Lecture Notes in Computer Science 675
Edited by G. Goos and J. Hartmanis

Advisory Board: W. Brauer D. Gries J. Stoer

Anne Mulkers

Live Data Structures
in Logic Programs

Derivation by Means of Abstract Interpretation

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos Juris Hartmanis

Universitédt Karlsruhe Cornell University

Postfach 69 80 Department of Computer Science
Vincenz-Priessnitz-Strafle 1 4130 Upson Hall

W-7500 Karlsruhe, FRG Ithaca, NY 14853, USA

Author

Anne Mulkers

Department of Computer Science, K.U. Leuven
Celestijnenlaan 200 A, B-3001 Heverlee, Belgium

CR Subject Classification (1991): F3.1,D.3.4,1.2.2-3

ISBN 3-540-56694-5 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56694-5 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by author/editor
45/3140-543210 - Printed on acid-free paper

Preface

Abstract interpretation is a general approach for program analysis to discover
at compile time properties of the run-time behavior of programs, as a basis to
perform sophisticated compiler optimizations. Several frameworks of abstract
interpretation for logic programs have been presented [11, 25, 27, 43, 48, 49, 51,
55, 57, 65, 81, 82]. A framework is a parameterized construction for the static
analysis of programs, together with theorems that ensure the soundness and
termination of the analysis. To complete the construction, an application specific
domain and primitive operations satisfying certain safety conditions must be
provided.

This book elaborates on an application for such a generic framework. The
framework used [11] belongs to the class of top-down abstract interpretation
methods and collects the information derived in an abstract AND-OR-graph that
represents the set of concrete proof trees that can possibly occur when executing
the source program. The starting point of the present work is the previously
developed application of integrated type and mode analysis [38]. The purpose
of that application was to guide the compiler, based on a characterization of the
entry uses of the program, to generate code that is more specific for the calls
that can occur at run time.

In an attempt to give further guidance to the compiler, we address the prob-
lem of compile-time garbage collection, the purpose of which is to (partially) shift
run-time storage reclamation overhead to compile time. In applicative program-
ming languages, the programmer has no direct control over storage utilization,
and run-time garbage collection is necessary. Garbage collection involves a pe-
riodic disruption of the program execution, during which usually a marking and
compaction algorithm is employed. Such schemes are expensive in time. Our
research shows that at compile time useful and detailed information about the
liveness of term substructures can be deduced which the compiler can use to
improve the allocation of run-time structures. In fact, it provides a technique
to automatically introduce destructive assignments into logic languages in a safe
and transparent way, thereby reducing the rate at which garbage cells are cre-
ated. The resulting system gets near to the methods of storage allocation used
in imperative programming languages.

The global flow analysis to be performed on Prolog source programs in order
to derive the liveness of data structures is constructed in three layers. The

Vi

first layer, consisting of the type and mode analysis, basically supplies the logical
terms to which variables can be bound. The two subsequent layers of the analysis
heavily rely on these descriptions of term values. The sharing analysis derives
how the representation of logical terms as structures in memory can be shared,
and the liveness analysis uses the sharing information to determine when a term
structure in memory can be live.

Acknowledgments

This book is based on my Ph.D. dissertation [59] conducted at the Department
of Computer Science of the K.U.Leuven, Belgium. The research presented has
been carried out as part of the RFO/AI/02 project of the Diensten voor de
programmatie van het wetenschapsbeleid, which started in November 1987 and
was aimed at the study of implementation aspects of logic programming: ‘Logic
as a basis for artificial intelligence: control and efficiency of deductive inferencing
and parallelism’.

I am indebted to Professor Maurice Bruynooghe, my supervisor, for giving
me the opportunity to work on the project and introducing me to the domain
of abstract interpretation, for sharing his experience in logic programming, his
invaluable insights and guidance. 1 wish to thank Will Winsborough for many
helpful discussions, for his advice on the design of the abstract domain and
safety proofs and his generous support; Gerda Janssens for her encouragement
and support, and for allowing the use of the prototype for type analysis as the
starting point for implementing the liveness analysis; Professors Yves Willems
and Bart Demoen, for managing the RFO/AI/02 project and providing me with
optimal working facilities; Professor Marc Gobin, my second supervisor, and
Professors Baudouin Le Charlier and Danny De Schreye, for their interest and
helpful comments, and for serving on my Ph.D. thesis committee. I also want to
thank my family, friends and colleagues for their support and companionship.

Leuven, March 1993 Anne Mulkers

Contents

1 Introduction 1
2 Abstract Interpretation 5
2.1 Basic Concepts 5
2.2 Abstract Interpretation Framework 7
2.2.1 Overview of the Framework 8
2.2.2 Concrete and Abstract Domains of Substitutions 10
2.2.3 Primitive Operations 11
2.2.4 Abstract Interpretation Procedure 14
2.3 Example: Integrated Type and Mode Inference 16
2.3.1 Rigid and Integrated Type Graphs 16
2.3.2 Type-graph Environments 23
2.3.3 Primitive Operations for Type-graph Environments 25
3 Related Work 31
3.1 Aliasing and Pointer Analysis 31
3.2 Reference Counting and Liveness Analysis. 38
3.3 Code Optimization. 41
4 Sharing Analysis 47
4.1 Sharing Environmentso L. 47
4.1.1 Concrete Representation of Shared Structure 48
4.1.2 Abstract Representation of Shared Structure 55
4.1.3 'The Concrete and Abstract Domains. 62
4.1.4 Order Relation and Upperbound Operation 66
4.2 Primitive Operations 68
4.2.1 Unification 68
42010 Xi=Xj ot 69
4212 Xi= f(Xiyy oo r Xi)) e e e 85
422 Procedure Entry 93
423 Procedure Exit 98
4.3 Evaluation 110
4.3.1 Example: insert/3 111
4.3.2 Relevance of Sharing Edges 114

Vi

4.3.3 Imprecision in the Sharing Analysis
4.3.4 Efficiency of the Sharing Analysis

5 Liveness Analysis

5.1 Liveness Environments

5.1.1 Concrete Representation of Liveness Information
5.1.2 Abstract Representation of Liveness Information

5.1.3 The Concrete and Abstract Domains.
5.1.4 Order Relation and Upperbound Operation
5.2 Primitive Operations
5.2.1 Unification
5211 Xi=X; ... e
5212 Xi= f(Xiyyeoy X)) oo e e
5.2.2 Procedure Entry,
523 Procedure Exit
5.3 Evaluation
5.3.1 Example: gsort/3
5.3.2 Precision of the Liveness Analysis

5.3.3 The Practical Usefulness of Liveness Information
6 Conclusion

Appendix: Detailed Examples

Al Listof Types
A2 append/3
A3 nmrev/2. ...
A4 buildtree/2 andinsert/3
A5 permutation/2 and select/3
A6 split/3.
A7 gsort/2 and partition/4,
A.8 sameleaves/2 and profile/2
A9 sift/2andremove/3 L.

Bibliography

CONTENTS

