Abstract
This paper shows the equivalence between the family of recognizable languages over infinite traces and deterministic asynchronous cellular Muller automata. We thus give a proper generalization of McNaughton's Theorem from infinite words to infinite traces. Thereby we solve one of the main open problems in this field. As a special case we obtain that every closed (w.r.t. the independence relation) word language is accepted by some I-diamond deterministic Muller automaton. We also determine the complexity of deciding whether a deterministic I-diamond Muller automaton accepts a closed language.
This research has been supported by the ESPRIT Basic Research Action No. 6317 ASMICS 2.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asynchronous cellular automata. Tech. rep. 89–97, LABRI, Univ. Bordeaux, 1989.
V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in Computer Science. Springer, Berlin-Heidelberg-New York, 1990.
S. Eilenberg. Automata, Languages and Machines, volume I. Academic Press, New York and London, 1974.
P. Gastin. Recognizable and rational trace languages of finite and infinite traces. In Choffrut C. et al., editors, Proceedings of the 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS'91), Hamburg 1991, number 480 in Lecture Notes in Computer Science, pages 89–104. Springer, Berlin-Heidelberg-New York, 1991.
P. Gastin and A. Petit. Büchi (asynchronous) automata for infinite traces. Tech. rep., LRI, Université Paris-Sud, 1991.
P. Gastin and A. Petit. Asynchronous cellular automata for infinite traces. In W. Kuich, editor, Proceedings of the 19th International Colloquium on Automata Languages and Programming (JCALP'92), Vienna (Austria) 1992, Lecture Notes in Computer Science. Springer, Berlin-Heidelberg-New York, 1992. Also available as Tech. Rep. 91-68, LITP, Université Paris 6, France, 1991.
R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information and Control, 9:521–530, 1966.
D. Perrin and J.E. Pin. Mots Infinis. Technical Report, LITP 91.06, Université de Paris 6, 1991. Book to appear.
W. Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, Handbook of theoretical computer science, pages 133–191. Elsevier Science Publishers, 1990.
W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O.-Informatique Théorique et Applications, 21:99–135, 1987.
W. Zielonka. Safe executions of recognizable trace languages by asynchronous automata. In A. R. Mayer et al., editors, Proceedings Symposium on Logical Foundations of Computer Science, Logic at Botik '89, Pereslavl-Zalessky (USSR) 1989, number 363 in Lecture Notes in Computer Science, pages 278–289. Springer, Berlin-Heidelberg-New York, 1989.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Diekert, V., Muscholl, A. (1993). Deterministic asynchronous automata for infinite traces. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds) STACS 93. STACS 1993. Lecture Notes in Computer Science, vol 665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56503-5_61
Download citation
DOI: https://doi.org/10.1007/3-540-56503-5_61
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56503-1
Online ISBN: 978-3-540-47574-3
eBook Packages: Springer Book Archive