
Automating (Specification = hnplementation)
using Equational Reasoning and LOTOS

Carton Kirkwood*

Department of Computing Science, University of Glasgow
email : carron@dcs.glasgow.ac.u k

Abst rac t . We explore some of the problems of verification by trying
~o prove that s o m e sor t of relationship holds between a given specifica-
tion and implementation. We are particularly interested in the decisions
taken in the process of establishing and formalising the verification re-
quirements and of automating the proof. Despite the apparent simplicity
of the original problem, the verification is non-trivial.
The example c h o s e n is an abstraction of a real communications problem.
We use the formal description technique LOTOS [8] for specification and
implementation, and equational reasoning, automated by the RIRL term
rewriting system [9], for the proof.

1 I n t r o d u c t i o n

The last few years has seen an increase in the use of formal methods in the
design and analysis of computer systems. This has many benefits; one of which
is being able to verify that certain properties hold of a system (or not, as the case
may be). However, although formal methods are popular for specification, formal
verification has not been taken up to the san-ie extent, resulting in the situation
where formal methods are used for specification but the implemented systems
are tested in the conventional way. Three possible explanations for this are: 1)
verification techniques are not as well understood as testing techniques, 2) there
is little tool support for verification (making it less appealing), and 3) it is not
always straightforward to express the properties to be verified.. Our long term
aim is to contribute to each of these areas by developing verification methods
specifically for systems described using the formal description technique LOTOS
[8]. In order to gain a better understanding of the problems of verification we
undertook the study of the verification.of the small communications problem
presented in this paper.

A common problem in system development is showing that some sort of
relationship holds between a given specification and implementation, i.e. the
implementation satisfies the specification. The problem is compounded if, as
here, the implementation is not formally derived Dora the specification. In the
course of the verification we explore various ways of expressing the property to

* Funded by SERC grant gr/f 35371/ 4/1/1477, Verification Techniques for LOTOS.

545

be proved and consider several approaches to the proof. We also try to au tomate
the proofs required (by tailoring a general purpose theorem prover).

The example is presented in section 2: an informal overview of the whole
system is given, followed by formal and informal descriptions of the specifica-
tion and implementat ion of the system. The formal descriptions given here are
written in Basic LOTOS [8]. LOTOS was chosen because of its status as an in-
ternational standard. Section 3 is concerned with a preliminary discussion of the
interpretation of the verification requirements, and possible approaches to the
proof that these are satisfied. The details are formalised in section 3.1. The pro-
cess of automat ing these proofs, including the system used (the term rewriting
system RRL [9]), is described in section 4.

Section 5 tells how initially we failed to meet the verifications requirements.
In fact, we could show that the implementat ion did not satisfy the specification.
Close examination of the proofs resulted in a deeper understanding of the re-
quirements and the development of a different approach to the proof. The new
approach hinges on ,adding some extra, information in a modular way to the spec-
ification; we did this by adopting the constraint oriented style of specification
[14]. This allowed the proof to be successfully completed. The new approach and
the resulting specification are presented in section 5.3.

We recognise that the example as it stands is simple, so possible extensions
to the case study are discussed in section 6. In section 7 we review our experience
with LOTOS and RRL, making suggestions for improvements. Finally, we give
our conclusions and ideas for further work arising from this study.

2 T h e E x a m p l e

2.1 I n f o r m a l O v e r v i e w o f t h e S y s t e m

The example is an abstraction of a real comrnunications problem involving four
communicat ing processes at OSI Session level. It was first investigated as a case
study for the "Verification Techniques for LOTOS" project.

There are four communicat ing entities: A, B, C and D, shown in figure 1.
In the diagram, a box represents an entity, and a ~ represents a message m.r~
(sent in the direction of the arrow). The meaning of the mx are also given in
figure 1. Messages of the form p x or nx (where z is a number) are positive and
negative acknowledgements, respectively, to the corresponding m x messages. 2

A requests a service from B; in order to satisfy that service, B must com-
municate with C and D. B has an internal t imer which "times out" if D does
not reply to its communication within a. previously set t ime limit. B must send
deallocation messages to C and D when they are no longer required.

2 Note that some messages only require a positive acknowledgment, while others re-
quire both positive and negative acknowledgments (see figure 1) - - this is to do with
the nature of the messages which they acknowledge, e.g. it does not make any sense
to allow C to respond in a negative way to the message m6 "Service terminated".

546

A

rnl
0

s;tt,,/
"s66

Fig. 1. The Processes and their messages

D
0 , 5 ~ p5 t

O �9 , O
m7 p7

Message interpretation:
rnl - - A communicates with B
m S - B communicates with C
m2t - - B communicates with D
m5 - - D sends a message to B
r n 6 - B deallocates C
r o T - - B deallocates D

Tile original example [5] was supplied by Jeremy Dick, who worked for
RACAL at the time. For reasons of security, we were given only the abstract
description of the system as above; no indication of the real content or meaning
of the messages was given. To help illuminate the system, we invented a possible
interpretation of our own. This provides some intuition as to what happens in
the system, although it is not an exact match. We view the system as follows:
A is a user wishing to log-on to a system with a username and a password.
C takes a username and checks that it is valid. D takes a valid username, ac-
knowledges receipt of the name, and then returns the corresponding password.
B co-ordinates these activities to ascertain if A is a valid user and has supplied
the correct password.

Two possible descriptions of the system are given below: firstly, a group of
protocols which make up the specification, and secondly a group of processes
which make up the implementation. Note that inconsistencies may be found
between the way the specification describes sometl~ing and the way the imple-
mentation describes the same thing. This is because the implementation was not
formally derived from the specification and one of the problems considered here
is that of trying to reconcile any differences between the two.

The informal introductions to the specification and implementation are fol-
lowed by their formal descriptions, given in Basic LOTOS. Only the process
algebra part of LOTOS is used as no data types are required (see section 6
for extensions involving data types). The reader is assumed to be familiar with
LOTOS or a related process algebra such as CCS [12]. The language constructs
used for the descriptions are: exi t denoting successful termination, ; denoting
action sequencing, and ~ denoting choice between two process expressions. Note
that in the remainder of this document, the term processes will be used to refer
to the implementation part of the example. LOTOS processes will be referred
to as such, or as process expressions.

In t, hese descriptions the simplifying assumptions that the ca.rrier is faithful
and no messages or acknowledgements are lost or corrupted are made.

547

2.2 P r o t o c o l s

Communication in the system is governed by protocols P1, P2 and P3. Each
protocol describes the interface between just two of the processes in the system,
e.g. P1 describes the interface between A and B, ignoring C and D.

P I : A sends ml to B, which must be acknowledged by pl or hi.
P2: B sends m3 to C which must be acknowledged by p3 or n3. Following p3,

B may or may not send m6 to C which must be acknowledged by p6.
P3: B sends m~ to D which must be acknowledged by p4 or n~{. After p,{, D

may or may not send m5 to B. m5 must be acknowledged by p5. Also after
p~(, B may or may not send mTto D. mTis acknowledged by pT. Receipt of
m7 removes the capability to send mS.

p r o c e s s P1 := ml ; (nl; exit [] pl ; exit) e n d p r o e
p r o c e s s P2 := m3; (n3; exit [] p3; (exit 0 m6; p6; exit)) e n d p r o e

p r o c e s s P3 := exit 0 m4; (n4; exit
[]p4; (exit 0 m 7 ; p 7 ; e x i t

0 m5; p5; (exit 0 m7; p7; exit))) e n d p r o c

Note that in a real system the protocols, and also the processes, would prob-
ably be described re,=ursively, i.e. cycling over the same behaviour forever. This
is ignored at the moment, the simpler finite case being dealt with first. Hav-
ing finite LOTOS processes instead of recursive ones results in the initial ex i t
branch of P3; this expresses the notion that the full P3 protocol is not always
activated.

2.3 P r o c e s s e s

The implementation of the system is achieved by four interacting processes.

A: A sends ml to B. After this message B sends either pl or nl to A, indicating
success or failure of the transaction respectively.

C" C receives m3 from B to which it replies either p3 or n3. If p3 is sent then
C expects an m6 dea.llocation message, to which it replies p6.

D: D receives m,~ fl'om B, to which it replies pJ, and the transaction contimms,
or n J, and the transaction terminates. After pJ, D sends m5 to B, expecting
p5 in response, then deallocation by roT, to which D replies pT. The trans-
action may be terminated if D receives mTbefore it sends m5, i.e. the timer
has expired causing B to terminate the transaction.

B: In a successful execution B receives mi from A, allocates C with m3 p3 and
D with mJ pJ, then sets a timer as D must send m5 within some time limit.
When m5 arrives the timer is cancelled and B replies with p5. C and D are
deallocated by m6 p6 and m7 p7 respectively. Finally B signals the success
of the transaction by sending pl to A.
This sequence of actions may fail in a number of ways: either C or D could
refuse to participate by returning negative acknowledgments (n3 or n~), or

548

D might not send rn5 within the time period, in which case the timer "times
out". In these cases B replies nl to A. Deallocation of C and D occurs if
and only if they originally agreed to participate in the transaction, i.e. if
they sent p3 and pJ respectively.

p rocess A := ml; (nl; exit ~ pl; exit) endproc
process C := m3; (n3; exit ~ p3; m6; p6; exit) e n d p r o c

process D := exit ~ m4; (n4; exit
p4; (m5; pS; roT; p7; exit

m7; p7; exit)) e n d p r o c
process B :=

ml; m3; (n3; nl; exit
p3; m4; (n4; m6; p6; nl; exit

p4; set; (timeout; m6; p6; mT; p7; nl; exit
m5; tcancel; p5; m6; p6; m7; pT; pl; exit)))

e n d p r o c

Now we have the formal descriptions of the specification and the implemen-
tation we wish to verify that the implementation is correct with respect to the
specification. The next section examines how that correctness can be evaluated.

3 Verification of the Example

The statement to be verified can be expressed as: does the implementation (the
processes A, B, C and D) satisfy the specification (the protocols P1, P2 and
P3)? The terms used above are deliberately vague, allowing exploration of dif-
ferent possible interpretations, discussed informally here and formally in sec-
tion 3.1. Three terms have yet to be defined: "specification", "implementation"
and "satisfies". The meaning of the first two ought to be straightforward since
the protocols and the processes have been given, but these are only the bones of
the description. For example, the protocols form the specification, but how they
should be combined, or indeed if they should be combined, is not mentioned.
The same is true of the processes and the implementation.

Suppose the protocols are to be combined to form the specification and the
processes combined to form the implementation. The statement then becomes:

(A [B {C [D) satisfies (el [P2] P3) (1)

where the "[" operator denotes "combined with". Note that each instance of
"t" may be replaced by a slightly different operator when the problem is made
concrete. For example, the combinator used in A f B may be different from that
used in C I D, or P1 I P2. These things will be formalised in section 3.1.

An alternative approach exploits the modular way in which the system has
been defined: each facet of the interaction can be examined separately.

549

(AIB) satisfies P1 (2)
(CIB) satisfies P2 (3)
(DIB) satisfies P3 (4)

As they stand, these equations are not quite correct since the language, i.e. the
events, of the left-hand expression may not be the same as that of the right-hand
expression, e.g. A I B will use events not mentioned in P1. Either these events
will have to be hidden, or the interpretation of "satisfies" must take account of
the extra events.

Since equations (2), (3) and (4) each yield a boolean, the results can be
combined using a boolean operator. We choose & since we want all facets of the
interaction to be satisfied, but we must also be sure that satisfying all equations
is the same as satisfying the system as a whole. In this case, since P1, P2 and
P3 are all concerned with distinct facets of the communicat ion of the system,
it seems likely that the verification can safely be split into parts. Note that this
really depends on choosing the right methods of splitting up the system, hiding
unimpor tant events making individual proofs, and recombining the results.

3.1 Formalising the Verification Requirements

We should now give the formal interpretation of "I", the hiding of events, and
"satisfies", again using LOTOS.

The general parallelism operator of LOTOS is used to combine both pro-
cesses and protocols. This operator takes two process expressions and a list of
events specifying the events on which the process expressions must synchronise.
Variation of the events in this list give the subtly different combinations of the
components of the system (as mentioned above). The syntax for this operator is
P] [eve,~.tlist]lQ, where P and Q are process expressions.

The h i d e opera.Lot is used to restrict the processes to protocol events only.
This operator takes a process expression and a list of events to be hidden. Hidden
events are treated like the internal event i; they are unobservable and occur
instantaneously. The syntax is h i d e eventlist in P.

There are many different possible interpretations for the "satisfies" relation.
The particular sort of relation (e.g. equivalence or preorder) will depend on the
sort of decisions made in the step between the specification and the implementa-
tion. For example, the implementat ion may resolve some choices left open in the
specification, or it may add some information about how to perform a particular
task, or it may substitute one method of performing a task for another. Some
steps preserve the observable behaviour of the specification while others do not,
therefore in some c~ses an equivalence or a congruence relation is appropriate,
i.e. where the processes must implement all the alternatives set out in the pro-
tocols, while in other cases a preorder relation will suffice. Since in this example
the implementat ion was not derived directly from the specification we cannot say
anything about the sort of steps used, so we must examine a variety of LOTOS
relations in more detail to determine which are most suitable. Start ing with the
strongest (i.e. makes fewer identifications):

550

Strong Bisirnulation Equivalence This relation requires all events, including the
internal event, to be matched exactly. Given the use of the h i d e operator which
converts hidden events into the internal event, an equivalence which ignores these
is required.

Weak Bisimulation Equivalence This relation requires all events except the in-
ternal event to be matched exactly. The internal event is given its status as a
special, unobservable, event and can be matched by zero or more internal events.
This relagion does not preserve the substitution property in all LOTOS contexts,
i.e. two process expressions may be weak bisimula.tion equivalent, but their inter-
nal structure could cause them to behave differently when in combination with
other process expressions.

Weak]3isimulation Congruence This is the largest congruent relation contained
in weak bisimulation equivalence. Most, but not necessarily all, of the internal
events created by the use of h i d e can be removed by weak bisimulation congru-
ence laws.

Testing Relations The basic testing relation for LOTOS is a preorder called red .
B 1 r e d B2 says that B1 is a deterministic reduction of B2, which may be inter-
preted as B1 "implements" B2. The equivalence generated by this preorder is
not a congruence. To obtain congruence the e r e d relation, the largest congruent
sub-relation of red , must be used.

Trace Equivalence This says that two process expressions are equivalent if their
trace sets, i.e. their sequences of actions, are the same. This does not give a. satis-
factory interpretation of "satisfies" since deadlock properties are not preserved,
i.e. two process expressions may be trace equivalent but one may deadlock after
a trace s while the other does not.

In summary, trace equivalence is rejected because too many identifications are
made, strong bisimulation equivalence because too few are made. Our system
will probably have to interact with other systems, so it is important that it
behaves in the same way in all contexts. This leads us to reject weak bisimulation
equivalence and testing equivalence, leaving weak bisimulation congruence and
testing congruence. We also have the testing preorders. Since there are no other
criteria, to take into account, any of these relations will suffice as an interpretation
of :'satisfies".

The next section describes the method and software used to automate the
proofs of equivalence.

4 Proof: Technique and Application

Several software tools are currently available which can determine the equiva-
lence/ordering of two process expressions, e.g. the Concurrency Workbench [3]
and TAV [6]. These systems generate a finite state machine to represent the

551

processes and apply some sophisticated algorithms to decide their relationship.
This approach suffers from the state explosion problem and cannot handle infi-
nite systems. Although the current example is unlikely to cause state explosion
and is finite, our aim is to develop methods which may be applicable to other
examples. For this reason we use equational reasoning, i.e. symbolic manipula-
tion of terms, thus avoiding any special representations. This approach is also
successfully used in [.l, 11, 13].

Using term rewriting to implement equational reasoning, two terms are proved
equivalent by reducing them to their normal forms and comparing these syntac-
tically. If the normal forms are the same then the original terms are equivalent,
otherwise not. The same technique is used to prove a preorder between two terms.
This procedure relies on having a complete (i.e. confluent and terminating) set
of rules (giving unique normal forms).

A brief description of the rule sets used for this case study follows; a more
detailed presentation can be found in [10]. We split the rules according to their
function, giving three sets:

1. Rules derived from the weak bisimulation congruence laws, including the
h i d e expansion law, which are given in appendix B.2.2 of the LOTOS sta.n-
dard [8]. These rules remove instances of the h i d e operator (by converting
events to be hidden into the internal event, i) and reduce terms with respect
to weak bisimulation congruence.

2. Rules which "implement" the expansion law for parallelism, also found in
appendix B.2.2 of the LOTOS standard. These rules remove instances of the
parallel operator, converting the terms into equivalent ones which use only
sequencing and choice operators.

3. Rules corresponding to the c r e d laws, which can be found in appendix B.3.2
of the LOTOS standard. Set 3 ,when used, is always an addition to Set 1,
since one of the flaws for e r e d states that all the laws of weak bisimulation
congruence are a.lso true for c red . These rules allow terms to be reduced
with respect to the e r e d refinement relation.

Sets 1 and 2 also contain rules for basic data types, e.g. list, s, sets etc.
The RRL term rewriting system [9] was used to perform the proofs. RRL

features include Knuth-Bendix completion and proof by rewriting. RRL also
handles rewriting and completion modulo associative-commuta.tive operators.
This was the main reason for choosing this system over others currently available.

The rule sets given above are not confluent and terminating, which means
we have a semi-decision procedure for equivalence/ordering of LOTOS processes,
i.e. normal forms are not unique. This means that if two terms can be shown
to be equivalent/ordered by our rules, then they are equivalent/ordered in the
LOTOS semantics, but, if two terms cannot be shown to be equivalent/ordered
by our rules, then they may or may not be equivalent/ordered in the semantics.
No special techniques to cope with non-confluent rule sets are adopted; if two
terms cannot be shown equivalent by RRL the proof is completed by hand.

The next section contains details of the proofs which were at tempted, and
some discussion of why some of those proofs failed.

552

5 V e r i f i c a t i o n P r o o f s

In section 3 two possible approaches to proving that the implementation of the
system satisfies its specification were discussed. One involved splitting the proof
into three parts corresponding to the three protocols in the specification, while
the other dealt with the system as a whole. The results of these approaches,
successes and failures, in trying to prove automatically that the specification is
satisfied by the implementation are given below.

5.1 Spl i t t ing the Proofs into Three Sections

Since each protocol describes the interface between just two of the processes, the
~dea of proving each interface is correct and deducing from that the correctness of
the whole system is very appealing. Unfortunately, this approach turned out to
be unsuccessful. Proofs about the relationship between the specification and the
implementation could be completed, but the results were not strong enough to
satisfy the correctness requirement. However, examining these proofs (successful
or otherwise) helps illuminate the reasons for the failure of this approach. In the
following, =~bc denotes weak bisimulation congruence.

Wea]c Bisimulation Congruence We tried to prove the following equations.

P1 -~bc hide CDevents in (A [[ml,pl, nl]] B) (5)

P2 --~bo hide ADevents in (C l[m3, p3, n3, m6,S][B) (6)

P3-wv~ hide ACeventsin (D l[mJ,p~i,nd,m5,p5, m7,p7][B) (7)

where P1, P2, P3 and A, B, C, D are as defined in section 2 and the event lists
to be hidden are:

COevents = [m3,
ADevents = [ml,
A Cevents = [ml,

p3, n3, rod, P$, n4, m5, p5, m6, p6, roT, p7]
pI, nl, rn4, P4, n$, m5, p5, roT, p7]
pl, nl, m3, p3, n3, m6, p6]

Equations (5), (6) and (7) cannot be proved using RRL. The proof was com-
pleted by hand to show that the equations do not hold in the LOTOS semantics.
The full proof is not presented here, but mat be found, together with the other
proofs fi'om this study, in appendix A of [10]. The next step was to try to show
the equations hold for a weaker relation.

Testing Relations Taking the left and right hand sides of the equations as above,
we substituted the cred relation for --~vc and tried to show the new equations
held either left-to-right or vice-versa (if they hold in both directions we get
testing congruence).

P1 cred hide CDevents in (A l[m.l,pl, nl]] B) (8)

P 2 c r e d h ideADeven ts in (C ' l [m3,p3 , n3, m6,p6]l B) (9)
P 3 c r e d hideACeventsin (D][m4,p$,n$,m5,p5, m7,pT] B) (10)

553

The proofs of equations (8) and (9) can be completed by RRL in the left-to-
right direction, which means that the protocols are a deterministic reduction of
the processes, i.e. the processes may have some nondeterminism not present in
the protocols (which is not what may normally be expected). None of the equa-
tions holds in the right-to-left direction; equation (10) holds in neither direction.

At this point it appeared that trying to prove the verification requirement
was satisfied was hopeless. However, we strongly believed that the processes were
a valid implementation of the system and that therefore it was the approach to
the proof which was incorrect. The strategy of splitting the proof into three
parts did not work, or rather, some proofs could be completed, but they were
not sufficient to satis[y the verification requirement. In particular, it seemed that
the hiding of events caused the failure of the proofs by spotlighting apparently
non-deterministic choices in the process expressions. These choices are not really
non-deterministic; the choices are determined by factors in the other processes.
For example, the right-hand process expression in equation (5) makes a non-
deterministic choice between replying pl and replying hi. However, we know
that this choice really depends on the receipt of m5 (which is hidden). This
problem affects proofs using weak bisimulation congruence or testing congruence.
We observe that we are not the only ones to encounter this problem; the same
phenomenon also causes problems for other authors, e.g. [1, 2].

We then went on to try the other approach to the proof, where the system
is considered as a whole, thus avoiding the use of h ide .

5.2 P r o v i n g t h e S y s t e m as a W h o l e

No relationships between the processes all combined and the protocols all com-
bined could be demonstrated because although the processes can be combined
using parallelism, there is no meaningful way in which to combine the protocols.

There are two operators which could be used to combine the protocols. These
are sequential composition of process expressions and interleaving (general paral-
lelism synchronising on no events) since the protocols have no events in common.
The former cannot be used because, for example, the events of P1 do not all
precede tile events of P2, and the latter cannot be used because the protocols
contain no information about the rela.tive ordering of events in different proto-
cols. Interleaving results in a process expression which has a large number of
traces which are meaningless in our example, given our informal description.

The reason the protocols cannot be combined in a way that reflects our
intuition is that there is some information missing from the specification, leaving
too large a step between it and the implementation. This may have occurred
because the implementation was not derived from the specification, but it is
also generally true that verification becomes harder as the distance between the
specification and the implementation increases.

The missing information, which is implicit in the implementation, includes
details of a timer, deallocation and what constitutes success or failure of the
transaction. In the specification there is no information about any of these things.

554

Our solution was to add the information in the form of constraints giving a
successfn] approach to the problem.

5.3 A d d i n g C o n s t r a i n t s to t h e E x a m p l e

The constraint oriented style of specification [14] relies on the way in which
the LOTOS general parallelism operator handles multi-way synehronisation, i.e.
synchronisation between two or more actions. For example, if three LOTOS
processes, all of which use the action a, are combined using general parallelism,
synchronising on a, then all three must perform that event at the same time.
This means that different process expressions can specify different aspects of a
behaviour, interacting to give the whole specification. The effect is similar to
using conjunction in a logical specification; each part must be satisfied for the
whole to be satisfied.

Using this method, more LOTOS processes are defined which express other
aspects of the specification not included in the protocols. These include a timer
in B to determine how long it should wait for D to send the m5 message,
compulsory deallocation of C and D, ordering of events as mentioned in the
informal overview of the system, and conditions dictating success or failure of the
transaction as a whole. The following constraints are added to the specification:

I Timer Constraints I
p rocess timer := exit ~ set; (tcancel; exit ~ timeon E exit) e n d p r o c
process timer_on := exit r] p4; set; exit e n d p r o c
process timer_off := exit ~ set; (m5; teancel; p5; m7; exit

H timeout; m7; exit) e n d p r o c

~ea l loca t ion Constraints]
p rocess dea lloc_C := p3; m6; p6; exit ~ n3; exit e n d p r o c
process deMloc..D := exit ~ m4; (p4; m7; p7; exit [] n4; exit) e n d p r o c

] Success and Failure I
p rocess System := m5; pl exit

n3; nl exit
n4; nl exit

[] timeout; nl; exit e n d p r o c

555

Ordering Constraints
process order13 := ml; m3; (n3; nl; exit

p3; (nl; exit ~ pl; exit)) endp roc

process order34 := m3; (n3; nl; exit
[] p3; m4 (n4; nl; exit

H p4; (nl; exit ~ pl; exit))) e n d p r o e

process order457 := n3; nl; exit
[] m4; (n4; nl; exit

p4; (m5; p5; m7; p7; pl; exit
[] timeout; m7; p7; nl; exit)) e n d p r o e

process order56 := n3; nl; exit
n4; m6; p6; nl; exit
timeout; m6; p6; nl; exit
m5; pS; m6; p6; pl; exit endp roc

process order67 := n3; nl; exit
p3; (n4; m6; p6; nl; exit

p4; m6; p6; m7; p7; (nl; exit
H pl; exit)) e n d p r o e

As with the descriptions of the protocols and the processes, some exit branches
are introduced to express the notion that a constraint may not be activated.

Given these constraints, the equation to be proved by RRL becomes:

(((Pl][pl, nl][system) [[ml ,p l , nl , n3][orderl3)
[[pl, nl , m3, p3, n3, n4, m5, timeout]]

((((p2 I [p3 , n3, m6, p6] l dealloc_C)
] [rn3, p3, n3, mg, p6] l (order34 lip3, n3, p4, n4]] order67))
[[pi, hi , n3, m4,p4, n4, rnT, pT] [

(((P 3 I [m4 , P 4 , n4 , m 7, p 7] I dealloc_D)] [m4 ' P 4 , n4 , m5 , p5 , m 7, p 7] L order457)
I [P4 , m5 , p5, roT, timeout] I

((timer I [set] l timer_on) I [set, timeout, tcancd] l timer_off))
I [mS, p5, m6, p6, timeout] l order56))

~wba
(((A I[ml, pl, nl]l B) I[m3, p3, m6, p6]l C)

I[m4,P4, n4, rn5,p5, mT, pT]l D)

Although the order in which the process expressions are combined does not
matter in the semantics, we add as much information as possible to each protocol
before combining it with the others. This is because in performing the proof, our
system can only deal with one parallel statement at a time, which means that the
proof has to be built up gradually from small units. Adding as much information
as early as possible helps to cut down the size of the intermediate terms in the
proof.

This equation can be proved to hold by RRL. This is an adequate proof of
correctness since it means not only that the processes have the same observable

556

behaviour as the protocols, but also that they behave in the same way in all
contexts. The proof requires only the rules from set 2; no other rule sets are
required. As the specification and implementat ion use no internal actions we
may also deduce that the above equation holds for strong equivalence as well as
for weak bisimulation congruence.

6 E x t e n s i o n s t o t h e E x a m p l e

The example as considered in this document is very simple; there are a number
of ways in which it can be made more complex.

- A useful extension would be to add an "abort" message, call it m2. A can
abort the service at any t ime by sending m,2 to B, which should clean up by
deallocating any resources held and then replying to A with p2.
In LOTOS it would be simple to add m2 p2 as an abort sequence using
the operator [> , which allows one process to take control from another.
However, in this example the system is more complicated, requiring varying
sequences of actions between m2 and p2, depending on the events which
occurred before m2. The original solution could not be easily extended to
include this new behaviour. This could indicate a fault in the solution to the
original problem, perhaps it is not modular enough, or it could be that there
is no simple, elegant way to extend the solution. Another possibility is that
it is the form of this particular modification which is causing the problem,
see section 7.

- Data types could be added to the messages, e.g. the login name and password
of the informal interpretation of the exam ple.

- The most obvious extension would be to introduce recnrsion. Work is in
progress on the addition of recursion to the example. So far the proofs have
not become any more complex, however, we felt that the example was simpler
t.o present without recursion.

7 R e v i e w o f t h e T o o l s U s e d

Although some degree of success was achieved in the case study, there were also
many problems, not all of which arose from the example itself; some were due to
either LOTOS or RRL. For example, in 1KRL we urould have liked more control
over the application of rules and more feedback on the rules R, RL used in a
reduction. The suggested improvements to LOTOS are given below.

LOTOS was not always suitable to describe the example. A major problem
was revealed when a t tempt ing to extend the original problem to include the
abort message. The [> operator was unsuitable for this purpose because it does
not allow the abort sequence to be dependent on the state of execution before
the abort message. One way round this is to write each abort possibility into
the LOTOS processes as choice branches, which makes the specification rather
cumbersome. What is required is an operator which allows the abort sequence

557

to be flexible, perhaps allowing parameters to be passed from the interrupted to
the interrupting process (as with sequential composition of processes).

Another feature which would have been useful was an operator to "wrap-
up" several actions and make them behave as a single action, i.e. like a critical
section in a mutual exclusion problem. For example, we wanted to be able to
combine two process expressions using interleaving, but to have a section in one
of the expressions which, once it had begun, had to finish without interleaving
with the other process until after the last action was completed. This could have
been solved with a mutual exclusion algorithm, but a language construct to do
this would be more convenient. This problem is also identified in [7].

8 C o n c l u s i o n s a n d F u r t h e r W o r k

After much experimentation, we succeeded in showing that the verification re-
quirements of a small communicat ions protocol were indeed satisfied. It must be
noted that the given specification was not sufficient for our purposes and had to
have more information added to enable the proofs to be carried out. The new
information was added in a modular way however, and the text of the original
specification was unaltered, although it must be admit ted that the size of the
new specification is greatly increased. Possible extensions to the problem are
provided in section 6. It is hoped that these can also be made in a modular way.

In some ways, the initial failure to meet the verification requirements was
perhaps more fruitful than the final proof, because we were able to identify
problems in the verification process which need to be further researched. For
example, the effect of h i d e on our proofs, introducing non-determinism and
thus causing failure, and the difficulty in choosing between the different relations.
There are many more equivalences defined in the process algebra literature than
presented in this document, we merely chose some of the most well-known.

Another possible line of research is that of investigating alternative formu-
lations of the verification requirements. Other situations may require different
interpretations of the s ta tement "specification satisfies implementat ion" , e.g. one
alternative is "prove ~;he system satisfies certain temporal formulae", giving an-
other way of looking a.t what constitutes specification and implementat ion.

The main result of our work on this case study is the demonstrat ion that
verification, even of such a small and simple system, is a. difficult process; one
which is full of opportunities to take the wrong decision and thereby to fail to
prove the correctness of the system under investigation. In this study we only
arrived a.t a. successful proof because we persevered, having a strong belief that
such a proof must exist. In more complex examples it would perhaps be less easy
to hold such a belief.

Acknowledgements \u would like to thank the members of the EI~IL project
group, in particular our colleagues at Glasgow, Muffy Thomas and Phil Watson,
for many st imulating discussions on the issues and problems raised by this case
study. Thanks also to the referees for their helpful comments, and to Deepak
Kapur for supplying RRL.

558

R e f e r e n c e s

1. J. Baillie. A CCS case study: a safety-critical system. Software Engineering Jour-
nal, pages 159-167, July 1991.

2. G. Bruns and S. Anderson. The Formalization and Analysis of a Communications
Protocol. Technical Report ECS-LFCS-91-137, LFCS, University of Edinburgh,
1991.

3. R. Cleveland, J. Parrow, and B. Steffen. The Concurrency Workbench. In
J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, LNCS
-'107, pages 24-37. Springer-Verlag, 1989.

4. R. De Nicola, P. lnverardi, and M. Nesi. Using the Axiomatic Presentation of
Behavioural Equivalences for Manipulating CCS Expressions. In J. Sifakis, editor,
Automatic Verification Methods for Finite State Systems, LNCS 407, pages 54-67,
1989.

5. A.J.J. Dick. A Case Study for the ERIL Project. Private communication, 1990.
6. J.C. Godskesen, K.G. Larsen, and M. Zeeberg. TAV (Tools for Automatic Verifi-

cation): Users Manual. Technical report, Aalborg University, 1989.
7. R. Gotzhein. Specifying Abstract Data Types with LOTOS. In B. Sarikaya

and G.V. Bochmann, editors, Protocol Specification, Testing, a'nd Verification, V1,
pages 15-26. Elsevier Science Publishers B.V. (North-Holland), 1987.

8. International Organisation for Standardisation. Information Processing Systems
-- Open Systems Interconnection -- LOTOS -- A Formal Description Technique
Based on the Temporal Ordering of Observational Behaviour, 1988.

9. D. Kapur and H. Zhang. RRL : Rewrite Rule Laboratory User's Manual, 1987.
Revised May 1989.

10. C. Kirkwood. A Case Study for the ERIL Project. Technical Report 1992/R4,
University of Glasgow, 1992.

11. C. Kirkwood and K. Norrie. Some Experiments using Term Rewriting Techniques
for Concurrency. In J. Quemada, J. Mafias, and E. V~squez, editors, Formal De-
scription Techniques, 1H, pages 527-530. Elsevier Science Publishers B.V. (North-
Holland), 1991. Extended Abstract.

12.]2. Milner. Communication and Concurrency. Prentice-Hall International, 1989.
13. M. Nesi. Mechanizing a Proof by Induction of Process Algebra Specifications in

Higher Order Logic. In K.G. Larsen and A. Skou, editors, Proceedings of CAV 91,
LNCS 575, pages 288-298, 1992.

14. C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification styles in
(]istribut.ed systems design and verification. Theoretical Computer Science, 89:179-
_906, 1991.

