Abstract
The class of finitely locally threshold testable ω-languages is proved to be decidable relatively to the class of all regular ω-languages. We apply this to the monadic second order theory of infinite word structures with successor function: it is decidable whether for a given monadic second-order formula there exists a first-order formula with the same set of infinite word models.
Supported by ESPRIT Basic Research Action Working Group No. 3166 ‘Algebraic and Syntactic Methods in Computer Science’ (ASMICS).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Claude Berge, Graphs, second revised ed., North-Holland Mathematical Library, vol. 6, North-Holland, Amsterdam, 1985, part 1.
Daniele Beauquier and Jean Eric Pin, Factors of words, Automata, Languages and Programming: 16th Intern. Coll., Stresa, 1989, Proc. (G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, eds.), Lecture Notes in Computer Science, vol. 372, Springer, 1989, pp 63–79.
Janus A. Brzozowski and Imre Simon, Characterization of locally testable events, Discrete Math. 4 (1973), 243–271.
J. Richard Büchi, On a decision method in restricted second-order arithmetic, Logic, Methodology, and Philosophy of Science: Proc of the 1960 International Congress (E. Nagel, P. Suppes, and A. Tarski, eds.), Stanford University Press, 1962, pp 1–11.
Laurence H. Landweber, Decision problems for ω-automata, Math. Systems Theory 3 (1969), 376–384.
Robert McNaughton, Algebraic decision procedures for local testability, Math. Systems Theory 8 (1974), 60–76.
Ludwig Staiger and Klaus Wagner, Automatentheoretische Charakterisierungen topologischer Klassen regulärer Folgenmengen, Elektron. Informationsverarb. Kybernet. 10 (1974), 379–392.
Wolfgang Thomas, Classifying regular events in symbolic logic, J. Comput. System Sci. 25 (1982), 360–376.
Wolfgang Thomas, Automata on infinite objects, Handbook of Theoretical Computer Science (Jan van Leeuwen, ed.), Elsevier Science Publishers B.V., 1990, pp 134–191.
Thomas Wilke, An algebraic theory for regular languages of finite and infinite words, Technical report 9202, Inst f. Inform. u. Prakt. Math., Univ. Kiel, Germany, 1992. To appear in Intern. J. Algebra Comput.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wilke, T. (1993). Locally threshold testable languages of infinite words. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds) STACS 93. STACS 1993. Lecture Notes in Computer Science, vol 665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56503-5_60
Download citation
DOI: https://doi.org/10.1007/3-540-56503-5_60
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56503-1
Online ISBN: 978-3-540-47574-3
eBook Packages: Springer Book Archive