Skip to main content

Application of Neuro-Fuzzy Networks to the identification and control of nonlinear dynamical systems

  • Neural Network
  • Conference paper
  • First Online:
IPMU '92—Advanced Methods in Artificial Intelligence (IPMU 1992)

Abstract

A Neuro-Fuzzy Network (NFN) is proposed, combining the merits of Artificial Neural Networks and Fuzzy Logic Systems. Most specifically, prior knowledge can be embedded in the synaptic weights of the NFN, speeding up the convergence.This NFN can be used for rule extraction or for identification and control of nonlinear dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cybenko G.: Approximation by Superposition of a single function. J. Math. of Control, Signal and Systems, 2, 1989.

    Google Scholar 

  2. Glorennec P.Y.: Un réseau neuro-flou évolutif. Proc. of 4th Int. Conf. on Neural Networks and their Applications, Nîmes, nov. 1991 (in french).

    Google Scholar 

  3. Glorennec P.Y.: A Neuro-Fuzzy Controller Designed for Implementation on a Neural Chip. Proc. of Iizuka'92, july 92.

    Google Scholar 

  4. Hayashi Y., Czogala E., Buckley J.: Fuzzy Neural Controller. Proc. of FUZZ-IEEE'92, San Diego.

    Google Scholar 

  5. Horikawa S-I., Furuhashi T., Okuma S., UCHIKAWA Y.: A Fuzzy Controller Using a Neural Network. Proc. of Iizuka'90, july 90.

    Google Scholar 

  6. Jang J-S.: Rule extraction by Generalized Neural Network. Proc. of 4th IFSA Congress, Brussel, July 1991.

    Google Scholar 

  7. Jordan M.I., Rumelhart D.E.: Forward Models: Supervised Learning with a Distal Teacher. MIT Center occasional paper 40.

    Google Scholar 

  8. Keller J., Yager R., Tahani H.: Neural Network Implementation of Fuzzy Logic. Fuzzy Sets and Systems 45, no 1, jan. 92

    Google Scholar 

  9. Kosko B.: Neural Networks and Fuzzy Logic. Prentice-Hall International Editions, IBSN:0-13-612334-1

    Google Scholar 

  10. Lin C-T., Lee C.C.: Neural-Network-Based Fuzzy Logic Control and Decision System. IEEE Trans. on Computers, 20 no. 12, dec. 1991.

    Google Scholar 

  11. Martinez J.M., Houkari M., Parey C., Barret C.: La rétropropagation sous l'angle de la théorie du contrôle. Proc. of 4th Int. Conf. on Neural Networks and their Applications, Nîmes, nov. 1991

    Google Scholar 

  12. Narendra K., Parthasarathy K.: Identification and Control of Dynamical Systems using Neural Networks. IEEE trans. on Neural Networks, 1 no. 1, march 90.

    Google Scholar 

  13. Nomura H., HAYASHI I., WAKAMI N.: A Self-tuning Method of Fuzzy Control by Descent Method. Proc. of 4th IFSA Congress, Brussel, july 1991.

    Google Scholar 

  14. Sontag E., Sussmann H.: BackPropagation can give rise to spurious local minima. Complex Systems 3 (1989), 91–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernadette Bouchon-Meunier Llorenç Valverde Ronald R. Yager

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this paper

Cite this paper

Glorennec, P.Y., Barret, C., Brunet, M. (1993). Application of Neuro-Fuzzy Networks to the identification and control of nonlinear dynamical systems. In: Bouchon-Meunier, B., Valverde, L., Yager, R.R. (eds) IPMU '92—Advanced Methods in Artificial Intelligence. IPMU 1992. Lecture Notes in Computer Science, vol 682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56735-6_72

Download citation

  • DOI: https://doi.org/10.1007/3-540-56735-6_72

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56735-6

  • Online ISBN: 978-3-540-47643-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics