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Preface

Abstract interpretation is a general approach for program analysis to discover
at compile time properties of the run-time behavior of programs, as a basis to
perform sophisticated compiler optimizations. Several frameworks of abstract
interpretation for logic programs have been presented [11, 25, 27, 43, 48, 49, 51,
55, 57, 65, 81, 82]. A framework is a parameterized construction for the static
analysis of programs, together with theorems that ensure the soundness and
termination of the analysis. To complete the construction, an application specific
domain and primitive operations satisfying certain safety conditions must be
provided.

This book elaborates on an application for such a generic framework. The
framework used [11] belongs to the class of top-down abstract interpretation
methods and collects the information derived in an abstract AND-OR-graph that
represents the set of concrete proof trees that can possibly occur when executing
the source program. The starting point of the present work is the previously
developed application of integrated type and mode analysis [38]. The purpose
of that application was to guide the compiler, based on a characterization of the
entry uses of the program, to generate code that is more specific for the calls
that can occur at run time.

In an attempt to give further guidance to the compiler, we address the prob-
lem of compile-time garbage collection, the purpose of which is to (partially) shift
run-time storage reclamation overhead to compile time. In applicative program-
ming languages, the programmer has no direct control over storage utilization,
and run-time garbage collection is necessary. Garbage collection involves a pe-
riodic disruption of the program execution, during which usually a marking and
compaction algorithm is employed. Such schemes are expensive in time. Our
research shows that at compile time useful and detailed information about the
liveness of term substructures can be deduced which the compiler can use to
improve the allocation of run-time structures. In fact, it provides a technique
to automatically introduce destructive assignments into logic languages in a safe
and transparent way, thereby reducing the rate at which garbage cells are cre-
ated. The resulting system gets near to the methods of storage allocation used
in imperative programming languages.

The global flow analysis to be performed on Prolog source programs in order
to derive the liveness of data structures is constructed in three layers. The
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first layer, consisting of the type and mode analysis, basically supplies the logical
terms to which variables can be bound. The two subsequent layers of the analysis
heavily rely on these descriptions of term values. The sharing analysis derives
how the representation of logical terms as structures in memory can be shared,
and the liveness analysis uses the sharing information to determine when a term
structure in memory can be live.
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