecule�s ground �at application� leads to a functional SLV�
refutation with last goal 
�t��

De�nition �� Let P be a relational�functional program� further� let Gr be a relational
goal� Suppose there is an SLV�refutation of P � fGrg and let ��� � � � � �n be its sequence
of mgu�s� A computed �relational� answer for P � fGrg is the substitution � obtained by
restricting the composition �� � � � �n to the variables of Gr�

��



De�nition �� Let P be a relational�functional program� further� let Gf be a functional
goal� Suppose there is an SLV�refutation of P � fGfg and let ��� � � � � �n be its sequence of
mgu�s and let 
�t� be its last goal� A computed �functional� answer for P � fGfg is the
pair �t�� � � � �n� ��� with the term t extracted from 
�t� and the substitution � obtained by
restricting the composition �� � � � �n to the variables of Gf �

Lemma � Let P be a relational�functional program� Gf a
functional goal �� B�� � � � � Bk � F � and Gr a relational goal �� B�� � � � � Bk� �x is F �
with x a new variable� Then the following statements are equivalent�

�� �t� �� is a computed functional answer for P � fGfg�

	� �fx�tg is a computed relational answer for P � fGrg�

Proof
�t� �� is a computed functional answer for P � fGfg
i�
there is an SLV�refutation of P � fGfg with a sequence of mgu�s ��� � � � � �n and last goal

�u� such that t is u�� � � � �n and � restricts the composition �� � � � �n to the variables of
Gf

i�
there is an SLV�refutation of P � fGrg with a sequence of mgu�s ��� � � � � �n� fx�tg such
that �fx�tg restricts the composition �� � � � �nfx�tg to the variables of Gr

i�
�fx�tg is a computed relational answer for P � fGrg�

Example � The �non�deterministic� no�extra�variables� is�using� program P�

f�X� �� p�g�a�� g�X�� � h�g�X���
g�a� ��� c�
g�a� ��� h�c��
h�X� ��� b�
p�X� c� �� X is h�a�� q�h�X���
q�b��

uses no constructors� hence belongs to the DATALOG�extending DATAFUN subset of
RELFUN� it has the �nite Herbrand universe fa� b� cg� hence a �nite Herbrand crossbase�

A functional SLV�refutation of P� � f ��� f�Y �g is�

G
 � G � ��� f�Y �
Foot resolution of f�Y � with C� � f�X�� �� p�g�a�� g�X��� � h�g�X���� �� � fY�X�g�
G� � �� p�g�a�� g�X��� � h�g�X���
Body �attening of p�g�a�� � � �� with C� � �� �� � fg�
G� � �� Z� is g�a�� p�Z�� g�X��� � h�g�X���
is�rhs resolution of Z� is g�a� with C� � g�a� ��� h�c�� �� � fg�

� 



G� � �� Z� is h�c�� p�Z�� g�X��� � h�g�X���
is�rhs resolution of Z� is h�c� with C� � h�X�� ��� b� �� � fX��cg�
G� � �� Z� is b� p�Z�� g�X��� � h�g�X���
Term uni�cation of Z� is b with C� � �� �� � fZ��bg�
G� � �� p�b� g�X��� � h�g�X���
Body �attening of p�� � � � g�X��� with C� � �� �� � fg�
G� � �� Z� is g�X��� p�b� Z�� � h�g�X���
is�rhs resolution of Z� is g�X�� with C� � g�a� ��� c� �� � fX��ag�
G� � �� Z� is c� p�b� Z�� � h�g�X���
Term uni�cation of Z� is c with C� � �� �� � fZ��cg�
G� � �� p�b� c� � h�g�X���
Body resolution of p�b� c� with C	 � p�X�� c� �� X� is h�a�� q�h�X���� �	 � fX��bg�
G	 � �� b is h�a�� q�h�b�� � h�g�X���
is�rhs resolution of b is h�a� with C�
 � h�X�� ��� b� ��
 � fX��ag�
G�
 � �� b is b� q�h�b�� � h�g�X���
Term uni�cation of b is b with C�� � �� ��� � fg�
G�� � �� q�h�b�� � h�g�X���
Body �attening of q�h�b�� with C�� � �� ��� � fg�
G�� � �� Z� is h�b�� q�Z�� � h�g�X���
is�rhs resolution of Z� is h�b� with C�� � h�X�� ��� b� ��� � fX��bg�
G�� � �� Z� is b� q�Z�� � h�g�X���
Term uni�cation of Z� is b with C�� � �� ��� � fZ��bg�
G�� � �� q�b� � h�g�X���
Body resolution of q�b� with C�� � q�b�� ��� � fg�
G�� � ��� h�g�a����

Foot �attening of h�g�a�� with C�� � �� ��� � fg�
G�� � �� Z� is g�a� � h�Z��
is�rhs resolution of Z� is g�a� with C�� � g�a� ��� c� ��� � fg�
G�� � �� Z� is c � h�Z��
Term uni�cation of Z� is c with C�� � �� ��� � fZ��cg�
G�� � ��� h�c�
Foot resolution of h�c� with C�	 � h�X�� ��� b� ��	 � fX��bg�
G�	 � ��� b

This length��� refutation happens to use RELFUN�s implemented PROLOG�like �leftmost�
computation rule �however� RELFUN implements �attening in a condensed �and�parallel�
fashion�� Operationally speaking� �f�Y � returns b and binds Y to a�� The refutation has
last goal G�	 � 
�b�� and �� � � � ��	 restricted to Y is fY�ag� hence the computed func�
tional answer is �b� fY�ag��

The equivalent computed relational answer for P� � f �� Z is f�Y �g is fY�a� Z�bg�
Here� the refutation uses is�rhs resolutions and performs an is�rhs �attening instead of
the corresponding rules operating on the foot� and it needs a �nal term uni�cation� Func�
tional computation is somewhat hidden in the auxiliary setter�s rhs� However� the kernel

��The binding �� � fX��ag from the relational subderivation G�� � � � � G�� is applied here�

��



subderivations of the functional and relational refutations are essentially the same�

The success set of P� is �functional and relational partitions displayed in separate lines����

ff�a� ��� b� g�a� ��� b� g�a� ��� c� h�a� ��� b� h�b� ��� b� h�c� ��� b�
q�b�� p�b� c�g

� Soundness of SLV�Resolution

While the following result addresses relational goals� only the �rst of the �ve SLV�
resolution rules to be considered corresponds to the classical case of logic programming
as proved by K� L� Clark�

Theorem � �Soundness of relational SLV�resolution� Let P be
a relational�functional program and Gr a relational goal� Then every computed answer
for P � fGrg is a correct answer for P � fGrg�

Proof
Let Gr be the relational goal �� B�� � � � � Bk and ��� � � � � �n be the sequence of mgu�s used
in an SLV�refutation of P � fGrg� We have to show that 	��B� � � � � � Bk��� � � � �n� is a
logical consequence of P � The result is proved by induction on the length of the refutation�

Suppose �rst that n � �� This means that Gr is a goal of the form �� B�� to which
either of two of the �ve SLV�resolution rules applies�

Body resolution B� is an atom� the program has a unit clause of the form d �� � and
B��� � d��� Since B��� �� is an instance of a unit clause of P � it follows that
	�B���� is a logical consequence of P �

is�rhs resolution Cannot derive in one step�

Body �attening Cannot derive in one step�

is�rhs �attening Cannot derive in one step�

Term uni�cation B� is a formula of the form t� is t� and �� is the mgu of t� and
t�� Since t��� � t���� it follows that 	�B���� is valid� hence� trivially� is a logical
consequence of P �

Next suppose that the result holds for computed answers that come from SLV�
refutations of length n��� Suppose ��� � � � � �n is the sequence of mgu�s used in a refutation
of P � fGrg of length n� One of the �ve SLV�resolution rules applies�

��In higher�order RELFUN� this can be obtained from the computed answers of an operator�variable�
varying�arity goal ��� such as ��� Op�jArgs
�
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Body resolution Let Bm be the selected atom of Gr and the hornish clause
d �� V�� � � � � Vv �v � �� be the �rst input clause� By the induction hypothesis�
	��B�� � � ��Bm�� �V� � � � ��Vv �Bm�� � � � ��Bk��� � � � �n� is a logical consequence
of P � Thus� if v � �� 	��V�� � � ��Vv��� � � � �n� is a logical consequence of P � In this
case� as well as for v � �� 	�Bm�� � � � �n�� which is the same as 	�d�� � � � �n�� is a
logical consequence of P � Hence 	��B� � � � � � Bk��� � � � �n� is a logical consequence
of P �

is�rhs resolution Let Bm be the selected �at setter t is g�u�� � � � � um� of Gr and the
footed clause e ��W�� � � � �Ww � E �w � �� be the �rst input clause� By the induction
hypothesis� 	��B�� � � ��Bm�� �W� � � � ��Ww � t is E �Bm�� � � � ��Bk��� � � � �n�
is a logical consequence of P � Thus� for w � �� 	��W�� � � ��Ww � t is E��� � � � �n�
is a logical consequence of P � Consequently� 	�Bm�� � � � �n�� which is the same as
	��t is e��� � � � �n�� is a logical consequence of P � Hence 	��B� � � � � �Bk��� � � � �n�
is a logical consequence of P �

Body �attening Let Bm be the selected nested rela�
tionship r�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em� with the selected embedded
application h�Ei��� � � � � Ei�ni� of Gr� By the induction hypothesis� 	��B��� � ��Bm���
�x is h�Ei��� � � � � Ei�ni���r�E�� � � � � Ei��� x�Ei��� � � � � Em��Bm���� � ��Bk��� � � � �n��
x the new variable chosen by the SLV�refutation� is a logical consequence of P � Thus�
	��x is h�Ei��� � � � � Ei�ni���� � � � �n� and 	�r�E�� � � � � Ei��� x�Ei��� � � � � Em��� � � � �n�
are logical consequences of P � Consequently� 	�Bm�� � � � �n� is a logical consequence
of P � Hence 	��B� � � � � �Bk��� � � � �n� is a logical consequence of P �

is�rhs �attening Let Bm be the
selected nested setter t is g�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em� with the
selected embedded application h�Ei��� � � � � Ei�ni� of Gr� By the induction hypothesis�
	��B��� � ��Bm����x is h�Ei��� � � � � Ei�ni����t is g�E�� � � � � Ei��� x�Ei��� � � � � Em���
Bm�� � � � � � Bk��� � � � �n�� x the new variable chosen by the SLV�refutation�
is a logical consequence of P � Thus� 	��x is h�Ei��� � � � � Ei�ni���� � � � �n� and
	��t is g�E�� � � � � Ei��� x�Ei��� � � � � Em���� � � � �n� are logical consequences of P �
Consequently� 	�Bm�� � � � �n� is a logical consequence of P � Hence 	��B� � � � � �
Bk��� � � � �n� is a logical consequence of P �

Term uni�cation Let Bm be the selected term setter t� is t� of Gr� By the induction
hypothesis� 	��B� � � � � � Bm�� �Bm�� � � � � � Bk��� � � � �n� is a logical consequence
of P � Since t��� � � � �n � t��� � � � �n� it follows that 	�Bm�� � � � �n� is valid� hence�
trivially� is a logical consequence of P � Hence 	��B� � � � ��Bk��� � � � �n� is a logical
consequence of P �

The result for relational goals naturally carries over to functional goals�

Corollary � �Soundness of functional SLV�resolution� Let P be a relational�
functional program and Gf a functional goal� Then every computed answer for P � fGfg
is a correct answer for P � fGfg�

��



Proof
By lemmas 	 and � there is an equivalent relational goal with computed and correct answers
for which the soundness result of theorem � holds�

Corollary � The success set of a relational�functional program is contained in its least
Herbrand crossbase model�

Proof
Let the program be P and suppose F � XP is in the success set of P � By proposition 
�
the success set of P is the set of all F � XP such that P � f �� F�g has a relational
refutation� By theorem �� F�� hence F � is a logical consequence of P � Thus� F is true
wrt all Herbrand crossbase models of P � hence is in P �s least Herbrand crossbase model�

� Least Herbrand Crossbase Models as Fixpoints

We now de�ne TP �like immediate�consequence operators on Herbrand crossbase interpre�
tations� For this we employ unnesting of clause premises� a �xpoint�semantics� ground�
formula analogue to �attening in SLV�resolution� Instead of introducing new variables�
unnesting chooses any ground terms from the Herbrand universe� as �returned values��
to link the subformulas generated from the original formula�

De�nition �	 A set of unnested setters unnestisP �t is E� of a ground setter t is E
for a program P is de�ned recursively as the non�deterministic mapping

unnestisP �t is g�u�� � � � � um�� �

ft is g�u�� � � � � um�g if fu�� � � � � umg 
 UP

unnestisP �t is g�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� �

unnestisP �u is h�Ei��� � � � � Ei�ni�� � unnestisP �t is g�E�� � � � � Ei��� u�Ei��� � � � � Em��

for some u � UP

De�nition �
 A set of unnested formulas unnestP �V � of a ground relationship or setter
V for a program P is de�ned as the non�deterministic mapping

unnestP �r�u�� � � � � um�� �

fr�u�� � � � � um�g if fu�� � � � � umg 
 UP

unnestP �r�E�� � � � � Ei��� h�Ei��� � � � � Ei�ni�� Ei��� � � � � Em�� �

unnestisP �u is h�Ei��� � � � � Ei�ni�� � unnestP �r�E�� � � � � Ei��� u�Ei��� � � � � Em��

for some u � UP

unnestP �t is t� �

fg if t � UP

unnestP �t is g�E�� � � � � Em�� �

unnestisP �t is g�E�� � � � � Em��

��



A �rst auxiliary immediate�consequence operator� TBP � generates atoms from atoms
and molecules�

De�nition �� Let P be a relational�functional program� The mapping TBP 
 �XP � �BP

is de�ned as follows� Let I � �XP be an Herbrand crossbase interpretation� Then�

TBP �I� � fw � BP j w �� V�� � � � � Vn is a ground instance of a clause in P�
unnestP �Vk�

� 
 I for � � k � ng

If each Vk has the Horn�premise form r�u�� � � � � un� of an atom� unnestP �Vk�� just
denotes the unit set fVkg� hence TBP becomes the TP operator of M� H� van Emden and
R� Kowalski�

Proposition � Let P be a relational�functional program containing Horn clauses only
and I � �BP be an Herbrand interpretation� Then the mapping TBP restricted to �BP 

�XP specializes to the mapping TP 
 �BP � �BP de�ned as�

TP �I� � fw � BP j w �� V�� � � � � Vn is a ground instance of a clause in P�
Vk � I for � � k � ng

Note how the intuitive understanding of TP is extended by TBP 
 as TP �I� �guesses	 a
ground clause of P and then checks whether its premise atoms are members of I� TBP �I�
�guesses	 a ground clause of P � then �guesses	 an unnesting �zero�one atoms and one�zero
or more setters� from each of its premises� and then checks whether the ����corresponding
atoms and molecules constitute subsets of I�

A second auxiliary immediate�consequence operator� TCP � generates molecules from
atoms and molecules�

De�nition �� Let P be a relational�functional program� The mapping TCP 
 �XP � �CP

is de�ned as follows� Let I � �XP be an Herbrand crossbase interpretation� Then�

TCP �I� � fe ��� t � CP j e �� V�� � � � � Vn � E is a ground instance of a clause in P�
unnestP �Vk�

� 
 I for � � k � n�
unnestP �t is E�� 
 Ig

Example 
 The program P� �cf� example �� with UP� � fa� b� cg contains the footed
clause f�X� �� p�g�a�� g�X�� � h�g�X��� Suppose a TCP� application selects the
ground instance f�a� �� p�g�a�� g�a�� � h�g�a��� i�e� V� � p�g�a�� g�a�� and E �
h�g�a��� Then unnestP��V�� can select fp�b� c�� b is g�a�� c is g�a�g� so that
unnestP��V��

� � fp�b� c�� g�a� ��� b� g�a� ��� cg� Further suppose TCP��s set for�
mation selects t � b and unnestP��t is E� selects fb is h�c�� c is g�a�g� so that
unnestP��t is E�� � fh�c� ��� b� g�a� ��� cg� Now� if some interpretation I has
fp�b� c�� g�a� ��� b� g�a� ��� c� h�c� ��� bg as a subset� TCP��I� will contain the
element f�a� ��� b�

��



Since the sets produced by unnesting are always �nite� the atoms and setters resulting
from unnestP �Vk� and unnestP �t is E� can be regarded as premises of a �virtual	 ground
clause e �� unnestP �V���� � � � � unnestP �Vn��� unnestP �t is E�� � t� ��f���g�� denotes the
sequence of elements of �f���g��� The corresponding non�ground clause can be obtained by
transforming the original program P via static �attening and denotative normalization
���� Therefore� each application of TCP can be regarded as a condensed form of the
application of a less powerful operator indexed by the more lengthy transformed program
�TP 	s extension would be con�ned to clauses with atomic and �at�setter bodies and term
foots��

Example �� A virtual ground clause of f�a� �� p�g�a�� g�a�� � h�g�a�� from example �
is f�a� �� b is g�a�� c is g�a�� p�b� c�� c is g�a�� b is h�c� � b� Its non�ground abstraction
f�X� �� Y � is g�a�� Y � is g�X�� p�Y �� Y ��� Y � is g�X�� Y � is h�Y �� � Y � is the
�attened� denotative normalization of f�X� �� p�g�a�� g�X�� � h�g�X��� the original non�
ground clause�

The main immediate�consequence operator� TXP � just unites the two auxiliary ones�

De�nition �
 Let P be a relational�functional program� The mapping TXP 
 �XP � �XP

is de�ned as follows� Let I � �XP be an Herbrand crossbase interpretation� Then�

TXP �I� � TBP �I� � TCP �I�

Example �� Let P� be the relational�functional program of example � and I
the interpretation fg�k�a��l�a�� ��� k�a�� p�k�a��� q�l�a��g � �XP� � Since
unnestP��k�a� is g�g�k�a�� l�a��� l�a���� can select fg�k�a�� l�a�� ��� k�a�g� we obtain
TXP��I� � ff�k�a�� ��� k�a�� g�a�a� ��� k�u�� p�k�u��� q�l�u��g for u � UP� �

Clearly� TXP is monotonic on the complete lattice �XP under the partial order �
��
Like TP in ���� it can be shown to be continuous�

Proposition 	 Let P be a relational�functional program� Then the mapping TXP is
continuous�

Proof
Let S be a directed subset of �XP � Vk be a ground relationship or setter� for � � k � n� and
t is E be a ground setter� Each unnestP �Vk�

� being a �nite set� we can �rst note that
Sn
k
� unnestP �Vk�

� 
 lub�S� i�
Sn
k
� unnestP �Vk�

� 
 I for some I � S� furthermore�
unnestP �t is E�� being a �nite set�

Sn
k
� unnestP �Vk�

� � unnestP �t is E�� 
 lub�S� i�
Sn
k
� unnestP �Vk�

� � unnestP �t is E�� 
 I for some I � S� In order to show that TXP

is continuous we have to show TXP �lub�S�� � lub�TXP �S�� for each directed subset S�
Since TXP denotes the disjoint union of TBP �s and TCP �s values we show the equality
of both subsets individually�

��



w � TBP �lub�S��
i�
w �� V�� � � � � Vn is a ground instance of a clause in P and

Sn
k
� unnestP �Vk�

� 
 lub�S�
i�
w �� V�� � � � � Vn is a ground instance of a clause in P and

Sn
k
� unnestP �Vk�

� 
 I for
some I � S
i�
w � TBP �I� for some I � S
i�
w � lub�TBP �S��

e ��� t � TCP �lub�S��
i�
e �� V�� � � � � Vn � E is a ground instance of a clause in P and

Sn
k
� unnestP �Vk�

� �
unnestP �t is E�� 
 lub�S�
i�
e �� V�� � � � � Vn � E is a ground instance of a clause in P and

Sn
k
� unnestP �Vk�

� �
unnestP �t is E�� 
 I for some I � S
i�
e ��� t � TCP �I� for some I � S
i�
e ��� t � lub�TCP �S��

Herbrand crossbase models can be characterized in terms of TXP �

Proposition 
 Let P be a relational�functional program and I be an Herbrand crossbase
interpretation of P � Then I is a crossbase model for P i� TXP �I� 
 I�

Proof
I is a crossbase model for P
i�
for each ground instance w �� V�� � � � � Vn or e �� V�� � � � � Vn � E of each clause in P
we have� respectively�

Sn
k
� unnestP �Vk�

� 
 I implies w � I or
Sn
k
� unnestP �Vk�

� �
unnestP �t is E�� 
 I implies e ��� t � I
i�
TXP �I� 
 I

Using these propositions and general �xpoint results� we can extend the �xpoint char�
acterization of the least Herbrand model of logic programs by M� H� van Emden and
R� Kowalski to a characterization of the least Herbrand crossbase model of relational�
functional programs �for the ����notation see �����

Theorem � �Fixpoint characterization of the least Herbrand crossbase model�
Let P be a relational�functional program� Then MP � lfp�TXP � � TXP � ��

��



Proof

MP � glbfI j I is an Herbrand crossbase model for Pg

� glbfI j TXP �I� 
 Ig� by proposition �

� lfp�TXP �� by proposition ��� in ���

� TXP � �� by proposition ��� in ��� and proposition �

Example �� The ��element least Herbrand crossbase model of the program P� of example
� �in section �� can be computed bottom�up by the following TXP� iterations �details of
the last step were shown in example ���

TXP� � � �
fg

TXP� � � � TXP� � � �
fg�a� ��� c� h�a� ��� b� h�b� ��� b� h�c� ��� b�
q�b�g

TXP� � � � TXP� � � �
fg�a� ��� b�
p�b� c�g

MP� � lfp�TXP�� � TXP� � � � TXP� � � � TXP� � � �
ff�a� ��� bg

This is equal to the success set of P� given in example ��

	 Completeness of SLV�Resolution

Like for soundness� we will again use proposition � as well as lemmas � and �
 hence the
following mgu and lifting lemmas will only be needed for relational goals� The symbol

�
G
� � will denote equality between substitutions after restriction of the rhs substitution

to the variables of the goal G�

Lemma � �Mgu lemma� Let P be a relational�functional program and Gr a relational
goal� Suppose that P � fGrg has an unrestricted SLV�refutation� Then P � fGrg has an
SLV�refutation of the same length such that� if ��� � � � � �n are the uni�ers from the unre�
stricted SLV�refutation and ���� � � � � �

�

n are the mgu�s from the SLV�refutation� then there

exists a substitution � such that �� � � � �n
Gr� ��� � � � �

�
n��

Proof
The induction proof is as for lemma ��� in ��� except that uni�ers and mgu�s need not de�
rive from �body� resolution but can derive from the other rules of SLV�resolution ��attening
in unrestricted SLV�refutations� like in SLV�refutations� produces identity substitutions��

��



Lemma � �Lifting lemma� Let P be a relational�functional program� Gr a relational
goal� and � a substitution� Suppose there exists an SLV�refutation of P � fGr�g� Then
there exists an SLV�refutation of P � fGrg of the same length such that� if ��� � � � � �n are
the mgu�s from the SLV�refutation of P�fGr�g and ���� � � � � �

�

n are the mgu�s from the SLV�

refutation of P � fGrg� then there exists a substitution � such that ��� � � � �n
Gr� ��� � � � �

�

n��

Proof
The proof is as for lemma ��	 in ��� with the quali�cation already noted for lemma 
�
which is crucially applied here�

The converse of corrollary � extends the logic�programming completeness result of K�
R� Apt and M� H� van Emden to relational�functional programming�

Theorem � The success set of a relational�functional program is equal to its least Her�
brand crossbase model�

Proof
Let the program be P � By corrollary 	 it su�ces to show that the least Herbrand cross�
base model of P is contained in the success set of P � Let F denote the ground atom
d or molecule f ��� t� By proposition 
 we need only consider the relational goals de�
noted by F�� Suppose F is in the least Herbrand crossbase model of P � By theorem 	�
F � TXP � n for some n � �� We prove by induction on n that F � TXP � n implies
that P � f �� F�g has a refutation �i�e�� d � TXP � n implies that P � f �� dg has a
refutation and f ��� t � TXP � n implies that P �f �� t is fg has a refutation�� Hence
F will be in the success set�
Suppose �rst that n � �� Then F � TXP � � means that F is a ground instance of an
atom or molecule from P � Clearly� P � f �� dg and P � f �� t is fg have a refutation
�a body resolution and an is�rhs resolution followed by a term uni�cation� respectively��
Now suppose that the result holds for n� �� We distinguish the two cases for F �
First� let d � TXP � n� By the de�nition of TXP there exists a ground instance
of a clause w �� V�� � � � � Vm and an unnesting of its premises such that d � w� and
Sm
k
� unnestP �Vk��

