Skip to main content

The complexity of logic-based abduction

  • Conference paper
  • First Online:
Book cover STACS 93 (STACS 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 665))

Included in the following conference series:

Abstract

Abduction is an important form of nonmonotonic reasoning allowing one to find explanations for certain symptoms or manifestations. When the application domain is described by a logical theory, we speak about logic- based abduction. Candidates for abductive explanations are usually subjected to minimality criteria such as subset-minimality, minimal cardinality, minimal weight, or minimality under prioritization of individual hypotheses. This paper presents a comprehensive complexity analysis of relevant problems related to abduction on propositional theories. They show that the different variations of abduction provide a rich collection of natural problems populating all major complexity classes between P and Σ P3 , Π P3 in the refined polynomial hierarchy. More precisely, besides polynomial, NP-complete and co-NP-complete abduction problems, abduction tasks that are complete for the classes Δ Pi , Δ Pi [O(logn), Σ Pi , and Π Pi , for i=2,3, are identified.

This paper is an overview of [10], which contains detailed proofs of all results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Allemang, M.C. Tanner, T. Bylander, and J. Josephson. Computational Complexity of Hypothesis Assembly. In Proc. IJCAI-87, 112–117, 1987.

    Google Scholar 

  2. G. Brewka. Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge Univ. Press, 1991.

    Google Scholar 

  3. T. Bylander. The Monotonic Abduction Problem: A Functional Characterization on the Edge of Tractability. In Proc. KR-91, 70–77, 1991.

    Google Scholar 

  4. T. Bylander, D. Allemang, M. Tanner, and J. Josephson. The computational complexity of abduction. Artificial Intelligence, 49:25–60, 1991.

    Google Scholar 

  5. M. Cadoli and M. Schaerf. A Survey on Complexity Results for Non-monotonic Logics. Technical report, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, 1992.

    Google Scholar 

  6. L. Console, D. Theseider Dupré, and P. Torasso. On the Relationship Between Abduction and Deduction. Journal of Logic and Computation, 1(5):661–690, 1991.

    Google Scholar 

  7. W. Dowling and J. H. Gallier. Linear-time Algorithms for Testing the Satisfiability of Propositional Horn Theories. Journal of Logic Programming, 3:267–284, 1984.

    Google Scholar 

  8. T. Eiter and G. Gottlob. Propositional Circumscription and Extended Closed World Reasoning are Π2/P-complete. Theoretical Computer Science, to appear.

    Google Scholar 

  9. T. Eiter and G. Gottlob. On the Complexity of Propositional Knowledge Base Revision, Updates, and Counterfactuals. Artificial Intelligence, 57:227–270, 1992.

    Google Scholar 

  10. T. Eiter and G. Gottlob. The Complexity of Logic-Based Abduction. Technical Report CD-TR 92/35, Christian Doppler Laboratory for Expert Systems, TU Vienna, 1992.

    Google Scholar 

  11. R. Fagin, J. D. Ullman, and M. Y. Vardi. On the Semantics of Updates in Data-bases. In Proc. PODS-83, 352–365, 1983.

    Google Scholar 

  12. G. Friedrich, G. Gottlob, and W. Nejdl. Hypothesis Classification, Abductive Diagnosis, and Therapy. In Proc. International Workshop on Expert Systems in Engineering, number 462 in LNAI, 69–78, September, 1990.

    Google Scholar 

  13. G. Gottlob. Complexity Results for Nonmonotonic Logics. Journal of Logic and Computation, 2(3):397–425, June 1992.

    Google Scholar 

  14. D. S. Johnson. A Catalog of Complexity Classes. volume A of Handbook of Theoretical Computer Science, chapter 2. 1990.

    Google Scholar 

  15. J. Josephson, B. Chandrasekaran, J. J. W. Smith, and M. Tanner. A Mechanism for Forming Composite Explanatory Hypotheses. IEEE Transactions on Systems, Man, and Cybernetics, SMC-17:445–454, 1987.

    Google Scholar 

  16. J. Kadin. P N P[O(log n)] and Sparse Turing-Complete Sets for N P. Journal of Computer and System Sciences, 39:282–298, 1989.

    Google Scholar 

  17. K. Konolige. Abduction versus closure in causal theories. Artificial Intelligence, 53:255–272, 1992.

    Google Scholar 

  18. R. Kowalski. Logic Programs in Artificial Intelligence. In Proc. IJCAI-91, 596–601, 1991.

    Google Scholar 

  19. M. Krentel. The Complexity of Optimization Problems. Journal of Computer and System Sciences, 36:490–509, 1988.

    Google Scholar 

  20. M. Krentel. Generalizations of OptP to the Polynomial Hierarchy. Theoretical Computer Science, 1992.

    Google Scholar 

  21. H. Levesque. A knowledge-level account for abduction. In Proc. IJCAI-89, 1061–1067, 1989.

    Google Scholar 

  22. V. Lifschitz. Computing Circumscription. In Proc. IJCAI-85, 121–127, 1985.

    Google Scholar 

  23. B. Nebel. Belief Revision and Default Reasoning: Syntax-Based Approaches. In Proc. KR-91, 417–428, 1991.

    Google Scholar 

  24. Y. Peng and J. Reggia. Abductive Inference Models for Diagnostic Problem Solving. Symbolic Computation — Artificial Intelligence. Springer, 1990.

    Google Scholar 

  25. D. Poole. A Logical Framework for Default Reasoning. Artificial Intelligence, 36:27–47, 1988.

    Google Scholar 

  26. R. Reiter. A Theory of Diagnosis From First Principles. Artificial Intelligence, 32:57–95, 1987.

    Google Scholar 

  27. V. Rutenburg. Complexity Classification in Truth Maintenance Systems. In Proc. STACS-91, 373–383, 1991.

    Google Scholar 

  28. G. Schwarz and M. Truszczyński. Nonmonotonic reasoning is sometimes easier. manuscript, August. 1992.

    Google Scholar 

  29. B. Selman and H. J. Levesque. Abductive and Default Reasoning: A Computational Core. In Proc. AAAI-90, 343–348, July 1990.

    Google Scholar 

  30. L. Stockmeyer and A. Meyer. Word Problems Requiring Exponential Time. In Proc. of the Fifth ACM STOC, 1–9, 1973.

    Google Scholar 

  31. K. Wagner. More Complicated Questions about Maxima and Minima, and Some Closures of NP. Theoretical Computer Science, 51:53–80, 1987.

    Google Scholar 

  32. K. Wagner. Bounded Query Computations. Technical Report 172, Universität Augsburg, March 1988.

    Google Scholar 

  33. K. Wagner. Bounded query classes. SIAM J. Comp., 19(5):833–846, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Enjalbert A. Finkel K. W. Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eiter, T., Gottlob, G. (1993). The complexity of logic-based abduction. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds) STACS 93. STACS 1993. Lecture Notes in Computer Science, vol 665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56503-5_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-56503-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56503-1

  • Online ISBN: 978-3-540-47574-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics