Skip to main content

A model for the development of neurons selective to visual stimulus size

  • Conference paper
  • First Online:
New Trends in Neural Computation (IWANN 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 686))

Included in the following conference series:

Abstract

In this work, a neural network model for the development of variable sized receptive fields is presented. The system self-organizes under simple rules such as correlation of activity, signal diffusion, and competitive synaptic growth. The network model has one input and one output layer. They are fully connected by an excitatory weight matrix. In addition, the neurons of the output layer are interconnected by inhibitory weights. The set of differential equations for the time evolution of the system is calculated. Numerical integration shows that according to the set of network parameters the system reaches either a non-organized steady state, where all the connections have the same value, or any of two organized states, one of them having connections that represent mexican hat shaped receptive fields of variable size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson, A. 1990. Anti-Hebbian learning in a non-linear neural network. Biol. Cybern., 64, 171–176

    Google Scholar 

  2. Földiak, P. 1990. Forming sparse representations by local anti-Hebbian learning. Biol. Cybern. 64, 165–170

    Google Scholar 

  3. Frégnac, Y. and M. Imbert. 1984. Development of neuronal selectivity in primary visual cortex of cat. Physiol. Rev. 64, 325–434

    Google Scholar 

  4. Gizzi, M.S., E. Katz, R.A. Schumer, J.A. Movshon. 1990. Selectivity for orientation and directon of motion of single neurons in cat striate and extrastriate visual cortex. J. Neurophysiology. 63, 1529–1543

    Google Scholar 

  5. Hebb, D.O. 1949. Organization of Behavior John Wiley & Sons, New York

    Google Scholar 

  6. Hubel, D.H. and T.N. Wiesel. 1963. Receptive fields of cells in striate cortex of very young visually inexperienced kittens. J. Neurophysiol. 26, 994–1002

    Google Scholar 

  7. Kuffler, S.W., J.G. Nicholls, A.R. Martin. 1984. From Neuron to Brain. Sinauer Associates Inc. Publishers.

    Google Scholar 

  8. Le Vay, S., M.P. Stryker and C.J. Shatz. 1978. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J. Comp. Neurol. 179, 223–224

    Google Scholar 

  9. Miller, K.D., J.B. Keller and M.P. Stryker. 1989. Ocular dominance columnar development: analysis and simulation. Science. 245, 605–615

    Google Scholar 

  10. Miyashita, M. and S. Tanaka. A mathematical model for the self-organizaton of orientation columns in visual cortex. NeuroReport. 3, 69–72

    Google Scholar 

  11. Orban, G.A. 1984. Neuronal Operations in the Visual Cortex. Springer-Verlag.

    Google Scholar 

  12. Singer, W. 1987. Activity-dependent self-organization of synaptic connections as a substrate of learning. In: The Neural and Molecular Bases of Learning, eds. J.-P. Changeaux y M. Konishi, pp 239–262. Dahlem Konferenzen. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  13. Spillman, L. and J.S. Werner. 1990. Visual Perception. The Neurophysiological Foundations. Academic Press, Inc.

    Google Scholar 

  14. Stent, G.S. 1973. Physiological mechanism for Hebb's postulate of learning. Proc. Natl. Acad. Sci. USA 70, 997–1001

    Google Scholar 

  15. Stryker, M.P. 1986. The role of neural activity in rearranging connections in the central visual system. In The Biology of Change in Otolaryngology, Elsevier Science Publishers B V, R.W. Ruben et al eds., pp 211–224

    Google Scholar 

  16. Tootell, R.B., M.S. Silverman and R.L. de Valois. 1981. Spatial frequency columns in primary visual cortex. Science. 214, 813–815

    Google Scholar 

  17. von der Malsburg, C. 1987. Synaptic plasticity as basis of brain self-organization. In: The Neural and Molecular Bases of Learning, eds. J.-P. Changeaux and M. Konishi, pp 411–431. Dahlem Konferenzen. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  18. von der Malsburg, C., and W. Singer. 1988. Principles of cortical network organization, in Neurobiology of Neocortex, eds. P Rakic y W Singer, pp 69–99

    Google Scholar 

  19. Weitzenfeld, A. 1992. A Unified Computational Model for Schemas and Neural Networks in Concurrent Object-Oriented Programming. Technical Report 92-03. Center for Neural Engineering. University of Southern California.

    Google Scholar 

  20. Wörgotter, F. and G. Holt. 1991. Spatiotemporal mechanisms in receptive fields of visual cortical simple cells: a model. J. Neurophysiology. 65, 494–510

    Google Scholar 

  21. Yuille, A.L., M.D. Kammen, and D.S. Cohen. 1989. Quadrature and the development of orientation selective cortical cells by Hebb rules. Biol. Cybern. 61, 183–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Joan Cabestany Alberto Prieto

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andrade, M.A., Morán, F. (1993). A model for the development of neurons selective to visual stimulus size. In: Mira, J., Cabestany, J., Prieto, A. (eds) New Trends in Neural Computation. IWANN 1993. Lecture Notes in Computer Science, vol 686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56798-4_119

Download citation

  • DOI: https://doi.org/10.1007/3-540-56798-4_119

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56798-1

  • Online ISBN: 978-3-540-47741-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics