
A Technique for Specifying and Refining TCSP
Processes by Using Guards and Liveness

Conditions

R. Pefia
Departamento de Informs y Automs

Universidad Complutense de Madrid
E-28040 Madrid. Spain

e-mail: ricardo@dia.ucm.es

Luis M. Alonso
Departamento de Lenguajes y Sistemas Informs

Universidad del Pais Vasco
E-20080 San Sebastian. Spain
e-mail: alonso@gorria.if.ehu.es

Abst rac t

A technique for the specification of TCSP processes based upon the concepts
of guards and liveness rules is presented. It is shown how safety and liveness
properties can be proved for processes specified in this way. A technique related
to bisimulations is proposed to prove refinements correct. The technique is ex-
tended to handle the concealment of events in the implementing process. The
refinement relation preserves the safety and liveness properties already proved
for the specification. Parallel composition of specifications is also defined pre-
serving the failures semantics. To illustrate the technique, an example is used
throughout the paper,

1 I n t r o d u c t i o n

The failures model [5,6,9] has proved to be a successful theoretical and practical tool for
the specification and verification of parallel systems. Other related algebraic theories
and calculus of processes are those by Milner [12,13], Hennessy [8], and Bergstra and
Klop [4].] 'he notion of trace of the process, i.e. tile sequence of actions already
performed by the process, plays in TCSP a central role. The so called refusal sets
provide a means to define the inmediate liveness of the process after a given trace.

Starting with these concepts, the authors proposed in [15] a technique for TCSP
process specification. Valid traces were defined by partial abstract types, as described
in [7]. These ideas evolved in [2,3] where the notion of state for defining TCSP processes

329

was made explicit in the form of slate variables. States corresponding to legal traces
were characterized by means of invariauts, much in the sense of data representation
invariauts defined in [10].

The present paper represents the culmination of these ideas. Its main contribution
is a change in the technique for building specifications and proving refinements correct.
State variables are retained, but now process behaviour is specified by two sets of
conditions: safety requirements and liveness requirements. The first one takes the
form of a family of guards and defines the allowed traces for the process. The second
one consists of a collection of set expressions, defining the mandatory events in each
state.

Specifications with this technique are shorter and more abstract than those pre-
sented in the previous papers. Proving refinements correct and proving that a speci-
fication satisfies a liveness predicate, are also easier.

The organization of the paper is as follows: Section 2 defines the concept of process
specification with safety and liveness conditions, first by using an example and then
formally. Its semantics is given in terms of the failures model. Section 3 explains
how safety and liveness properties can be proved for processes specified in this way.
In Section 4 we char~,cterize the notion of refinement of a process by another. Con-
cealment of events in the implementing process is also considered. In Section 5, we
define the parallel composition of process specifications. Finally, Section 6 provides a
short conclusion. In this paper, we provide neither the proofs of the propositions nor
meaningful examples. The interested readers are addressed to [1].

2 Process Specification Using Safety and Liveness
Conditions

The technique used in [9] for specifying processes consisted of a predicate S(tv, X)
with free variables tr (for traces) and X (for refusal sets). A process is said to satisfy
a specification, denoted P sa t S(tv, X), if every legal trace lr of P and every refusal
set X of P after engaging in the trace tr, satisfy the predicate S(tr, X), i.e.:

P sa t S(tr, X)A=V(tv, X) E P.S(tr, X)

Here, we are assuming that a non divergent TCSP process is a subset of s • 7)(/:), s
being the alphabet of the process. A trace tr represents a possible event history for P
and a refusal X represents a menu of events such that P may deadlock if the external
environment of P offers that menu.

Also in [9], a set of proof rules for verifying the sa t relation was given. These are
based on the syntactic structure of P and take the form of deduction rules such as the
following one:

P sa t S(tr, X) A Q sa t T(tr, X) ~ P I3 Q sat S(tr, X) v T(tr, X)

where 13 is the internal choice TCSP operator. In case P is recursive, some form of
induction is needed to verify the desired property. In general, the proofs of realistic
specifications using these rules tend to be very hard and they have an ad hoc look as
they heavily depend on the specific syntax of the involved processes.

330

In this section we propose both a technique for defining TCSP processes using a
syntactical normal form, and a method for proving the s a t relation in a more sys-
temat ic way. In fact, the technique can be seen a~ a way of structuring the S(tr, X)
predicate according to some simple rules, giving as result a process satisfying the
predicate.

Firs t , it is worthy to note that S(tr, X) can be split into two predicates, one
on traces establishing which are the allowed traces for the process, and another one
establishing the future of the process after a legal trace. In the TCSP jargon, it is
t radit ional to say that the first one specifies the safety properties of the system while
the second one expresses its live.hess properties, i.e.,

S(tr, X) = Safe(tr) A Live(tr, X)

E x a m p l e 1 A mutual exclusion arbiter for n users
Let us assume a system in which n users synchronize with an arbiter by means of
the events rcqi (user i asks for permission to use the resource), acki (the arbiter gives
the permission to user i) and reli (user i has finished using the resource). The safety
predicate for a robust arbi ter can be defined as follows:

Safe(t r)~ (1)

Vi E V.#(trTrell) <_ #(trTacki) < #(trTreqi) <_ #(tr~reli) + 1
A

(Ni : i E U.#(trTrelO < #(trTackO) < 1

where trge means the projection of the trace tr over the alphabet {e}, N is the counting
quantifier, # denotes the number of events of a trace and U = {1 . . . n}.

Another way of specifying Safe(tr) is to define it as the following inductively generated
set of traces:

* Safe(<>)

. s 4 e (t r) ^ th i , , k i ,~g , (t r)~Sa f4 t r ~ req,)

. S a f 4 t r) ^ ea t ina , (t r)~Sa fe (t r ~ tel,)

�9 Safe(tr) A hungry,(tr) A -eaters(t r)=~.Safe(t r~a&,)

where
thinkingi(lr) zx #(trTrcqi) = #(trTreli)

hungryi(tr) zs #(trTa&i) < #(lrTreql)

eatingi(tr) zx #(trTrell) < #(trTackl)
eaters(tr) tx = 3i E U.eatingi(tr) = true

That is, for every legal trace tr and every event e, we state the boolean condition
G~(tr) under which it is safe to allow the event e to be added to tr. I11 what follows,
we will use the term guard when referring to those conditions Ge.

This way of defining Safe(tr) gives us dircctly all operational definition of a safe
process: let us imagine a process having, as intcrnM state, a variable of type trace

331

p r o c e s s MutEx~
a l p h a b e t reqi, ackl, reli
s t a t e v a r i a b l e s

s : L* : = < >
t r a n s i t i o n ru l e s

on reqi=~s := s~reqi
on acki~s := s~acki
on reli:C,s := s~reli

r e q u i r e m e n t s
reqi-~ thinkingi(s)
acki~hungryi(s) A -~eaters(s)
r e l i~ea t ing i (s)

end p r o c e s s MutEx,

Figure 1: Chaotic mutual exclusion arbiter specified by using traces

where it stores the trace performed by it up to a part icular moment. It can use the
guards G~ (which are boolean functions on traces) to know the set of safe events in
which it can engage at that moment. It then makes a nondeterministic choice and
decides either to engage in one of these events or to stop. If it decides to engage in one
event, then updates its internal state, recording that this event is now part of the trace
(in fact it is the last event). The description of such a process for example 1 is shown
in figure 1. The boolean condition after the expression e=> in the "requirements"
section, is the guard Ge. It is understood that i E U and that a free i in a line means
the replication of that line for all i E U.

This kind of process with internal memory starts its execution with the empty
trace as initial s ta te and, in every state, it behaves like what we can call a safe chaotic
process, in short safe chaos. It is the most nondeterministic process of those that
satisfy Safe(tr). Every safe process is included in it.

