Skip to main content

Axiomatizations of temporal logics on trace systems

  • Conference paper
  • First Online:
STACS 93 (STACS 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 665))

Included in the following conference series:

  • 128 Accesses

Abstract

Partial order temporal logics interpreted on trace systems have been shown not to have finitary complete axiomatizations. The paper gives infinitary complete proof systems for several temporal logics on trace systems e.g. Partial Order Logic (POL), Computation Tree Logic with backward modalities, and an essential subset of Interleaving Set Temporal Logic (ISTL).

Partly supported by the Polish grant No. 2 2047 9203

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Godefroid, P., Wolper, P., A Partial Approach to Model Checking, Proc. of LICS, 1991.

    Google Scholar 

  2. Goltz, U., Kuiper, R., and Penczek, W., Propositional temporal logics and equivalences, Proc. of CONCUR'92, LNCS 630, pp. 222–236, 1992.

    Google Scholar 

  3. Katz, S., Peled, D., Interleaving Set Temporal Logic, 6th ACM Symposium on Principles of Distributed Computing, Vancouver Canada, pp. 178–190, 1987.

    Google Scholar 

  4. Lodaya, K., Parikh, R., Ramanujam, R., and Thiagarajan, P.S., A Logical Study of Distributed Transition Systems, submitted to publication.

    Google Scholar 

  5. Mazurkiewicz, A., Basic Notions of Trace Theory, LNCS 354, pp. 285–363, 1988.

    Google Scholar 

  6. Mirkowska, G., and Salwicki, A., Algorithmic Logic, Reidel, Dordrecht and PWN, Warsaw 1987.

    Google Scholar 

  7. Nielsen, M., Rozenberg, G., and Thiagarajan, Transition Systems, Event Structures and Unfoldings, in preparation, 1991.

    Google Scholar 

  8. Paech, B., Concurrency as a Modality, PhD thesis, Munchen University, 1991.

    Google Scholar 

  9. Peleg, D., Concurrent Dynamic Logic, Journal of ACM 34 (2), pp. 450–479, 1987.

    Google Scholar 

  10. Penczek, W., A Concurrent Branching Time Temporal Logic, Proceedings of the Workshop on Computer Science Logic, Kaiserslautern, LNCS 440, pp. 337–354, 1990.

    Google Scholar 

  11. Penczek, W., Temporal Logics on Trace Systems, Proc. of the Workshop on Infinite Traces, Tubingen, 1992, also to appear in IJFCS.

    Google Scholar 

  12. Penczek, W., On Undecidability of Temporal Logics on Trace Systems, IPL 43, pp. 147–153, 1992.

    Google Scholar 

  13. Peled, D., Katz, S., and Pnueli, A., Specifying and Proving Serializability in Temporal Logic, Proc. of LICS, 1991.

    Google Scholar 

  14. Peled, D., Pnueli, A., Proving Partial Order Liveness Properties, Proc. of ICALP, pp. 553–571, 1990.

    Google Scholar 

  15. Pinter, S.S., Wolper, P., A Temporal Logic for Reasoning about Partially Ordered Computations, Proc. 3rd Symp. on Principles of Distributed Computing, pp. 28–37, Vancouver 1984.

    Google Scholar 

  16. Reisig, W., Towards a Temporal Logic of Causality and Choice in Distributed Systems, LNCS 354, pp. 606–627, 1989.

    Google Scholar 

  17. Rozoy, B., On Distributed Languages and Models for Distributed Computation, Technical Report 563, L.R.I., 1990.

    Google Scholar 

  18. Rasiowa, H., and Sikorski, R., The Mathematics of Metamathematics, PWN, Warsawa, 1970.

    Google Scholar 

  19. Sinachopoulos A, Partial Order Logics for Elementary Net Systems: State-and Event — approches, Proc. of CONCUR'90, 1990.

    Google Scholar 

  20. Szalas, A., A complete axiomatic characterization of first-order temporal logic of linear time, TCS 54, pp. 199–214, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Enjalbert A. Finkel K. W. Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Penczek, W. (1993). Axiomatizations of temporal logics on trace systems. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds) STACS 93. STACS 1993. Lecture Notes in Computer Science, vol 665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56503-5_45

Download citation

  • DOI: https://doi.org/10.1007/3-540-56503-5_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56503-1

  • Online ISBN: 978-3-540-47574-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics