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Abstract. This paper presents a study of one particular problem of decision tree 
induction, namely (post-)pnming, with the aim of finding acommon framework for 
the plethora of pruning methods appeared in literature. Given a tree Tm~ to prune, 
a state space is defined as the set of all subtrees o f T  to which only one operator, 
called any-depth branch pruning operator, can be applied in several ways in order 
to move from one state to another. By introducing an evaluation functionfdefined 
on the set of subtrees, the problem of tree pruning can be cast as an optimization 
problem, and it is also possible to classify each pest-pruning method according to 
both its searc h strategy and the kind of information exploited byf.  Indeed, while 
some methods use only the training set in order to evaluate the accuracy of a 
decision tree, other methods exploit an additional pruning set that allows them to 
get less biased estimates ofthepredictive accuracy of aprunedtree. The introduction 
of the state space shows that very simple search strategies are used by the post- 
pruning methods considered. Finally, some empirical results allow theoretical 
observations on strengths and weaknesses of priming methods to be better understood. 

1 Introduction 

Decision tree induction has been w!dely investigated both in the area of machine learning 
and in pattern recognition. In the vast literature concerning decision trees, at least two 
seminal works have to be cited: [1, 2]. They come from two schools which worked 
independently of each other on the same problem, and only at the end of the eighties some 
papers comparing methods and results from different schools and authors appeared in 
literature [3, 4, 5, 6]. In this paper we investigate one particular problem concerning 
decision tree induction, namely the determination of which nodes are leaves, with the aim 
of finding a common framework for the plethora of methods proposed by the two schools. 

In fact, there are two different ways to cope with this problem: either deciding when 
to stop the growth of a tree or reducing the size of  a fully expanded tree, T , by pruning 
some branches. Methods that control the growth of a decision tree during its development 
are called pre-pruning methods, while the others are called post-pruning methods [7]. 
The former methods suffer from the problem that the decision of arresting the growth of 
a branch is always based on local information. Consequently, a test that seems not to add 
any information on the distribution of the examples is always discarded by any pre- 
pruning method, even if it would be very useful when subsequently combined with some 
other tests. This problem is also present in some learning systems that learn Horn clauses 
and exploit information-based heuristics in order to choose the next literal to add [8]. For 
this reason, given enough data, it is generally preferred to grow a large tree and then to 
prune those branches that seem superfluous or even harmful with respect to predictive 
accuracy [9]. 

* Currently at the Department of Information and Computer Science, University of California, 
Irvine, CA 92717. 
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The variety of post-pruning (or simply pruning) methods proposed in literature does 
not encourage the comprehension of both the common and the individual aspects. In fact, 
while some methods proceed from the root towards the leaves of T when they examine 
the branches to prune (top-down approach), other methods follow the opposite direction, 
starting the analysis from the leaves and finishing with the root node (bottom-up approach). 
Furthermore, while some methods use only the training set in order to evaluate the accuracy 
of a decision tree, other methods exploit an additionalpruning set, sometimes improperly 
called test set, that allows them to get less biased estimates of the predictive accuracy of 
a pruned tree. 

In the next section, we introduce the state space as common framework for all the Well- 
known pruning methods. By introducing an evaluation function defined on the set of 
states, the problem of tree pruning can be cast as the problem of searching the state with 
the highest value off. In section 3 this framework is exploited in order to comparatively 
study different pruning methods so to emphasize their strengths and weaknesses. In this 
comparison, we will always refer to the same example of decision tree in order to show 
how the methods really work. Finally, some experimental results together with an 
explanation of the experimental method are presented in section 4. 

2. The search space of pruning methods 

Henceforth, we assume that the reader is familiar with some basic notions on decision 
trees. However, for the sake of clearness, we introduce some notations that we use 
throughout the paper. In particular, N T denotes the set of non terminal nodes of a tree T, 
whileFr denotes the set of leaves ofT. Moreover, T t denotes the branch ofT containing 
a node t and all its descendants. 

Let T be the set of all trees. Then the operation of pruning a branch from a tree T 
is a function nT: 

rc~ :N~ ~ T 
such that each node teN~ is associated with the tree ~Xr(t) whose set of nodes is 
T \ (T t \ { t}), where \ denotes the set difference. Such tree is named subtree ofT with a 
pruned branch. Note that it does not make sense to prune single node trees. 

Given a tree Te T with n non-terminal nodes (n=l~TI), let rCT(~T) denote the set of the 
n subtrees of T with a single pruned branch. When ~rl=0, we set ~r(~T)=O. 

The branch pruning operation can be in turn applied to a tree T'e XT~T)' provided that 
~ T  ,1>0. Then it is possible to define recursively xi(Nr) as follows: 

f {T} if i=0 
ni(NT) = ~(~T) if i= 1 

L) XT,(~T, ) ifi>l 
T'e ni4(Nr) 

that is rci(Nr) represents the set of subtrees of T obtained by i subsequent branch pruning 
operations. 

It is worthwhile to note that rc ~+~(NT)=O, since the operation of pruning a branch can 
be applied at most n times to a tree with n non-terminal nodes. Therefore the set of all 
possible subtrees of T, S(T), is given by: 
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n 

S(T) = u 

i=O 

The problem of post-pruning can be cast as a search in a state space [ 14], where states 
are trees in S(T)  and branch pruning is the only operator that can be applied in several 
ways to each tree in S(T). This space can be represented like a directed acyclic graph 
whose vertices are just the elements in S(T)  and for each pair (T,T')~ S(T)xS(T)  there 
is an edge from T to T' if and only ifT'E rcrCJ~7), that is T' is obtained by pruning only one 
branch of T. It should be noted that in this space we move from one state to another by 
pruning a branch of any depth. A matter of interest is also the space of one depth branch 
pruning in which there is an edge between every pair of trees CI',T')~ S(T)xS(T)  if and 
only if T' is obtained from T by pruning a branch having a depth equal to one. Indeed, 
by inverting the direction of the edges, we get a space that coincides with the lattice 
(S(T),<) in which the order relationship is the tree inclusion. 

For the sake of clearness, let us consider the decision tree depicted in Fig. 1. Then its 
corresponding lattice of the one depth branch pruning operations is that reported in Fig. 
2 while the corresponding state space of the any depth branch pruning operations is shown 
in Fig. 3. In these spaces, each tree T3 is uniquely identified by a pair of indices, i and j, 

J 

where i denotes the number of leaves of the tree whilej discriminates among all the trees 
with the same number of leaves. Obviously, there exists only one tree with one node that 
can be obtained from T by means of the (multiple) application of the branch pruning 
operator, and such a tree is denoted by Tll. Moreover if ~T~,~ I=M, there exists just one 
tree having M leaves, namely T1M = T . A further observation concerns the fact that in 
any state space there exists an edge from any Tj i ~ T~ ~ to Ta ~ since T1 a can be obtained from 
Tj i by applying the pruning operator to the root of Tj i. 

In order to define the goal of the search, a functionf that estimates the goodness of 
a tree has to be introduced. It associates each tree in S(T)  with a numerical value, namely: 

f :  S(T)  ~ R  

where R is the set of real values. Therefore, the goal of the search is to find the vertex in 
the graph with the highest value for f, that is to find the best subtree of T with respect 
tof. In this way, the problem of pruning is cast as a problem of function optimization. 

Independently of the adopted optimization method, it is necessary to establish the 
starting point for the search process. All the pruning methods in literature perform a 
forward search, since they start from T x and go through the graph according to the 
direction of the edges, nevertheless, they adopt different strategies to generate the 
sequence of states to explore. We classify the pruning methods as follows: 

Top-down methods evaluate first the convenience of pruning the root and then its 
children, until leaves are considered 
bottom-up methods, that start their analysis from the leaves and climb up until the root 
is considered. 
Such a classification does not exactly establish the order in which states are visited, 

yet. Indeed, T ,  can have several leaves and it is not clear which leaf will be considered 
initially and which finally. Therefore, a traversal order for the nodes in a tree must be 
defined [10]. 

For instance, with reference to the state space in Fig. 3, a top-down method would first 
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Fig. 1. An example of decision tree induced from a subset of 105 cases of the database "Iris Plants". 
Observations are classified according to values taken by four distinct continuous attributes: sepal 
length (SL), sepal width(SW), petal length (PL) and petal width (PW). The nodes of the tree are 
labelled with numbers assigned by a preorder traversal. Moreover, in each node the number of 
training instances belonging to each class (irissetosa, iris virginica and irisversicolor) is reported. 



169 

00 T; 
I r 

T I 

ir 

6 
T 3 

7 
T~ 

8 
T 3 

T t ~-Tmt x 

Fig. 2, The lattice of the one depth branch pruning operation for the tree in Fig, 1. 
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explore the state T~ 1 , then T12, then T, 3 , and eventually the state T~ 8 by following a pre-order 
traversal. Conversely, a bottom-up method would first consider the state T29, then T~, then 
T~, and eventually T, ~, by following a post-order traversal. 

A further criterion to classify the methods presented in literature is the rationale 
underlying the definition of the evaluation functionf. In some methods,f is based on 
statistical information drawn from the training set alone, while in other methods information 
coming from an additionalpruning set is also exploited. The experimental results reported 
in [6] show that pruned trees are better according to both predictive accuracy and 
simplicity when a pruning set is used. 

3 Tree pruning as a search in the state space 

In this section, a comparative study of five well-known post-pruning methods with 
respect to the framework of the search in the state space is presented. 

3.1 Reduced error pruning 

This method, due to Quinlan [3], is conceptually the simplest and uses the pruning set in 
order to evaluate the goodness of a subtree of Tin. It Can be easily framed as a search 
through the state space. Indeed, the evaluation functionfcan be defined as follows: 
f (T)= -X e(0 

te FT 

where e(t) is the number of errors made by node t during the classification of the examples 
in the pruning set. The search in the space moves from a state T to a state T'E nx(~T) if 
the inequalityf(T') >f(T) holds or equivalently if 

iLLLL , 
// 

r 

Fig. 3. State space for the tree in Fig. 1. Edges are implicitly directed from left to right. 
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e(t) < Y. e(0 Table 

tE~  T, tE~  T # 
Table 1 summarizes the results obtained by node 

applying the reduced error pruning method to 
0 

the decision tree in Fig. 1 using an independent 
pruning set of 45 examples. Each non-terminal 2 
node is accompanied with the expected error 
rate for both the case in which the tree undergoes 4 
a pruning operation in that node and the case in 5 
which no pruning is performed (the 

7 corresponding number of classification errors 
made on the examples of the pruning set is 8 
reported in brackets). It is easy to see that, the 
reduced error pruning method prunes the nodes 9 
9, 8, 7, 15 and 14 since each pruning operation 14 
does not increase the error rate of the decision 
tree. The path followed during the search in the 15 
state space is given by: 

T ~ ,  T29, T3s, TT, T36, T1 ' . 

1: Error rates on the pruning set. 

error when error when 
pruned not pruned 

66.67% (30)  2.22% (1) 

33.33% (15)  2.22% (1) 

4.44% (2) i  2.22% (1) 

4.44% (2) 2.22% (1) 

2.22% (1) 2.22% (1) 

2.22% (1) 2.22% (1) 

2.22% (1) 2.22% (1) 

2.22% (1) 2.22% (1) 

2.22% (1) 2.22% (1) 

The generation of the states to be explored is made according to the order defined by 
bottom-up methods, therefore there is no choice of the best state to reach, starting from 
another state. This contrasts with the description of the same method reported in [6]. In 
fact, Mingers claims that among all the nodes, the one having the largest difference 
between the number of errors (on the pruning set) when the subtree is kept and the number 
of errors when the node is pruned must be chosen. This is equivalent to choosing, from 
all the states of the search space directly connected to the current state, the one with the 
best value forf. This variant introduces a hill-climbing search strategy instead of the 
uninformed bottom-up ordered search proposed by Quinlan, thus the guarantee of finding 
the smallest version of the most accurate tree with respect to the pruning set is lost [11]. 

The problems related to the method of reduced error pruning are basically two: 
1) The use of a pruning set distinct from the training set is inadequate when a small 

number of observations are available 
2) the parts of the original tree that correspond to special cases outside the test set may 

be lost after pruning. Therefore trees pruned via that pruning method may fail in 
correctly classifying exceptional cases. 
At last, it is worthwhile to note that the computational complexity of the method is 

linear in the number of leaves or exponential in the depth of the tree. Indeed, in the case 
of a binary balanced tree of depth K, whose best subtree is just that consisting of the root 
alone, the method of the reduced error pruning will consider all the 2 X- 1 internal nodes 
before obtaining the best tree. 

3.2 Pessimistic error pruning 

This pruning method, proposed by Quinlan [3] as well, is characterized by the fact that 
it avoids using an independent pruning set. The misclassification rate, estimated by means 
of the training set alone, results to be optimistic, thus it always happens that pruning 
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operations based on the same data set produce trees that are larger than it is needed. That 
reason induced Quinlan to introduce the continuity correction for thebinomialdistribution 
that, in his opinion, should provide a more realistic estimate of the classification error rate. 
Let N(t) be the number of training examples reaching the node te T and e(t) the number 
of them which are misclassified when t is (possibly transformed into) a leaf. Then the 
number of misclassifications with the continuity correction for the binomial distribution 
gives: 

n'(t) = [e(t)+ 1/2] 
for a node t, and: 

n'(T) = Z e(s) + IF%I / 2 
for a subtree T c 

It should be observed that, when the development of a tree goes on until all its leaves 
do not make errors on the training set, e(s)=0 for each se Jl',. In that case n'(T) only 

�9 �9 t , 

represents a measure of the tree complexity that assocmtes each leaf with a cost equal to 
1/2. This is no longer true for partially pruned trees or when contradictions (equal 
observations belonging to distinct classes) occur in the training set. 

When a subtree T t makes fewer errors on the training set than the node t transformed 
into a leaf, that is n'(t) < n'(T), the node t can be pruned. Nonetheless, if(T) is still an 
optimistic estimate, thus Quinlan weakens the condition that rules the pruning ofa subtree 
T t and requires that: 

n'(t) _< if(T) + SE(n'(T~)) 
where 

SE(n'(T)) = [if(T). (N(t) - n'(T)) / N(t)] lt2 
is the standard error for the subtree T c The algorithm evaluates each node starting from 
the root of the tree and, if a subtree is chosen for pruning, its internal nodes are not 
examined. This top-down approach gives the pruning technique a high run speed. 

Table 2 reports some data that are relevant for the application of the pessimistic error 
pruning to the example in Fig. 1. It can be easily seen that the first node to be pruned is 
node 4, therefore the resultant decision tree has only 3 leaves. In terms of state space, the 
method moved directly from T to T1 s. 

The evaluation function associated with each state is the following: 

f (T)= -• n'(t) 
te ~T 

In fact, let T' be the arrival state of an edge outcoming from T such that it is obtained 
by pruning a node te T. Then it is easy to prove that: 

f(T') -f(T) = i f(T)-  n'(t) 
that, as told above, is still an optimistic measure for deciding whether to move from a state 
to another one. This is the reason for which pruning is accomplished also when the 
following conditions hold: 

- SE(n'(T)) <AT') -f(T) r f(T) -f(T') < SE(n'(T)) r n'(T) +SE(n'(T)) > n'(0 

Moving from the state T to the state T' occurs when, during the generation of T,  the 
above inequality becomes true. Therefore, there is no evaluation of the best pruning to 
perform among the possible ones, and the first pruning operation that turns out to be good 
is performed. The adopted strategy seems rather poor since the top-down approach to tree 
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Table 2: Results of the pessimistic error pruning 
for the tree in Fig. 1. 

# node n'(t) if(T) 

0 70.5 5.0 

2 35.5 4.5 

4 5.5 4.0 

5 5.5 2.5 

7 2.5 2.0 

8 1.5 1.5 

9 1.5 1.0 

14 1.5 1.5 

15 1.5 1.0 

SE(n'(T)) I~TI 

2.18 10 

2.04 9 

1.89 8 

1.31 5 

1.15 4 

1.15 3 

0.7 2 

1.19 3 

0.81 2 

pruning is not justified when there is 
no guarantee that all subtrees of a 
pruned branch T, should be pruned. 
By looking at data reported in Table 2 
it is easy to note that pruning node 4 
involves the elimination of the subtree 
T 5 too, which should not be pruned 
according to the same criterion. This 
method has a linear complexity in the 
number of leaves, and the worst case 
is that in which the tree has not to be 
pruned at all. 

Lastly, the continuity correction, 
which has no theoretical justification, 
simply introduces a sort of tree 
complexity factor which is improperly 
compared to an error rate. 

3.3 Minimum error pruning 

Niblett and Bratko [12] proposed a bottom-up approach seeking a single tree that 
minimizes the expected error rate on an independent data set. In the following, we will 
refer to an improved version of the minimum error pruning reported in [13]. 

For a k-class problem, the expected probability of an observation that reaches a node 
t of belonging to the i-th class is the following: 

p~(t) = [%(0 + p.,.m] / IN(t) + m] 

where 

�9 ni(t) 
�9 p~ 

. m  
�9 N(t )  

is the number of training examples in t classified into the i-th class 
is the a priori probability of the i-th class 
is a parameter of the estimate method 
is the number of training examples reaching t. 

The parameter m determines the contribution of the aprioriprobability of thei-th class 
to the estimate of the conditional probability of the i-th class in a node t by means of the 
relative frequency ni(t ) / N(t). For the sake of simplicity, rn is assumed to be equal for all 
the classes. Cestnik and Bratko name Pi(t) as m-probability estimate. When a new case 
reaching t is classified, the expected error rate is given by: 

EER(t) = min { 1- Pi(t) } = min { [N(t)-ni(t)+(1-p~).m ]/[N(t)+m] } 
i i 

This formula is a generalization of the expected error rate computed by Niblett and 
Bratko [12]. Indeed, when m=k and p~=l/k, i=1,2 ..... k, that is the a priori probability 
distribution is uniform and equal for all classes, we get: 

EER(t) = min { [N(t) - %(0 + k-l] / [N(t) + k] } 
i 

which is the formula proposed in the earlier version of the method. 
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Table 3: Static and dynamic errors for each internal node of the tree in Fig. 1. 

m=l.0 m=3.0 m=10.0 

t 

0 

2 

4 

5 

7 

8 

9 

14 

15 

STE(t) DE(t) 

66.67% 4.44% 

50.23% 5.73% 

13.82% 8.42% 

51.85% 24.31% 

38.10% 25.00% 

27.78% 23.33% 

55.56% 33.33% 

5.05% 4.44% 

41.67% 25.93% 

STE(t) 

66.67% 

50.68% 

16.28% 

54.55% 

44.44% 

37.50% 

60.00% 

8.57% 

50.00% 

DE(t) 

9.12% 

11.05% 

14.79% 

39.69% 

39.58% 

40.00% 

50.00% 

9.73% 

43.33% 

STE(t) DE(t) 

66.67% 18.59% 

52.08% 20.48% 

23.33% 25.28% 

59.26% 53.41% 

54.17% 52.69% 

51.11%] 55.01% 

63.89% 60.61% 

18.25% 20.86% 

58.97% 57.24% 

In the minimum error pruning method, the expected error rate for each non-terminal 
node t~ N T is computed. It is called static error, STE(t). Then the expected error rate when 
t is not pruned, called dynamic (or backed-up) error, DE(t), is computed. It is given by 
a weighted sum of the expected error rates of the children, where the weights are the 
probabilities that an observation will reach the corresponding child. For instance, by 
referring to the tree in Fig. 1, we have: 

STE(4) = pcEER(5)+pldEER(14) 

In the original method proposed by Niblett and Bratko, the weights Pi were estimated 
by the proportion of training examples reaching the i-th child. In this case, p~=8/40 while 
p14=32/40. Cestnik and Bratko suggest an m-probability estimate with m=2 for E, even 
though the same authors admit that m is chosen arbitrarily. However, in this case the a 
priori probability p~ in the m-probability estimate refers to the i-th node of the tree and 
not to the i-th class. Since it is not clear how it can be computed, in the following we will 
consider the original proposal, which corresponds to an m-probability estimate for Pi with 
m=0. 

In Table 3 values concerning the static error and the dynamic error for each internal 
node of the tree in Fig. 1 are reported. They have been computed with three distinct values 
of m: 1.0, 3.0 and 10.0. It is easy to see that when m=l.0 the original tree is not pruned 
at all, while for m=3.0 only nodes 8 and 14 are pruned and, finally, for m=10.0 nodes 8, 
14 and 4 are pruned. Having obtained three distinct trees, the problem of choosing the best 
one raises. Cestnik and Bratko suggests the intervention of a domain expert who can 
choose the right value of m according to the level of noise in the data or even study the 
selection of produced trees. Alternatively, when no expert is available, the classification 
accuracy of the three trees can be evaluated on an independent data set and the smallest 
tree with the lowest error rate on the pruning set can be selected. In the above example, 
we get the best results for m=3.0, since the error rate on the pruning set is 2.22%. 

The minimum error pruning method can be seen as a way of searching in the state 
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space. In this case the evaluation function of a tree T can be defined as the dynamic error 
of the root of T. It can be proven that such an error equals the weighted sum of the static 
errors of all the leaves of the Iree, where the weights are the proportion of the training 
examples in the leaves themselves. Formally, we can write: 

f (T)= -X N(O.STE(O/N 
t~FT 

where 
* N  
* N(t) 

is the total number of training examples 
is the number of examples reaching t. 

The search starts with T and a new state T i is reached iff(T i) ->f(Tr~ ) . I fT  i is obtained 
by pruning a node t in T , Ti~ rt.r~,(t), then the previous inequality can be equivalently 
written as: 

STE(t) < DE(t) 

which is the condition for pruning a node according to Niblett and Bratko's formulation 
of the method. 

The order of visit of the states is defined a priori by the post-order traversal of the 
bottom-up approach. For instance, when m=3.0 the search path followed by the pruning 
method in the state space of Fig. 3 is given by: T~r ~, T3S, T1~. In this example T16 has the 
highest value off .  Nevertheless, it is not clear if the minimum error pruning method 
always finds the maximum in the state space. It is also worthwhile to observe that, 
generally, the higher the m, the more severe the pruning. In fact, when m is infinity, it is 
P~(0 = P,a and since p,, is estimated as the percentage of examples of the i-th class in the 
training set, it happens that the tree reduced to a single leaf has the lowest expected error 
rate. In other words, when m is infinity the path gets to T~ ~. However this characteristic 
does not mean that a path corresponding to an m' > m is a continuation of the path 
corresponding to m. In fact the two paths may be completely different, as it is the case of 
the previous example when m'=10.0. This non-monotonicity property has a severe 
consequence on computational complexity: for every different value of m search must 
always start from T m~" 

3.4 Error-Complexity Pruning 

The pruning method proposed by Breiman et al. [1], the so called error-complexity 
pruning, is characterized by two phases: 
1) selection of a family of subtrees of T according to some heuristics 
2) choice of the best tree that belongs to the family by means of an accurate estimate of 

the actual error rate either on an independent test set or on validation sets. 
The method is certainly the most complex among those presented in the paper, 

nevertheless its description in terms of search in the slate space is greatly simplified. 
Indeed, the evaluation function for Te S(T  ) is given by: 

f(T) = -• e(t)/N 
t �9 FT 

and a state T'~ ~'I~T(~T) is reached from a state T if it happens that: 

o h. = If(T) -f(T')]/[#TI-IFT.I ] = min If(T) -f(T")]/[#TI-IF:I ] 
T"�9 r%(~T) 
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At each reached state, the next state that 
gives the lowest value of the ratio "apparent 
error rate increase" on "number of leaves 
decrease" is detected. The search goes on fill 
the minimum tree T11 is reached. When 
T' = roT(t) it can be proved that: 

= -  [e(t)-e(T)]/[(~TtI-1)/N] % 
thus a hill-climbing strategy is adopted to go 
from state T to state T', which minimizes otr.. 
Table 4 reports the values of ot r, for all the 
T'e r c~ (~Tr~) ,  that is the ratio "error rate 
change" on "number of leaves change" for all 
the subtrees that can be obtained from T 
through one branch pruning operation. It is 
easy to note that ot takes its lowest value in 
correspondence of nodes 8 and 14, and, since 
the intersection o fT  s and T14 is empty, the tree 
obtained by pruning both these nodes should 
be preferred to that obtained by pruning only 
one of the two nodes. Consequently, the 
following concept of  transient state is 
introduced: 

Let Tm~ = T m, T 1  . . . . .  T2, T 1, To= T~ a be the states 
followed by the search process and let oc T be 

i 

the ratio "error rate change" on "number of 
leaves change" for a state Ti, then T i is transient 
if f i r  = CtT �9 At the end of the hill climbing 

�9 J -  

search pe~ormed by the error-complexity 
pruning method, only the non-transient states 
in the path are taken into account to select the 
best tree. 

Going on with the example in Fig. 1, Tables 
5, 6 and 7 report the values of ot for the states 
Tt 6, T~ 4, Tt 2 respectively. The complete path 
followed in the state space by the error- 
complexity pruning method is the following: 

Tm~ ,, T3 s , Tt '+ , T1 s, Tt3, Tt 2, T1 t 
where transient states are reported in bold type. 

The best subtree selected in the second 
phase by using the pruning set is T~ 6. This 
happens because its error rate on this set is 
2.22%, that is equal to that o f T ,  but less than 
that of T~ 3, T12 and T~ ~. This result does not 
change if we consider the smallest tree with an 
error rate within one standard error of the 

Table 4: Values of o~ for the state T . 

t e(t) e(T) ~ c~ 

0 70 0 10 0.074074 

2 35 0 9 0.041666 

4 5 0 8 0.006803 

5 4 0 5 0.009524 

7 2 0 4 0.006349 

8 1 0 3 0.004762 

9 1 0 2 0.009524 

14 1 0 3 0.004762 

15 1 0 2 0.009524 

Table 5: Values of ~ for the state Tt 6. 

t e(t) e(Tt) t~ T cz 

0 70 2 6 0.129524 

2 35 2 5 0.078571 

4 5 2 4 0.009524 

5 4 1 3 0.014286 

7 2 1 2 0.009524 

Table 6: Values of ct for the state T14. 

t e(0 e(T) fT~! a 

0 70 5 3 0.309524 

2 35 5 2 0.285714 

Table 7: Values of tx for the state T12 

t e(t) e(T) ~TI ct 

0 70 35 2 0.333333 
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minimum (1SE rule). 
By comparing these results with those obtained by the reduced error pruning method, 

it turns out that the tree selected by the error complexity pruning method is not the best 
one with respect to the pruning set, since it would be possible to prune also node 7 with 
no error rate increase. By generalizing this result, we can state that this method detects 
the best subtree in a parametric family of pruned subtrees that might not contain the best 
tree in an absolute sense or a good one with respect to an evaluation criterion such as the 
error rate estimated on pruning sets or validation sets. 

Finally, the computational complexity of the first phase of the method is the same of 
the reduced error pruning but the error rate estimate through validation sets requires the 
building of v auxiliary decision trees. 

3.5 Iterative growing and pruning algorithm 

Gelfand et al. [15] propose a different solution in which all the data set is exploited 
when growing and pruning a tree and furthermore a search of the optimally pruned tree 
is performed on the whole set of subtrees. These goals are reached by splitting the data 
set into two subsets and then by repeatedly growing and pruning a tree on different 
subsets. More in detail, a tree is grown by using the first subset, then it is pruned by using 
the second subset. At this point the role of the two subsets is exchanged, so the pruned tree 
is further grown by using the second subset and pruned with the first one (see Fig. 5). 

The authors have also proved a theorem which guarantees the convergence of this 
iterative process and provides a stopping criterion. In particular they first prove that: 

T*t,,< T k Vk=l,2 .... 
where T'~ is the optimally pruned tree of the k-th iteration (in each iteration a tree is grown 
by using one subset and then pruned by using the other one). Subsequently they prove that 
there exists a finite positive number K such that 

% = % Vk K 
The proof of this theorem is constructive since it establishes that 

K= inf{ k>l : I%,1 = I%1} 

where ITI is the number of nodes in T. Thus the stopping criterion is the following: 

When this equality holds for a given k, the tree qYk can be accepted as the optimally 
pruned tree for the entire data set. 

The growing phase of this iterative algorithm is accomplished according to the usual 
recursive partition of the feature space implemented both in CART and in ID3. In their 
presentation, Gelfand et al. employed the GINI index of diversity as selection measure 

Fig. 5. Schema of the iterative growing and pruning algorithm. 
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[ 1 ] even if this choice does not affect the above theorem. Henceforth, we will use the gain 
ratio [5] to show how this method works. 

As to the pruning algorithm proposed by Gelfand et al., it should be noted that it is 
just the reduced error pruning by Quinlan. Indeed, the estimation of the error rate of each 
subtree is based on the alternative subset which plays the role of test set. Moreover, the 
introduction of a cost parameter a as in the error-complexity method, is only a matter of 
generality in the presentation, since the authors themselves seem to set oc= 0, thus bringing 
the evaluation of R(t)  back to the simple estimation of the error rate on the test set. 

A particular attention must be paid to splitting the entire data set into two disjoint sets, 
since they should be homogeneous as much as possible. In the opposite case, an attribute 
could show a sufficiently high information gain on the entire data set, but a low 
information gain in one subset, with the consequence that nodes with tests on that attribute 
are easily pruned. Such a consideration is also important to point out that the best tree 
found by this method is not necessarily a subtree of the tree T x grown by using the entire 
d~t~ set. 

In order to illustrate this method, the training data set has been split into two subsets: 
the first 52 examples in the first subset and the remaining 53 in the second one. The tree 
grown by using the first subset is depicted in Fig. 6a, while the results of the classification 
of the examples of the second subset are reported in Fig. 6b. According to the reduced 
error pruning the tree should not undergo any branch pruning operation, thus the second 
iteration starts just from T O and keeps on growing the tree on the second subset until T 1 

(a) 

4 

Co) 
Fig. 6. First iteration: (a) grown tree and (b) classification of cases in the first subset. 

TI ~ 0 

~Z7 �9 2 

3 ~ 1.75 �9 1.75 6 " 

(a) 

-<2.7 :,2.7 2 

S 1.75 �9 1.75 

3 6 

CO) 
Fig. 7. Second iteration: (a) grown tree and (b) classification of cases in the second subset. 
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is obtained (see Fig. 7a). By classifying the examples in the second subset, we get the 
results given in Fig. 7b, therefore the optimally pruned subtree is again T 0. Since trees 
resulting from two consecutive iterations are exactly alike, the iterative process comes to 
an end and the final tree is just T o . 

Defining the iterative growing and pruning method in terms of search is more difficult 
than the other methods. The two phases, growing and pruning, can be individually seen 
in the framework of search. In particular, the construction of a tree can be cast as search 
in the (sometimes unlimited) space of all decision trees. However, since we are interested 
in pruning, we will not investigate this aspect further. As to pruning, we have already 
presented the reduced error pruning in terms of search in the state space, and those 
considerations are still valid for this method. In particular, the optimally pruned tree with 
respect to the pruning set is found. The only difference is that at each iteration the state 
space may change since the expanded tree may be different from that of the previous 
iteration. If Tkand T*kare the fully expanded tree and the optimally pruned tree of iteration 
k respectively, then 

T'~,4< T k and T~_< Tk+ ~ Vk=l,2 .... 

therefore S(T'k.1) _ S(Tk) and S(T'k) C S(Tk+,). This means that the state space can 
change at each iteration but all subtrees of T*k. , are present in the two subsequent state 
spaces. 

A further interesting theorem due to Gelfand et al. positively affects the computational 
complexity of this method. They prove that ifa node is a leaf in two consecutive optimally 
pruned subtrees, T*k. , and T* k, then it will be a leaf in all subsequent optimally pruned 
subtrees, T' i Vi>_k. 

The authors exploit this result during the growing phase, since it is not necessary to 
split those leaves that satisfy this condition. In our opinion, such a theorem can be 
extensively exploited in the pruning phase, as well. Indeed, a consequence of this theorem 
is that it is not necessary to prune all those branches containing at least one leaf appearing 
in two consecutive optimally pruned subtrees. In other words, the state space for the 
pruning phase can be reduced by simply marking the ancestors of such leaves. 

4 An  emp i r i ca l  c o m p a r i s o n  o f  p r u n i n g  m e t h o d s  

The need of making some experiments on some pruning methods arises from the fact that 
the experimental procedure designed by Mingers [6] to compare several pruning methods 
is not very fair. Indeed, the author splits each data set into three subsets, a training set (60% 
of the whole data set), a first test set (20%) and a second test set (20%). The first of these 
is used by some of the pruning methods, either when a final tree has to be selected from 
a given family of pruned trees (such as the new version of the minimum error pruning and 
the error complexity pruning), or in the actual pruning process (reduced error pruning). 
The second test set is used for measuring the accuracy (or conversely, the error rate) of 
the resultant trees. Thus, some methods will exploit additional information contained in 
the fn'st subset to prune, while the others not. We believe that such an unfair experimental 
procedure may have affected the conclusions drawn out by Mingers in favor of those 
methods that exploit an independent set for pruning. 

Another point concerns the use of the Analysis of Variance (ANOVA) to detect 
statistically significant differences between pruning methods or between splitting criteria 
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and interactions between them. Unfortunately, the ANOVA test is based on the assump- 
tion that standard deviation is constant for all the experiments and this is not our case 
because we will compare the algorithms on different data sets. A paired two-tailed t-test 
for each experiment is the most appropriate way to compare pairs of error averages 
concerning the same data set. 

Similar considerations have also been reported in [ 16], but they refer to the compari- 
son of splitting rules for decision trees and not to pruning methods. We are also conscious 
that different pruning methods represents different biases, as already pointed out in [17]. 
Therefore, we will avoid to draw conclusions on which is the "best" method, but, 
following the main stream of the analytical comparison between methods followed in the 
paper, we will try to understand why in some cases a method works better than the others. 

In our experimentation, each data set is still randomly divided into three subsets, 
according to the following criterion: 
- Growing set (49%) 
- pruning set (21%) 
- test set (30%). 

The union of the growing and pruning set is called training set, and its size is just 70% 
of the whole data set. The growing set contains the 70% of cases of the training set, while 
the pruning set the remaining 30%. Both the growing set and the training set are used to 
learn decision trees, that, for simplicity of naming, we will call grown tree and trained 
tree, respectively. The former is used by those methods that need an independent pruning 
set in order to prune a decision tree, namely reduced error pruning (REP), the new version 
of the minimum error pruning (MEP), and the error complexity pruning with either the 
0SE rule (0SE) or the 1SE rule (1SE). The latter is used by those methods that exploit the 
training set only, such as pessimistic error pruning (PEP) and iterative growing and 
pruning algorithm (IGP). The evaluation of the error rate is always made on the test set. 

For each data set considered, 20 experiments are made by randomly partitioning the 
data set into three subsets. Moreover, for each experiment two statistics are recorded: 
- The number of leaves (size) of the resultant tree 
- the error rate (e.r.) of the tree on the test set. 

This is done both for the trees obtained by the different pruning methods (pruned 
trees) and for the grown and trained trees, so that a paired two-tail t-test can be used to 
evaluate the significance of the error rate difference between pruned trees as well as 
between each pruned tree and the grown/trained tree. Only the results of those methods 
that use a prune set will be compared with the results of the grown tree. This is done in 
order to understand if some results can be partially explained in terms of differences of 
the tree to prune. 

As to the method of minimum error pruning we selected the same values of m used 
by Niblett and Bratko in their experimentation, that is 0.01, 0.5, 1, 2, 3, 4, 8, 12, 16, 32, 
64, 128 and 999. The further partitioning of the training set into two equally sized subsets 
used by the iterative growing and pruning algorithm is done randomly, as well. However, 
each subset contains nearly the same proportion of cases per class of the training set, in 
order to satisfy the conditions presented in [15]. 

Another difference between our and Mingers' experimentation is that we consider 
only trees developed according to the gain-ratio (GR) selection measure [5]. Of course, 
this is a limit for our experimentation, since we cannot detect interesting interactions 



181 

between the selection measures and the pruning methods. Future work will need a wider 
experimentation concerning also this aspect. 

4.1 Iris data 

This data set contains 150 examples, each of which described by 4 real valued attributes 1. 
The examples belong to three different classes corresponding to three different species 
of iris plants. There are 50 examples per class, thus in each experiment the data set was 
partitioned as follows: 70 cases in the growing set, 30 cases in the pruning set, and 50 cases 
in the test set. 

The mean and the standard deviation for each statistics concerning the various 
methods are reported in Table 8, while Table 9 shows the result of the comparison 
between the error rate of the pruned trees and that of the grown and trained trees (each 
entry contains the t value and the corresponding significance level). It is worthwhile to 
note that only the PEP method shows a statistically significant improvement with respect 
to the trained tree (the probability of error in rejecting the hypothesis that the two mean 
are equal is less than 0.005). For the other methods, tree pruning seems not to be really 
effective. On the contrary, if we compare their results with those obtained from the grown 
tree, we note that pruning tends to slightly increase the error rate. 

By pairwise comparing the average error rates obtained by the different methods we 
can conclude that there is no statistically significant difference between the methods (see 
Table 10). This means that the best average error rate obtained by PEP is not much better 
than that of the other average error rates. 

Table 8: Mean arid standard error for both size and error rate of the resultant trees (iris data). 
PEp Mm, osE ~sE PEP 1el, . : : ~ : : :  :::. 

m,,= ,4 .  m ~  ,.d. m m  s~. a ~  ,,a. :: :~d: : : :  m~m ,a .  , * ~  s~. i : ~ :  �9 ... , 

3_s 1.o 3.7 L~ots 3.7 1.~01, 35  1.0513 I _ 5 a s l  ......... 3.a5 0.s127 3.4s I o.sz~6 : z 0 3 ~  : .::::::: : :: ::;:: :::: 

e.r. 5.9 2.7891 5.9 2.7891 5.9 2.7891 5.8 2.89445 5".0 3.6992: 5 , 3 [ 3 3 8 8 8  

Table 9: t value and significance value for the paired two-tailed t-test (iris data) 

~own 

~ained 

REP MEP 0SE 1SE PEP IGP 

.809 (~43) .847 (.41) .847 (.41) .616 (.55) 

-.165 (.87) -.175 (.86) -.175 (.86) -.357 (.73) -3.25 (.004) -1.23 (.232) 

Table 10: results of the paired two-tailed t-tests between methods (iris-data). 

M E P  0 S E  1 S E  P E P  I G P  

R E P  .0 ( 1 . 0 )  .0  ( 1 . 0 )  . 4 3 8  ( . 67 )  1 .48  ( . 1 5 4 )  .9  ( . 3 8 )  

M E P  .0 ( 1 . 0 )  1 .0  ( . 33 )  1 .53  ( . 1 4 )  . 9 4 6  ( .36 )  

0 S E  1.0  ( . 33 )  1 . 5 2 8  ( . 1 4 )  . 9 4 6  ( . 3 6 )  

1 S E  1 .361  ( . 1 9 )  .793  ( . 4 4 )  

P E P  - . 4 5 9  ( .65 )  

1. Real valued attributes are treated as described in [2]. 
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Finally, there are at least other three points that are worthwhile to note. Firstly, the PEP 
has the highest average in the number of leaves of the pruned tree. It is possible that its 
positive bias when pruning is well suited for very regular data like this. Secondly, the IGP 
always finds the best tree in two steps, that is it needs to develop and prune a tree only 
twice. The IGP method globally shows good results and is generally able to improve the 
predictive accuracy of the classifier, but in some experiments it produced the highest error 
rate. This partly explains its highest standard deviation. In other words, the IGP method 
seems quite instable. 

4.2 Glass data 

This data set contains 214 examples, each of which described by 9 real valued attributes 
plus an identification number that we did not consider. There are 7 classes but no example 
is provided for the fourth class. In each experiment the data set was partitioned as follows: 
105 cases for the growing set, 45 cases for the pruning set and 64 cases for the test set. 

Table 11 shows the mean size and the average error rate of each method together with 
the corresponding standard deviations. By looking at Table 12 it can be seen that there is 
a statistically significant difference (9<0.01) between the error rates given by MEP, 0SE 
and 1SE, and the error rate of the trained tree. Unfortunately, this difference is positive, 
meaning that these methods decreased the predictive accuracy of the trained decision tree. 
A similar result can also be observed for IGP at a. 1 significance level. This time the PEP 
did not actually improve the error rate, as well as REP. 

The high error rate of the trained tree show how difficult discovering regularities in 
this data set is.Perhaps the underlying model is quite complex while data is weak, thus the 
bias Of some pruning methods may cause the very opposite problem of underfitting [ 17]. 

5 Conclusions 

Determining the leaves of a decision tree is a critical problem of decision tree induction. 
It can be faced either by (post-)pruning a fully expanded tree or by stopping the growth 
of the tree itself (pre-pruning). The latter method is generally preferred to the former, 
since selection measures proposed for decision tree induction are not polythetic, that is 
the discriminant power of logical combinations of attribute-value pairs is not taken into 
account. Thus, pre-pruning may stop the growth of a tree because all attributes seem 
individually meaningless even if some combinations of them may be highly discriminant. 

Table 11: Mean and standard error for both  size and error rate o f  the resultant trees (glass data). 

i : : . : : ~  i PEP mP REP I ~ P  OSB 1Sl~ 2::! i! i ~ * ~  ii: :i::. 

aze 17,15 4.977 23J 5.17 18.0~ 8 . O 3 6  12.25 6.889 2 9 ; ~ : :  :!~i'~Sa 1 25.~6 3.103 15.35 ! 4 5 n  3 9 : 6 :  

ex. 57.301 6.356 38.752 4.158 ! 39,454 5.142 41.407 6541 ~-265 ::i~i6i4:: 34.219 5,409 TL266 6.215 !:~4:2~5:: ::6.~i:i: 
: : : : : :  . . . . . .  : :  ..... i , ,  , i , , ,  

Table  12: t value and significance value for the paired two-tai led t-test  (glass data) 

g r o w n  

trained 

REP 

.028 (.978) 

1.536 (.141) 

M E P  ; 

1.171 (.256) 

2.89(.00~) 

OSE 

1.304 (.208) 

2.974 (.008) 

1SE 

2.11 (.0485) 

3.44 (.O027) 

PEP 

-0.087 (.93) 

IGP 

1.73 (.lOO2) 
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In this paper, a comparative study of six well-known post-pruning methods is 
presented, together with a unifying view of the tree pruning problem in terms of search 
in a state space Given a tree T to prune, the corresponding state space is defined as the 
set of all subtrees of Tm~, S(T  ), and the branch pruning operation is the only operator 
defined on such a set. Each state of S(T ) is associated with the value taken by an 
evaluation function,f, that assesses the goodness of the tree. Therefore, the problem of 
pruning may be cast as the problem of visiting different states in S(T ) with the aim of 
maximizingf. 

In the methods considered in the paper, states are always visited according to a pre- 
established order, depending on the kind of approach: bottom-up or top-down. While in 
the reducederrorpruning,pessimistic errorpruning, andminimum errorpruning, abranch 
is pruned as soon as a better state is detected, in the error complexity pruning method, the 
best state among all the directly reachable states is selected according to an hill-climbing 
search strategy. This last method, together with the minimum error pruning, select a 
parametric family of subtrees of T~,~, that will undergo a further evaluation process with 
the aim of detecting the best tree in the family. However, this two-phased selection, 
thought in order to reduce the computational complexity, has a main drawback: it does 
not guarantee that the best tree (or a good one) with respect to the predictive accuracy is 
in the family. A more in-depth analysis of these methods is provided in [11]. 

Another criterion to discriminate among post-pruning methods is the kind of information 
exploited by the evaluation function f. Indeed, in the pessimistic error pruning, only 
information coming from the training set is used, whereas all the other methods need an 
additional independent test set. A different consideration should be made for the 
minimum error pruning, since its original formulation used only information coming 
from the gaining set and in the newer version the use of an independent pruning set is only 
hypothesized. When predictive accuracy is estimated by means of cross-validation, the 
error-complexity pruning does not need a pruning set, as well. 

In the paper, some preliminary results concerning a redesigned experimentation on 
pruning methods have been presented. The first data set contains strong data relative to 
the simple underlying model�9 Indeed, the average error rate of the grown tree was better 
than that of the trained tree. However, all the methods exploiting an independent data set 
tried to prune further, generally increasing the error rate of the resultant tree. The method 
that gave a statistically significant improvement on the predictive accuracy is the 
pessimistic error pruning. The same method, did not improve the classification accuracy 
of the trained tree for the glass data. In this case data were weak relative to the complex 
underlying model. Such a result was the best with respect to other pruning methods that 
even decreased the predictive accuracy. 

Future work should consider both a more extensive experimentation in which more 
databases are considered. Moreover, since the iterative growing and pruning algorithm 
is affected by the random splitting of the training set, it would be better to evaluate the 
performance of the method with respect to several random partitioning of the Ixaining setl 
in order to reduce its variance in the corresponding results. 

Finally, future research on decision tree pruning should address the problem of 
defining a less biased evaluation functionf to use in a more informed search strategy, 
since the introduction of the state space has shown that very simple strategies are used by 
the well-known post-pruning methods. 
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