If we have the predicate Safe(tr) explicitly defined and we want to prove that a
process P built with guards satisfies it, it is enough to think of Safe(tr) as an invariant
of P. We must prove that Safe(lr) holds for the empty trace and that it is preserved
by every safe transition. This technique is explained in detail in section 3.

We turn now to the liveness conditions. The s t o p process and, in general, any
process that stops after executing a legal trace, are included among the safe ones.
Usually, we would like to require a process to accept certain (safe) events in some states.
In TCSP, refusal sets are used to impose obligations on a process. In [2,3] the authors
used a (perhaps more explicit) menu relation to specify the set of nondeterministic
menus offered by the process in any state. The translation from menus to refusals is
immediate. If a part icular event is included in all the menus associated to a part icular
state, then the process is forced to engage in this event if the environment insists. In
other words, the event is deterministic. Otherwise, it is nondeterministic. Of course,
there must be a consistency between the safety and the liveness conditions imposed
on a process.

Here, we have chosen to define the obligations of a process by means of liveness

332

rules. A liveness rule is a (total) function fi'om states to sets of events. Its semantics,
formally given below, is that in every state the process must be able to engage in at
least one of the events of (the evaluation of) the liveness rule in that state. If there
exist several liveness rules, the process must satisfy the obligations imposed by all of
them.

The mutual exclusion arbiter with liveness rules can be built by adding to figure 1
the following liveness rules:

Vi E U.Reqi(s)

Vi E U.Rel~(s)

Ack(s)

zx {reqi [thinking~(s) = true}

{rel~] eatingi(s) = true}

A= {acki l hungryi(s) A- ,eaters(s)}

In this specification we require that the events reql and reli be deterministic whenever
user i is respectively thinking or eating. Also, one of the events ack~ for all hungry
users i, is compulsory in states such that no user is eating. When an event e is both
safe and compulsory in a state, we will use tile abbreviation e~G~. This is equivalent
to defining the guard G~ and the following liveness rule

if a~(tr) t h e n {e} else 0

A specification with guards and liveness rules defines, as we will see, a unique
process in the failures model. Proving that it satisfies an explicit predicate S(tr , X) =
Safe(tr) A Live(tr, X) is a straightforward task (see section 3). The advantage of the
proposed method is that we have not only built an abstract specification, but also an
actual system to start the design process with. The rest of the task consists of refining
the system and proving that the refinements are correct.

Before proceeding to the formal definitions, let us now introduce the concept of
state variables as defined in [3]. In the example of figure 1, it is obvious that the
information kept by the process in its internal memory is excessive. In most of the
examples, to record the relcvant data about the past of the process, it is enough to
have a finite set of "small" wtriables. Based on this information, the process can take
exactly the same decisions as if it had the complete trace stored. In the example, the
only variables that are needed arc tile individual states sti of the users, where:

A . ,

stl : UserState and UserState={thznkzng, hungry,ealzng}

For Ml s E/~*, we want to preserve the following invariant relation:

Safe (s) ~ Vi E U. (2)

thinkingi(s)c~sti = thinking

A hungry i (s)~s t i = hungry

A eatingi(s)'~sti = ealing

The translation of the arbiter specified with traces to an arbiter specified with state
variables sti, is shown in figure 2. There, the predicate eaters can be defined in terms
of the new state variables as:

(gi . s t i = eating) > 0 (3)

333

process M u t E x
a l p h a b e t reql, ackl, rell
s t a t e va r i ab l e s

sti: UserState := thinking
t r a n s i t i o n ru les

on reqi=~'di := hungry
on acki=~.~tl := eating
on reli=~sti := thinking

r e q u i r e m e n t s
reqiC~,sti =: thinking
acki~(st i = hungry) A "~eaters
reli~sti = eatin 9

Ack~={acki I sti = hungry A -.eaters}
end process M u t E x

Figure 2: Mutual exclusion arbiter with state variables st i

We regard the state variables of a process as observer functions on traces. Each state
variable conveys some relevant information about the past history of the process. The
transition rules can be looked at as the definitions of these observer functions. They
explain how the observation changes as we concatenate a new event to the trace. Let
us note that these observer functions are partial functions over 12" and total ones over
traces(P). The same happens to the guards and liveness rules since they are expressed
in terms of the primitive observers stl.

Now we proceed to the formal definitions. For the rest of the paper, we assume
the existence of some predefined data domains 79t I . . . 7)t, with type names tl . . . t,,.

We will use a tuple xl . . . xn of state variables to represent the set of states. Any
state tr may be seen as an assignment { x l ~ l q , . . . , x ~ n } of values from the ap-
propriate data domains to state variables. In particular, the initial state of the pro-
cess is given by an initial assignment so. From now on, given a set of state vari-
ables 1) = { x l , . . . , x ~ } , we will denote by Ass(])) the set of all possible assignments
~r : I)----*~D of values to variables in 1).

The state transitions are described giving expressions E~., for every pair of event
e and state variable x. If a---~a ' is a transition, the value of x in a ' is defined as the
value of E,, , in ~r.

D e f i n i t i o n 2 A process specification with safety and liveness conditions, in short a
process specification, is given by a tuple SP = (s 1;, or0, T R , G, L) where:

�9 12 is a nonempty alphabet of events

�9 11 = {x l . . . x~} is a finite set of typed variables, called state variables

�9 ~o, the initial assignment, associates to every statue variable x an appropiate
value, denoted ae(x)

334

T R is a E-indexed family (TRe)~eE of transition rules. A transition rule TR~
associates to every state variable x a properly formed expression Er with free
variables in 1).

G is a C-indexed family (G~)~es of boolean expressions with free variables in V,
called guards.

L is a set {L{(]))] of expressions, with free variables in 1). The type of each of
them is "set of events of E". Each Li is called a liveness rule.

Very often, expressions defining transition or liveness rules will use auxiliary functions
defined in some suitable formalism. For simplicity, in the rest of the paper we shall
assume that such functions are totally defined over Ass(l~). As we will immediately
see, not every state in Ass(12) is a state reachable by the process.

Let 0. E Ass())) and let E(V) be an expression with free variables in P. We will
denote by ~(E(P)) , in short ~(E), the evaluation of the expression E after assigning
values to variables by 0.. Let TRe = {Ee,~. . . E~.,.}, be a transition rule, we will
denote by TR~ o 0. the following assignment:

TRio0 . = {xi~-Y(E~,=,),xi E V]

Last, given a predicate 5 ~ with free variables in ~, we will denote by TRy(P) the
predicate obtained by substituting E~,~,, for every occurence of variable xi in 50. In
what follows, we shall assume the implicit existence of a process specification:

SP = (E,I),0.o, T R , G , L)

Def in i t ion 3 The set of reachable states of SP, denoted Esp, is the following induc-
tively generated set of assignments:

1. ao E Zsp

2. V0. E ~sp, Ve E s = true@TRe o c~ E ~"sP)

Def in i t ion 4 The transition relation of SP, denoted ----~sP, abbreviated - - % is the
following inductively generated set of triples a ~ a ~ E Esv • E* • Esp:

<>
1. V0. E Esp.0 . - -*a

t t~e
2. VO'I, 0" 2 ~ ~aSp , Vt ~ ~ * , V e E E . (o [- - + o 2 A a'2(Ge) = irue=~0.1--'*TRe o 0.~)

Def in i t ion 5 The set of traces of SP, denoted traces(SP), is defined from ----*sv as
the following set:

t
traces(SP) = {t E s I 30., E Xsp.0.o---+0.,}

We will denote by 0.t the state reached by SP after executing the trace t. Let us note
that the mapping defined by 0.(0 = at is not, in general, an injection and always is a
surjection over Esp.

335

Defin i t ion 6 The set of possible events of SP after the trace t, is defined as:

next(t) = {~ �9 s I ~ , (c o) = t , -ue}

Def in i t ion 7 A pair (t, m), where t �9 traces(SP) and m C_ s satisfies SP, denoted
(t ,m) sa t SP, if

�9 m C_ next(t), and

�9 VL �9 L.(~t(L) r 0 AYt(L) C_ next(t)=~m N~t(L) r O)

This definition expresses the semantics we want for our specifications. Let us emphasize
the following aspects:

in a state a,, if a liveness rule L gives rise to a non empty set of events ~,(L),
and all these events are safe in that state, then all the menus m of the process
in state at must include at least one event of ~t(L).

if all liveness rules L �9 L give rise to empty sets in a state ~t, then any subset
of next(t), even the empty set, satisties SP. We say that SP behaves as a safe
chaos in that state.

if a liveness rule L imposes a partially unsafe set of events in a state, then it has
no effect in that state. (This is an arbitrary decission but it has proved to be
useful in the examples the authors have tried.)

�9 if next(t) = 0 in a state, then the only menu satisfying SP in that state is O.
This will be a deadlock state.

if next(t)-Ut , eL~t(L) r O, all tim events in this difference can be chosen by the
process in a non deterministic way. They are neither mandatory, nor forbidden
in that state.

Expressing this desired semantics into the failures model is immediate:

Def in i t ion 8 The failures semantics of SP, denoted ~SP], is the following inductively
generated subset of s x 5o(s

1. Vt �9 traces(SP),Vm C_ s sa t S P ~ (t , m) �9 [SP]

2. vt �9 t, 'aces(SP),vx,,x~ c_ s s [SP] A X~ C_ X,~(t ,X~) �9 [SP]

P r o p o s i t i o n 9 Given a process specification SP = (s Y, ao, T R , G, L), [[SP]] is a
process, in particular a non divergent one, in the failures model.

336

3 Proving Properties
As it has been said, in [9] the specification of a process takes the form of a predicate
with free variables tr and X denoting any trace and refusal set of the process. The
expression P sa t S(tr, X), is formalized by:

Vtr, X.tr e traces(P)h X E refusals(P/tr)~S(tr, X)

In our context, safety properties can be expressed as a predicate over the process state
variables, i.e. as a predicate Safe with frec variables in Y. Given the corresponding
predicate on traces, its statement using state variables is usually immediate.

To prove a safety property written in terms of state variables, it must be shown
that it holds for all values of state variables corresponding to legal traces of the process.
The assignments corresponding to reachable states must then be characterized.

Def in i t ion 10 Wc shall denote by Reachsp the strongest predicate, with free vari-
ables in Y, satisfying the following conditions:

| -ffo(Reachsp) = true

�9 G, A Reachsp~TR,(Reachse), holds for all e E s

Then the proof of any safety property Safe, would reduce to prove the following im-
plication:

Reachsg~Safe

Usually, we do not need to know exactly Reachsp. In most situations, it suffices
proving that Invsp~Safe holds, for some predicate Invsp weaker than Reachsg
which is invariant in the following sense:

Def in i t ion 11 A predicate Inv, with free variables in 1), is an SP-invariant if:

�9 ~o(Inv) = true

�9 G, h Inv~TR~(Inv), holds for all e e s

The reader can easily prove that the following predicate is an invariant of the mutuM
exclusion arbiter of figure 2:

(Ni e U.stl = eating) < 1 (4)

We will discuss now the analysis of liveness properties. The relevant definitions
a r e :

Def in i t ion 12 A specification SP is well formed if there exists an SP-invariant [nvsp
such that

Invsp~VL E L.L C nextsp

where nextsp(])) is a set-oLcvents expression defined in terms of state variables as
{e [e E s A G~(1))}. It represents the set of safe events the process can engage in after
each state.

337

Well formedness removes the need to check in all the proofs whether the liveness
requirements are in contradiction or not with the safety ones.

Def in i t ion 13 Given a well formed specification SP, an SP-invariant lnvse , and a
liveness expression S(Y,m), in terms of state variables 1,' and menu m, S P satisfies
S0) , m), denoted S P sa t S0 ; , m), if

Invsp A m C nextsp A (VL E L.(L = 0) V (m M L ~ 0))=~S(]), m)

In our context, liveness properties must be expressed as set expressions depending on
the state variables and on a free variable m representing the possible menus of the
process in any valid state.

For instance, an explicit liveness expression for the mutual exclusion example of
figure 2 would be the fi)llowing one:

S(~),m) ae__f (Vj E U.st~ = thinking~reqj E m)
h (Vj E U.stj = eating~rel j E m)

A ((Nj E U.stj = hungry) > 0 A -~eaters~

9k E U.stk = hungry A ackk E m)

Using invariant 4 and definition 13, tim reader can prove that this property is satisfied
by the arbiter of figure 2. From this property, weaker ones can be deduced. For
instance, that if only one user k is hungry and no user is eating, then the event ackk
is mandatory for the system. Also, deadlock fi'eedom expressed as S0) , m)~r(m r 0),
can easily be proved.

4 R e f i n e m e n t s

The TCSP refinement relation C preserves the safety and liveness properties of pro-
cesses. Following the approach taken in TCSP, we say that a specification S P E C is
refined by another spcclficatlon I M P if any possible trace of I M P is also allowed by
S P E C , and if for every trace, any set of events that S P E C is forced to offer, is also
offered by I M P .

Def in i t ion 14 Given two specifications with the same alphabet, S P E C and I M P ,
we say that I M P is a refinement of S P EC, denoted by S P EC E I M P , if [S P EC] E_
~IMP].

The failures model enjoys a rich set of algebraic axioms to prove both equality and
refinements of processes. For example, for any two processes P and pt:

P C P ' ~ P [7 P* = p

The use of the algebraic laws to prove correctness of refinements has been shown
elsewhere and will not be discussed here. The explicit modeling of process states by
means of state variables allows us to compare guards and liveness rules in correspond-
ing states i.e., in states reached after the same trace. To carry out this comparison,
we establish some relation between states that takes the form of a predicate with free

338

variables of P~p and Pimp; this relation shall hold initially and be preserved by transi-
tions. This proving technique has strong similarities with the concept of bisimulatiou
introduced by Park [14] in the framework of CCS. The use of bisimulations to compare
TCSP processes has been studied in other works [11].

In what follows, we assume as given two well-formed specifications with disjoint
sets of state variables:

I M P = (s])imp, no.imp, TRi, ,p, Gimp, Limp)

Def in i t i on 15 Given two well'formed specifications SPEC and IMP, with s =
/:,rc~ = s and predicates Spec(l;,p~) and Imp(V~,~p), which are SPEC-invariant
and !MP- invar ian t respectively, we say that predicate r with free variables in l),p~c U
1)imp, is a refinement relation with respect to SPEC and I M P if the following condi-
tions hold:

1. P-~(r = true with O'o = cr0,sp~r 0 a0.i,~p

2. Ve e f-..Spec(l;,pc~) A [mp(Vimp) A G spec A Gi~ p A r 1 6 2
with:

T Rsp ec T R~P T R~ = __~ U

for any values of state variables in V,p,~ and V~mp.

P r o p o s i t i o n 16 Given two well-formed specifications SPEC and I M P with s =
~spec = ~-~irnp,

SPEC E_ I M P

if there are predicates SpeC(~spec), SPEC-invariant, and lmp(V~mp), IMP-invariant,
and refinement relation r with respect to SPEC and IMP, satisfying the following
conditions:

imp spec safety: Ve E ~..Spec(])spee) A Imp(])imp) A ~ A G e :=~G e

l iveness : Spee(V,p~,) A Imp(Vim,) A r
where:

L a= VL(V,p~c) C L,p,~. L(V,p~)# 0=~

for any values of state variables in V,p~ and])imp.

When refining some specification by another we define a more deterministic system,
more amenable for practical implementation, possibly by adding and/or removing some
state variables, while keeping unchanged the alphabet of events. If we are interested in
designing distributed systems, we will eventually face the task of specifying a network
of communicating subsystems, so that abstracting from internal activities, it becomes
a refinement of the given system specification. Concealing a set of events in a TCSP
process may produce divergence, if there is the possibility for infinite chattering to
occur. The technique for proving divergence freedom is established below.

339

Def in i t i on 17 Given a process specification SP, with Mphabet s U s SP is diver-
gence free with respect to s if the TCSP process [SP]\f-h is not divergent.

P r o p o s i t i o n 18 Given a process specification SP, with alphabet s U s SP is di-
vergence free with respect to ~h if there exist a SP-invariant Inv, and a variant integer
expression f /w i th fi'ee variables in Y, satisfying the following conditions:

1. Inv=~fl > 0

2. Ve E s A G,~TR,(f~) < f~

for any values of state variables in 1).

Def in i t i on 19 Given Lwo well-formed specifications SPEC and I M P with /:h =
f~i,~p - f-.~p,c, IMP is an implementation of SPEC with respect to Lh if:

1. I M P is divergence free with respect to /:h

2. S P E C E IMP\I:h

Def in i t ion 20 Given two well-formed specifications SPEC and IMP, with s =
Ei,np --E.pec, and given predicates Spec(Y.vec) , SPEC-invariant, and Imp(Yi,.p),
[MP-invariant, the predicate r with free variables in l;~pe~ U];imp, is an abstraction
relation with respect to SPEC, I M P and /:hif:

1. ~o(r = true, with ao = ao,~p~ t3 ao,i.w

2. Ve E ~.spec.Spec(])spec) A Imp(])imp) A G~ pec A Gie mp A r 1 6 2 where:

T R~ = T R~,~p~ O T Re,imp

3. Vs C ~.h.Spee(Psp..c) A Imp(])imp) A Gi5 rnp A r162162

for any values of state variables in 13,p~r and Yi,,p.

P r o p o s i t i o n 21 Given well-formed specifications SPEC and IMP, with/:h :-/ : imp--
f.~pr I M P is an implementation of SPEC with respect to / :h if I M P is divergence
free with respect to /:~ and there are predicates Spec(P~p~), SPEC-invariant, and
Imp(Yi,~p), IMP-invariant, and an abstraction relation r with respect to SPEC,
I M P and /:h, satisfying the following conditions:

sa fe ty : Ve C s162 A/mp(Yirap) A Gie mp h r ~cc

l iveness : Spec(])spec) A Imp(])imp) A Stable(])imp) A r
where L and Stable are defined as

L~VL c L,~o.(L # 0~3L ' e L~,,rL' ~ 0 ^ L' - Z:h c_ L)

StableZXVL' E L~.w.(L' ~ O~L' - Ca ~ O)

for any values of state variables in Y,p.~ and ~'i-w-

340

5 P a r a l l e l c o m p o s i t i o n o f p r o c e s s s p e c i f i c a t i o n s

Once we have shown that the desired network exhibits the intended behaviour, we
are in position to determine the specifications for the component subsystems. For
every subsystem, the design process is resumed and new decisions are taken to define
new refinements and, possibly, new implementations. Eventually, the whole system
is constructed in a hierarchical way. To achieve this goal, parallel composition of
specifications with state variables must be defined.

If we restrict our attention to deterministic processes, this is done in a straight-
forward way. In deterministic processes, liveness rules may be omitted since they are
given by the guards. Also, state variables in every subsystem either evolve accord-
ing to their own transition rules, or remain unchanged when the event is performed
solely by the other subsystem. If they synchronizc in one event, the guard of that
event is obtained by the conjunction of the guards for that event in both subsystems.
Otherwise, the guard is imported fi'om the corresponding subsystem. These ideas are
reflected in the following definition:

Defini t ion 22 Given two deterministic specifications,

SPa = (s

SP2 = (L2,]22,0"02,TR2, G2)

with disjoint sets of state variables, the parallel composition of SPx and SP2, denoted
by SPaHSP~, is given by the tuple, (s V, ao, TR , G) where:

1. s 1 6 3 1 6 3

2. P ='P1U P2

3. Cro = ao~ U ~o2

4. T R is the family of transition rules indexed by s x Y and defined by:

E a- I E~,~ ifeEs
~,.- E~,= ifcEs

(x i f (e r 1 6 2

5. G is the family of deterministic guards indexed by s and defined by:

Gl(e) if c E s - s
c(~)~= c~(~) i f ~ e ,c~ - ,c,

a , (~) A c~(~) if ~ e ,c, n &

This tuple actually defines a deterministic specification.

Fact 23 Given two deterministic specifications SPI and SP~, then

liSP, II s P d = [ls P,~ll ~S&il

341

Using this definition we are in position to analyze some interesting parallel and
distributed algorithms but it is worthwhile extending the above ideas to cover the
most general situation, i.e. the composition of non-deterministic systems.

Unfortunately, the definition of the parallel composition of nondeterministic process
specifications is rather cumbersome and not very useful. The authors have found more
interesting in practice to have criteria to decompose a given specification, representing a
complex system, into a number of smaller specifications in a such way that, composing
in parallel these specifications, we get a behaviour identical to that of the complex
system. The details cannot be given here due to lack of space. They can be found
in [1].

6 C o n c l u s i o n s

A technique for the specification and verification of TCSP processes has been pre-
sented, establishing a method with a sound mathematical basis for the hierardlical de-
velopment of communicating systems. The authors have extensively tried the method
in a number of examples that cover distributed arbitration systems and other synchro-
nization problems, like the dinning and drinking philosophers, or distributed message
routing systems. For more details, interested readers are addressed again to [1].

R e f e r e n c e s

[1] L.M. Alonso. Tdcnicas formales para el desarrollo jerdrquico de sistemas con-
curentes. PhD thesis, Universidad del Pals Vasco, 1992.

[2] L.M. Alonso and R. Pefia. Acceptance automata: a framework for specifying and
verifying TCSP parallel systems. In E.H.L. Aarts, J. van Leeuwen, and M. Item,
editors, PARLE'91: Parallel Architectures and Languages Europe, pages 75-91,
Springer-Verlag, 1991.

[3] L.M. Alonso and R. Pefia. Using state variables for the specification and veri-
fication of TCSP processes, lnternal report DIA-UCM-92.3, Dep. Informdtica y
Automdtica, Univ. Complutense de Madrid, Spain, 1-26, 1992.

[4] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37:77-121, 1985.

[5] S.D. Brookes. A Model for Communicating Sequential Processes. PhD thesis,
Oxford University, 1983.

[6] S.D. Brookes, A..W. Roscoe, and C.A.R. Hoare. A theory for comnmnicating
sequential processes. Journal of the ACM, 31:560-599, 1984.

[7] M. Broy and M. Wirsing. Partial abstract types. Acta lnformatica, 18:47-64,
1982.

[8] M. tiennessy. Algebraic Theory of Processes. MIT Press, London, 1989.

342

[9] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.

[10] C.A.R. Hoare. Proof of correctness of data representations. Acta Informatiea,
1:271-281, 1972.

[11] H. Jifeng. Process simulation and refinement. Formal Aspects of Computing,
1:229-241, 1989.

[12] R. Milner. A Calculus of Communicatin9 Systems. Volume 92 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 1980.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.

[14] D. Park. Concurrency and automata on infinite sequences. In E.H.L. Aarts, J.
van Leeuwen, and M. Rein, editors, Proceedings 5th GI Conf. of Theoretical Com-
puter Science, pages 245-251, Springer-Verlag, 1981. Lecture Notes in Computer
Science.

[15] R. Pefia and L.M. Alonso. Specification and Verification of TCSP Systems by
Means of Partial abstract Types. In J. Diaz; F. Orejas, editor, TAPSOFT'89:
Theory and Practice of Software Development, Vol. 2, pages 328-344, Springer-
Verlag, 1989. Lecture Notes in Computer Science no. 352.