� 
 TXP � �n � �� for some uni�er �� By the induction hypothesis�
for each formula A in the selected unnestP �Vk��� for � � k � m� P � f �� Ag has a
refutation� Hence� P � f �� Vk�g has a refutation� mimicking unnesting by �attening�
Because each Vk� is ground and �attening only introduces new variables� these refuta�
tions can be combined into a refutation of P � f �� �V�� � � � � Vm��g� Thus P � f �� dg
has an unrestricted refutation and we can apply the mgu lemma to obtain a refutation of
P � f �� dg�
Second� let f ��� t � TXP � n� By the de�nition of TXP there exists a ground instance
of a clause e �� V�� � � � � Vm � E and an unnesting of its premises such that f � e� and
Sm
k
� unnestP �Vk��

��unnestP �t is E��� 
 TXP � �n��� for some uni�er �� By the in�
duction hypothesis� for each formula A in the selected unnestP �Vk��� for � � k � m�
and unnestP �t is E��� P � f �� Ag has a refutation� Hence� P � f �� Vk�g and
P �f �� t is E�g have a refutation� mimicking unnesting by �attening� Because each Vk�
and t is E� are ground and �attening only introduces new variables� these refutations can
be combined into a refutation of P � f �� �V�� � � � � Vm� t is E��g� Thus P � f �� t is fg

��



has an unrestricted refutation and we can apply the mgu lemma to obtain a refutation of
P � f �� t is fg�

For proving that every correct �relational or functional� answer is an instance of a
computed �relational or functional� answer we �rst transfer lemma ��� from ����

Lemma 	 Let P be a relational�functional program and F a relationship or setter� Sup�
pose that 	�F � is a logical consequence of P � Then there exists an SLV�refutation of
P � f �� Fg with the identity substitution as the computed answer�

Proof
Suppose F has variables x�� � � � � xn� anywhere in the relationship or on both sides of the
setter� Let a�� � � � � an be distinct constants not appearing in P or F and let � be the
substitution fx��a�� � � � � xn�ang� Then it is clear that F� is a logical consequence of P �
Also� F� being ground� each formula A in some unnestP �F�� is a logical consequence of
P � Since each A is ground� theorem 
 shows that P � f �� Ag has a refutation� Thus�
P � f �� F�g has a refutation� mimicking unnesting by �attening� Since �attening only
introduces new variables and the ai do not appear in P or F � by replacing ai by xi� for
� � i � n� in this refutation� we obtain a refutation of P � f �� Fg with the identity
substitution as the computed answer�

Now� K� L� Clark	s completeness result can be extended from logic to relational�
functional programming� For relational goals we can adapt the formulation for de�nite
goals in ����

Theorem � �Completeness of relational SLV�resolution� Let P be a relational�
functional program and Gr a relational goal� For every correct answer � for P � fGrg

there exists a computed answer 	 for P � fGrg and a substitution � such that �
Gr� 	��

Proof
Let the relational goal Gr be �� B�� � � � � Bk� Since � is correct� 	��B� � � � � � Bk��� is a
logical consequence of P � By lemma � there exists a refutation of P �f �� Bi�g such that
the computed answer is the identity� for � � i � k� We can combine these refutations
into a refutation of P � f �� Gr�g such that the computed answer is the identity�
Suppose the sequence of mgu�s of the refutation of P � f �� Gr�g is ��� � � � � �n� Then
Gr��� � � � �n � Gr�� By the lifting lemma there exists a refutation of P � f �� Grg

with mgu�s ���� � � � � �
�

n such that ��� � � � �n
Gr� ��� � � � �

�

n�
�� for some substitution ��� Let 	

be ��� � � � �
�
n restricted to the variables in Gr� Then �

Gr� 	�� where � is an appropriate
restriction of ���

Again� the result for relational goals naturally carries over to functional goals�

� 



Corollary � �Completeness of functional SLV�resolution� Let P be a relational�
functional program and Gf a functional goal� For every correct answer �t� �� for P �fGfg

there exists a computed answer �s� 	� for P �fGfg and a substitution � such that �
Gf
� 	�

and t � s��

Proof
By lemmas � and 	 there is an equivalent relational goal with correct and computed answers
for which the completeness result of theorem � holds�
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